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1 Gloriabar

a) You might be tempted to model this situation by a queue with a bounded number of
states, because the maximal number of persons in the line is bounded by 540. However,
the situation can also be modeled by an infinite M/M/1 queue without losing too much
accuracy; the parameter ρ will not be too large, such that the probability to reach the state
in which 540 persons are standing in the queue at once is extremely small anyway. The
modeling by an infinite M/M/1 queue conveniently allows us to apply Little’s Law and
therefore, we can use the formulae for the response and waiting time:

Our arrival rate λ and service rate µ are given by

λ =
540

90 · 60
=

1

10
, µ =

1

9

(persons per second). Thus ρ = λ
µ = 9

10 . By Theorem 5.19, the expected number of persons

in the M/M/1 system is

N =
ρ

1 − ρ
=

λ

µ− λ
= 9.

By applying Little’s Law, we learn that the expected time until the student has paid for
her food is T = N

λ = 90 seconds. The expected waiting time is W = T − 1
µ = ρ

µ−λ = 81
seconds.

b) We use the formula for the expected number of jobs in the queue and obtain queue length

of NQ = ρ2

1−ρ = 8.1.

c) We require that T = N
λ = 1

µ−λ = 90
2 , where λ = 0.1. Thus, µ = 11

90 , i.e., instead of 9 secs,

the service time should be 90
11 ≈ 8.2 secs.

2 Beachvolleyball

a) We know that the minimum of i independent and exponentially distributed (with parameter
λ) random variables is an exponentially distributed random variable with parameter iλ.
Thus, we have the following birth-death-process:
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b) Let πi be the probability of state i in the equilibrium. We know that

πi = π0 ·
i−1∏
j=0

λj
µj+1

and thus

πi = π0 ·
λ0 · λ1 · · · · λi−1

µ1 · µ2 · · · · µi
.

Applying this formula to our process yields

πi = π0 ·
n(n− 1) · · · · · (n− i+ 1) · λi

1 · 2 · · · · · i · µi
= π0 ·

(
n

i

)
· ρi (1)

where ρ := λ
µ . We know that the sum of all probabilities equals 1, so we have

n∑
i=0

πi = π0

n∑
i=0

(
n

i

)
ρi = 1

Using the given formula for the binomial series

n∑
i=0

(
n

i

)
xi = (1 + x)n

we obtain
π0(1 + ρ)n = 1 .

Finally, we obtain

πi =

(
n
i

)
ρi

(1 + ρ)n
.

c) (i) It is ρ = 3/9 = 1/3. We calculate the probability that there are less than two fit
players:

π0 + π1 =
1

(1 + ρ)n
·
(

1 +

(
n

1

)
· ρ1
)

=

(
3

4

)5

·
(

1 +
5

3

)
=

35

210
· 8

3

=
34

27
≈ 0.63

Thus, the Disco team cannot participate in the tournament with probability 0.63.

(ii) Now, ρ = 2/4 = 0.5. Again, we calculate π0 + π1:

π0 + π1 =
1

(1 + ρ)n
·
(

1 +

(
n

1

)
· ρ1
)

=
1

1.55
· (1 + 0.5 · 5)

=
25 · 3.5

35
≈ 0.46

Hence, the probability that the Disco team cannot participate is 0.46!

(iii) In general, if ρ ≥ 1, an M/M/1 queue might grow infinitely and therefore doesn’t
have a stationary distribution. This cannot happen in this birth-and-death process,
though, because there is only a bounded number of states. Hence, the process has a
stationary distribution even for ρ ≥ 1.
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3 Theory of Ice Cream Vending

The situation can be described by a classic M/M/2 system. There is an equilibrium iff

ρ = λ/(2µ) < 1 .

For the stationary distribution, it holds that

π0 =
1(∑m−1

k=0
(ρm)k

k!

)
+ (ρm)m

m!(1−ρ)

=
1

(2ρ)0

0! + (2ρ)1

1! + (2ρ)2

2!(1−ρ)

=
1

1 + 2ρ+ 4ρ2

(2(1−ρ))

=
1

1 + 2ρ+ 4ρ2

2(1−ρ)

=
1

2(1−ρ)+4ρ(1−ρ)+4ρ2

2(1−ρ)

=
2(1 − ρ)

2 − 2ρ+ 4ρ− 4ρ2 + 4ρ2

=
2(1 − ρ)

2 + 2ρ

=
1 − ρ

1 + ρ
.

3


