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Last week, we learned about 

closure and equivalence of regular languages
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Last week, we learned about 

closure and equivalence of regular languages



DFA ≍ NFA

is equivalent to



This week we’ll look at REX, 

the third way of representing regular languages

DFA ≍ NFA

REX



DFA ≍ NFA
?

REX
≍

Are REX, NFA and DFA all equivalent?



{0n1n | n ≥ 0}

We’ll then start asking ourselves 

whether all languages are regular

{w | w has an equal number of 0s and 1s}

{w | w has an equal number of occurrences of 01 and 10} 

L1

L2

L3

(only one of them actually is)
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Three tough languages

1) L1 = {0n1n | n t 0}

2) L2 = {w | w has an equal number of 0s and 1s}

3) L3 = {w | w has an equal number of occurrences of 
01 and 10 as substrings}
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Three tough languages

1) L1 = {0n1n | n t 0}

2) L2 = {w | w has an equal number of 0s and 1s}

3) L3 = {w | w has an equal number of occurrences of 
01 and 10 as substrings} 

• In order to fully understand regular languages, we also must understand 
their limitations!
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Pigeonhole principle

• Consider language L, which contains word w � L.
• Consider an FA which accepts L, with n < |w| states.
• Then, when accepting w, the FA must visit at least one state twice.
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Pigeonhole principle

• Consider language L, which contains word w � L.
• Consider an FA which accepts L, with n < |w| states.
• Then, when accepting w, the FA must visit at least one state twice.

• This is according to the pigeonhole (a.k.a. Dirichlet) principle:
– If m>n pigeons are put into n pigeonholes, there's a hole with 

more than one pigeon. 
– That’s a pretty fancy name for a boring observation...
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Languages with unbounded strings

• Consequently, regular languages with unbounded strings can only be 
recognized by FA (finite! bounded!) automata if these long strings loop.

• The FA can enter the loop once, twice, …, and not at all. 

• That is, language L contains all {xz, xyz, xy2z, xy3z, …}.
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Pumping Lemma

• Theorem: 

Given a regular language L, there is a number p (the pumping number) 
such that:
any string u in L of length t p is pumpable within its first p letters. 
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Pumping Lemma

• Theorem: 

Given a regular language L, there is a number p (the pumping number) 
such that:
any string u in L of length t p is pumpable within its first p letters. 

• A string u � L with |u | t p is pumpable if it can be split in 3 parts xyz s.t.:
– |y| t 1 (mid-portion y is non-empty)
– |xy| d p (pumping occurs in first p letters)
– xyiz � L  for all i t 0  (can pump y-portion)
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Pumping Lemma

• Theorem: 

Given a regular language L, there is a number p (the pumping number) 
such that:
any string u in L of length t p is pumpable within its first p letters. 

• A string u � L with |u | t p is pumpable if it can be split in 3 parts xyz s.t.:
– |y| t 1 (mid-portion y is non-empty)
– |xy| d p (pumping occurs in first p letters)
– xyiz � L  for all i t 0  (can pump y-portion)

• If there is no such p, then the language is not regular
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Pumping Lemma Example

• Let L be the language {0n1n | n t 0}

• Assume (for the sake of contradiction) that L is regular
• Let p be the pumping length. Let u be the string 0p1p. 
• Let’s check string u against the pumping lemma:

• “In other words, for all u � L with |u | t p we can write:
– u = xyz (x is a prefix, z is a suffix)
– |y| t 1 (mid-portion y is non-empty)
– |xy| d p (pumping occurs in first p letters)
– xyiz � L  for all i t 0 (can pump y-portion)”
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Let’s make the example a bit harder…

• Let L be the language {w | w has an equal number of 0s and 1s}

• Assume (for the sake of contradiction) that L is regular
• Let p be the pumping length. Let u be the string 0p1p. 
• Let’s check string u against the pumping lemma:

• “In other words, for all u � L with |u | t p we can write:
– u = xyz (x is a prefix, z is a suffix)
– |y| t 1 (mid-portion y is non-empty)
– |xy| d p (pumping occurs in first p letters)
– xyiz � L  for all i t 0 (can pump y-portion)”
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Now you try…

• Is 𝐿1 = 𝑤𝑤 𝑤 ∈ 0 ∪ 1 ∗} regular?

• Is 𝐿2 = 1𝑛 𝑛 being a prime number } regular?
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Motivation

• Why is a language such as {0n1n | n ≥ 0} not regular?!? 

• It’s really simple! All you need to keep track is the number of 0’s…

• In this chapter we first study context-free grammars
– More powerful than regular languages
– Recursive structure
– Developed for human languages
– Important for engineers (parsers, protocols, etc.)
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Example

• Palindromes, for example, are not regular. 
• But there is a pattern. 
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Example

• Palindromes, for example, are not regular. 
• But there is a pattern. 

• Q: If you have one palindrome, how can you generate another?
• A:  Generate palindromes recursively as follows:

– Base case: e, 0 and 1 are palindromes.
– Recursion:  If x is a palindrome, then so are 0x0 and 1x1.
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Example

• Palindromes, for example, are not regular. 
• But there is a pattern. 

