255
ETH o

. . T Yy
Eidgendssische Technische Hochschule Ziirich Distributed I;‘:;:““ ‘.
Swiss Federal Institute of Technology Zurich Computing \‘\ Pl
HS 2017 Prof. R. Wattenhofer

1
a)

b)

b)

Distributed Systems Part 11

Solution to Exercise Sheet 6

Delayed Bitcoin

It is true that naturally occurring forks of length [decrease exponentially with [, however
this covers naturally occuring blockchain forks only. As there is no information how much
calculation power exists in total, it is always possible a large blockchain fork exists. This
may be the result of a network partition or an attacker secretly running a large mining
operation.

This is a general problem with all “open-membership” consensus systems, where the num-
ber of existing consensus nodes is unknown and new nodes may join at any time. As it is
always possible a much larger unknown part of the network exists, it is impossible to have
strong consistency.

In the Bitcoin world an attack where an attacker is secretly mining a second blockchain to
later revert many blocks is called a 51% attack, because it was thought necessary to have a
majority of the mining power to do so. However later research showed that by using other
weaknesses in Bitcoin it is possible to do such attacks already with about a third of the
mining power.

The delay in this case prevents coins from completely vanishing in the case of a fork. Newly
mined coins only exist in the fork containing the block that created them. In case of a
blockchain fork the coins would disappear and transactions spending them would become
invalid as well. It would therefore be possible to taint any number of transactions that are
valid in one fork and not valid in another. Waiting for maturation ensures that it is very
improbable that the coins will later disappear accidentially.

Note that this is however only a protection against someone accidentially sending you
money that disappears with a discontinued fork. The same thing can still happen, if
someone with evil intent double spends the same coins on the other side of the fork. You
will not be able to replay a transaction of a discontinued fork on the new active chain if
the old owner spent them in a different transaction in the meantime. To prevent theft by
such an attacker you need to wait enough time to regard the chance of forks continuing
to exist to be small enough. A common value used is about one hour after a transaction
entered a block (~6 blocks).

Double Spending

Figure 1 depicts the final situation. 7 nodes have seen T first and 5 nodes have seen T” first.
The 5 nodes at the edge cut between the green and the red cut have seen both transactions.

Each node has 1/12 of all computational resources, hence the probability of 7" being con-
firmed is 7/12 & 58%, while 7" has a 5/12 ~ 42% chance of being confirmed. The higher
connectivity from the first node seeing 7' resulted in the transaction spreading faster, in-
creasing the probability of winning the doublespend.

i

Figure 1: Random Bitcoin network

c¢) The first node that sees 7" now has 20% of the computational resources. T” therefore has
a probability to win of 2/10 4+ 1/11 - 8/10 - 4 = 49%. The distribution of computational
resources in the network therefore matters. The goal of an attacker is to spread the transac-
tion that she wants to have confirmed to a majority of the computational resources, which
may not be the same as spreading it to a majority of nodes.

The Transaction Graph

Figure 2: Transaction Graph. The red outputs are UTXOs.

a) See Figure 2.
b) See red outputs in Figure 2.

¢) Fully spending an output simplifies the bookkeeping considerably as an output can only
be in two possible states: spent or unspent. This means that it is easy to detect conflicts,
because two transactions spending the same output are conflicts. If we were to partially
spend outputs, allowing multiple transactions to spend the same output until the coins on
that output were completely spent, then the conflicts become more complicated. Assume
an output with value 1 bitcoin. When partially spending outputs we could create 3 trans-
actions claiming 0.5 bitcoins from that output, two of them are valid and the third will
be invalid, but there are 3 possible combinations that are valid. So the simple answer is:
it makes conflicts evident and reduces combinations for conflicts. The number of possible
combinations increases rapidly with the number of transactions.

There are many points in the Bitcoin software where this would complicates things. A
miner needs to construct a valid block from the known transactions, however this becomes
more difficult if arbitrary combinations of transactions suddenly conflict with each other.

Furthermore with complex conflicts attackers can create a situation where most nodes do
not agree on the transactions which will be in the next block. However nodes are optimized
to quickly be able to forward new blocks which look “expected”. If the nodes do not agree
at least loosely on the transactions to be committed in the next block, the propagation
delays become much larger as many transactions need to be retransmitted, which finally
results in smaller total transaction processing capability.

Note: As you might have realized the flow of money can be nicely followed with the transaction
data from the Bitcoin blockchain. If some hacker steals your valuable coins, you can watch him
buy things with it and see where the vendors are spending this money too! For this reason it is
often possible to “buy” larger amounts of Bitcoin with less Bitcoin. The larger amount you can
“buy” has very likely been involved in some crime and is being tracked by the police, thus the
owner is eager to exchange them for other coins. Look for “Bitcoin doubling” in your favorite
list of darknet services!

4
a)

b)

Bitcoin Script

Transactions are instantly finalized, so the large confirmation delay of the blockchain is
irrelevant. Only the signatures of both parties are needed, then the money has effectively
changed the owner. Furthermore no transaction fees have to be paid to miners for replacing
a transaction.

Without the opening transaction A could just spend the money with a transaction without
a timelock to a different address owned by himself. Requiring both signatures prevents this
and gives security to B. In this construction B can trust that the funds will be available
after the first timelock runs out.

Note that if B wants to access the funds earlier, it is still possible for A and B together
to sign a transaction which directly executes the latest state. As long as both agree it is
thus not necessary to wait for the timelocks. The timelocks are only necessary to ensure
the last state in case there is disagreement.

A “kickoff” transaction can be introduced after the opening. Only the opening is executed
(i.e., sent to the blockchain) at the beginning to secure the funds. Now transactions can be
replaced and if someone wants to close the channel he can execute the kickoff. This starts
the timers on the subsequent transactions. See Figure 3 for the new transactions.

In detail the protocol is the following.
Setup:

1. A creates all transactions of the setup (opening, kickoff and first state).

2. A sends these together with signatures for the kickoff and first state to B.
3. B signs the kickoff and first state and sends the signatures to A.
4

. A signs the opening transaction and executes it on the blockchain.
Updating;:

1. A creates a new transaction spending the kickoff output with a lower timelock.

2. A signs it and sends it to B.

3. B sends his signature to A.

After the update both have a signed version of the new state and can terminate the channel
in this state.

Closing;:

1. A or B proposes a settlement transaction that directly spends the locked-in funds in the
opening output.

2. The other party signs and sends it to the blockchain.

This is the cooperative closing case. If some dispute happens, either of the two parties can
always send the kickoff and latest state to the blockchain.

!

({A, B}, 10) ({A, B}, 10) T = 100

O— O Q
(4,10)

/\
S

©
N

H
|
©
S
!5 ?43 @é
-’ 2

=
w

)

Figure 3: A “payment channel”. A and B both have to sign to spend the output in the middle.
The upper transaction can only be committed starting from blockheight 100, the lower one
starting from blockheight 90.