• Q: If you have one palindrome, how can you generate another?
• A:  Generate palindromes recursively as follows:

– Base case: e, 0 and 1 are palindromes.
– Recursion:  If x is a palindrome, then so are 0x0 and 1x1.

• Notation: x Æ e | 0 | 1 | 0x0 | 1x1.
– Each pipe (“|”) is an or, just as in UNIX regexp’s.
– In fact, all palindromes can be generated from e using these rules.
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Example

• Palindromes, for example, are not regular. 
• But there is a pattern. 

• Q: If you have one palindrome, how can you generate another?
• A:  Generate palindromes recursively as follows:

– Base case: e, 0 and 1 are palindromes.
– Recursion:  If x is a palindrome, then so are 0x0 and 1x1.

• Notation: x Æ e | 0 | 1 | 0x0 | 1x1.
– Each pipe (“|”) is an or, just as in UNIX regexp’s.
– In fact, all palindromes can be generated from e using these rules.

• Q:  How would you generate 11011011?
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Context Free Grammars (CFG): Definition

• Definition:  A context free grammar consists of (V, S, R, S) with:
– V: a finite set of variables (or symbols, or non-terminals)
– S: a finite set set of terminals (or the alphabet)
– R: a finite set of rules (or productions) 

of the form v Æ w with v�V, and w�(Se�V )* 
(read: “v yields w” or “v produces w”)

– S �V: the start symbol.
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Context Free Grammars (CFG): Definition

• Definition:  A context free grammar consists of (V, S, R, S) with:
– V: a finite set of variables (or symbols, or non-terminals)
– S: a finite set set of terminals (or the alphabet)
– R: a finite set of rules (or productions) 

of the form v Æ w with v�V, and w�(Se�V )* 
(read: “v yields w” or “v produces w”)

– S �V: the start symbol.

• Q: What are (V, S, R, S) for our palindrome example?
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Derivations and Language

• Definition:  The derivation symbol “�” (read “1-step derives” or “1-step 
produces”) is a relation between strings in (S�V )*.  
We write x�y if x and y can be broken up as x = svt and y = swt
with vÆw being a production in R.
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Derivations and Language

• Definition:  The derivation symbol “�” (read “1-step derives” or “1-step 
produces”) is a relation between strings in (S�V )*.  
We write x�y if x and y can be broken up as x = svt and y = swt
with vÆw being a production in R.

• Definition:  The derivation symbol “�*”, (read “derives” or “produces” 
or “yields”) is a relation between strings in (S�V )*.  We write x �* y if 
there is a sequence of 1-step productions from x to y.  I.e., there are 
strings xi with i ranging from 0 to n such that x = x0, y = xn and x0 � x1, x1 �
x2, x2 � x3, … , xn-1 � xn.
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Derivations and Language

• Definition:  The derivation symbol “�” (read “1-step derives” or “1-step 
produces”) is a relation between strings in (S�V )*.  
We write x�y if x and y can be broken up as x = svt and y = swt
with vÆw being a production in R.

• Definition:  The derivation symbol “�*”, (read “derives” or “produces” 
or “yields”) is a relation between strings in (S�V )*.  We write x �* y if 
there is a sequence of 1-step productions from x to y.  I.e., there are 
strings xi with i ranging from 0 to n such that x = x0, y = xn and x0 � x1, x1 �
x2, x2 � x3, … , xn-1 � xn.

• Definition: Let G be a context-free grammar. The context-free language 
(CFL) generated by G is the set of all terminal strings which are derivable 
from the start symbol.  Symbolically: L(G ) = {w � S* | S �* w}
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Example: Infix Expressions

• Infix expressions involving {+, u, a, b, c, (, )}
• E stands for an expression (most general)
• F stands for factor (a multiplicative part)
• T stands for term (a product of factors)
• V stands for a variable: a, b, or c

• Grammar is given by:
– EÆ T  | E +T
– T Æ F  | T u F
– F Æ V  | (E)
– V Æ a  | b  | c  

• Convention: Start variable is the first one in grammar (E)

2/11



Example: Infix Expressions

• Consider the string u given by a u b + (c + (a + c))
• This is a valid infix expression. Can be generated from E.

1. A sum of two expressions, so first production must be E � E +T
2. Sub-expression aub  is a product, so a term so generated by sequence E

+T� T +T� T uF +T �* aub +T
3. Second sub-expression is a factor only because a parenthesized sum. 

aub +T � aub +F � aub +(E ) � aub +(E +T) …
4. E � E +T� T +T� TuF +T � FuF +T � VuF+T � auF+T � auV+T �

aub +T � aub +F � aub + (E)� aub + (E +T) � aub + (T+T) � aub+(F 
+T) �aub+(V+T) � aub + (c +T) � aub + (c+F) � aub + (c + (E )) � aub
+ (c +(E +T)) � aub+(c+(T+T)) � aub +(c + (F+T)) � aub+(c+(a+T)) �
aub +(c +(a + F )) � aub + (c+(a+V )) � aub + (c + (a+c ))
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Left- and Right-most derivation

• The derivation on the previous slide was a so-called left-most 
derivation.

• In a right-most derivation, the variable most to the right is replaced.  
– E � E +T � E + F� E + (E)� E + (E +T)� etc.
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Ambiguity

• There can be a lot of ambiguity involved in how a string is derived. 

• Another way to describe a derivation in a unique way is using 
derivation trees.
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Derivation Trees

• In a derivation tree (or parse tree) each node is a symbol. Each parent is a 
variable whose children spell out the production from left to right.  For, 
example v Æ abcdefg:

• The root is the start variable. 
• The leaves spell out the derived string from left to right.
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v

a b c d e f g



Derivation Trees

• On the right, we see a derivation tree 
for our string aub + (c + (a + c))

• Derivation trees help understanding 
semantics!  You can tell how expression 
should be evaluated from the tree.
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Ambiguity

<sentence> Æ <action> | <action> with <subject>
<action> Æ <subject><activity>
<subject> Æ <noun> | <noun> and <subject>
<activity> Æ <verb> | <verb><object>
<noun> Æ Hannibal | Clarice | rice | onions
<verb> Æ ate | played
<prep> Æ with | and | or
<object> Æ <noun> | <noun><prep><object>

• Clarice played with Hannibal
• Clarice ate rice with onions
• Hannibal ate rice with Clarice

• Q:  Are there any suspect sentences?
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Ambiguity

• A:  Consider “Hannibal ate rice with Clarice”

• This could either mean
– Hannibal and Clarice ate rice together.
– Hannibal ate rice and ate Clarice.

• This ambiguity arises from the fact that the sentence has two different 
parse-trees, and therefore two different interpretations:
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Hannibal and Clarice Ate
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Hannibal the Cannibal
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Ambiguity: Definition

• Definition: 

A string x is said to be ambiguous relative the grammar G
if there are two essentially different ways to derive x in G.  
– x admits two (or more) different parse-trees 
– equivalently, x admits different left-most [resp. right-most] derivations. 

• A grammar G is said to be ambiguous if there is some string x in L(G) 
which is ambiguous.

2/21



Ambiguity: Definition

• Definition: 

A string x is said to be ambiguous relative the grammar G
if there are two essentially different ways to derive x in G.  
– x admits two (or more) different parse-trees 
– equivalently, x admits different left-most [resp. right-most] derivations. 

• A grammar G is said to be ambiguous if there is some string x in L(G) 
which is ambiguous.

• Question: Is the grammar S Æ ab | ba | aSb | bSa | SS ambiguous? 
– What language is generated?
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Ambiguity

• Answer:  L(G ) = the language with equal no. of a’ s and b’ s
• Yes, the language is ambiguous:

2/1
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CFG’s: Proving Correctness

• The recursive nature of CFG’s means that they are especially amenable 
to correctness proofs.

• For example let’s consider the grammar
G = (S Æ e | ab | ba | aSb | bSa | SS) 

• We claim that L(G) = L = { x  � {a,b}* | na(x) = nb(x) },
where na(x) is the number of a’s in x, and nb(x) is the number of b’s. 

• Proof: To prove that L = L(G) is to show both inclusions:
i. L � L(G ): Every string in L can be generated by G.
ii. L � L(G ): G only generate strings of L.

- This part is easy, so we concentrate on part i.
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Proving L � L(G)

• L � L(G ):  Show that every string x with the same number of a’s as b’s 
is generated by G.  Prove by induction on the length n = |x|. 

• Base case: The empty string is derived by S Æ e.
• Inductive hypothesis: Assume n > 0. Let u be the smallest non-empty 

prefix of x which is also in L.  
– Either there is such a prefix with |u| < |x|, then x = uv whereas v ∈ L as 

well, and we can use S Æ SS and repeat the argument. 
– Or x = u. In this case notice that u can’t start and end in the same letter. 

If it started and ended with a then write x = ava. This means that v must 
have 2 more b’s than a’s. So somewhere in v the b’s of x catch up to the 
a’s which means that there’s a smaller prefix in L, contradicting the 
definition of u as the smallest prefix in L. Thus for some string v in L we 
have x = avb OR x = bva. We can use either S Æ aSb OR S Æ bSa.

2/24



Designing Context-Free Grammars

• As for regular languages this is a creative process.

• However, if the grammar is the union of simpler grammars, you can 
design the simpler grammars (with starting symbols S1, S2, respectively) 
first, and then add a new starting symbol/production 
S Æ S1 | S2.

• If the CFG happens to be regular as well, you can first design the FA, 
introduce a variable/production for each state of the FA, and then add a 
rule x Æ ay to the CFG if G(x,a) = y is in the FA. If a state x is accepting in 
FA then add x Æ e to CFG. The start symbol of the CFG is of course 
equivalent to the start state in the FA.

• There are quite a few other tricks. Try yourself…
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