
Chapter 4

Authenticated Agreement

Byzantine nodes are able to lie about their inputs as well as received messages.
Can we detect certain lies and limit the power of byzantine nodes? Possibly,
the authenticity of messages may be validated using signatures?

4.1 Agreement with Authentication

Definition 4.1 (Signature). Every node can sign its messages in a way that
no other node can forge, thus nodes can reliably determine which node a signed
message originated from. We denote a message msg(x) signed by node u with
msg(x)u.

Remarks:

• Algorithm 4.2 shows a synchronous agreement protocol for binary in-
puts relying on signatures. We assume there is a designated “primary”
node p that all other nodes know. The goal is to decide on p’s value.

Theorem 4.3. Algorithm 4.2 can tolerate f < n byzantine failures while ter-
minating in f + 1 rounds.

Proof. Assuming that the primary p is not byzantine and its input is 1, then p
broadcasts value(1)p in the first round, which will trigger all correct nodes to
decide on 1. If p’s input is 0, there is no signed message value(1)p, and no node
can decide on 1.

If primary p is byzantine, we need all correct nodes to decide on the same
value for the algorithm to be correct.

Assume i < f + 1 is minimal among all rounds in which any correct node u
decides on 1. In this case, u has a set S of at least i messages from other nodes
for value 1 in round i, including one of p. Therefore, in round i + 1 ≤ f + 1, all
other correct nodes will receive S and u’s message for value 1 and thus decide
on 1 too.

Now assume that i = f + 1 is minimal among all rounds in which a correct
node u decides for 1. Thus u must have received f + 1 messages for value 1, one
of which must be from a correct node since there are only f byzantine nodes.
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Algorithm 4.2 Byzantine Agreement with Authentication

Code for primary p:

1: if input is 1 then
2: broadcast value(1)p
3: decide 1 and terminate
4: else
5: decide 0 and terminate
6: end if

Code for all other nodes v:

7: for all rounds i ∈ {1, . . . , f + 1} do
8: S is the set of accepted messages value(1)u.
9: if |S| ≥ i and value(1)p ∈ S then

10: broadcast S ∪ {value(1)v}
11: decide 1 and terminate
12: end if
13: end for
14: decide 0 and terminate

In this case some other correct node u′ must have decided on 1 in some round
j < i, which contradicts i’s minimality; hence this case cannot happen.

Finally, if no correct node decides on 1 by the end of round f + 1, then all
correct nodes will decide on 0.

Remarks:

• The algorithm only takes f + 1 rounds, which is optimal as described
in Theorem 3.20.

• Using signatures, Algorithm 4.2 solves consensus for any number of
failures! Does this contradict Theorem 3.12? Recall that in the proof
of Theorem 3.12 we assumed that a byzantine node can distribute con-
tradictory information about its own input. If messages are signed,
correct nodes can detect such behavior – a node u signing two contra-
dicting messages proves to all nodes that node u is byzantine.

• Does Algorithm 4.2 satisfy any of the validity conditions introduced
in Section 3.1? No! A byzantine primary can dictate the decision
value. Can we modify the algorithm such that the correct-input va-
lidity condition is satisfied? Yes! We can run the algorithm in parallel
for 2f + 1 primary nodes. Either 0 or 1 will occur at least f + 1 times,
which means that one correct process had to have this value in the
first place. In this case, we can only handle f < n

2 byzantine nodes.

• If the primary is a correct node, Algorithm 4.2 only needs two rounds!
Can we make it work with arbitrary inputs? Also, relying on syn-
chrony limits the practicality of the protocol. What if messages can
be lost or the system is asynchronous?
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4.2 Practical Byzantine Fault Tolerance

Practical Byzantine Fault Tolerance (PBFT) is one of the first and perhaps
the most instructive protocol for achieving state replication among nodes as in
Definition 1.8 with byzantine nodes in an asynchronous network. We present a
very simple version of it without any optimizations.

Definition 4.4 (System Model). There are n = 3f +1 nodes and an unbounded
number of clients. There are at most f byzantine nodes, and clients can be
byzantine as well. The network is asynchronous, and messages have variable
delay and can get lost. Clients send requests that correct nodes have to order to
achieve state replication.

The ideas behind PBFT can roughly be summarized as follows:

• Signatures guarantee that every node can determine which node/client
generated any given message.

• At any given time, every node will consider one designated node to be the
primary and the other nodes to be backups. Since we are in the variable
delay model, requests can arrive at the nodes in different orders. While a
primary remains in charge (this timespan corresponds to what is called a
view), it thus has the function of a serializer (cf. Algorithm 1.9).

• If backups detect faulty behavior in the primary, they start a new view
and the next node in round-robin order becomes primary. This is called
a view change.

• After a view change, a correct new primary makes sure that no two correct
nodes execute requests in different orders. Exchanging information will
enable backups to determine if the new primary acts in a byzantine fashion.

Definition 4.5 (View). A view is represented locally at each node i by a non-
negative integer v (we say i is in view v) that is incremented whenever the
node changes to a different view.

Definition 4.6 (Primary; Backups). A node that is in view v considers node
v mod n to be the primary and all other nodes to be backups.

Definition 4.7 (Sequence Number). During a view, a node relies on the pri-
mary to pick consecutive integers as sequence numbers that function as indices
in the global order (cf. Definition 1.8) for the requests that clients send.

Remarks:

• All nodes start out in view 0 and can potentially be in different views
(i.e. have different local values for v) at any given time.

• The protocol will guarantee that once a correct node has executed a
request r with sequence number s, then eventually all correct nodes
will execute r with sequence number s, and that no correct node will
execute any r′ 6= r with sequence number s.



4.3. PBFT: AGREEMENT PROTOCOL 39

request(r)c
pre-prepare
(v, s, r, n0)n0

prepare
(v, s, r, ni)ni

commit
(v, s)ni

reply
(r)ni

client c

primary n0

backup n1

backup n2

backup n3

Figure 4.10: The agreement protocol used in PBFT for processing a client
request exemplified for a system with 4 nodes. Node n0 is the primary in
current view v. Time runs from left to right. Messages sent at the same time
need not arrive at the same time.

• Correct primaries choose sequence numbers such that they are dense,
i.e. if a correct primary proposed s as the sequence number for the
last request, then it will use s+1 for the next request that it proposes.

• Before a node can safely execute a request r with a sequence number
s, it will wait until it knows that the decision to execute r with s has
been reached and is widely known.

• Informally, nodes will collect confirmation messages by sets of at least
2f + 1 nodes to guarantee that that information is sufficiently widely
distributed.

Definition 4.8 (Accepted Messages). A correct node that is in view v will only
accept messages that it can authenticate, that follow the specification of the
protocol, whose components can be validated in the same way, and that also
belong to view v.

Lemma 4.9 (2f+1 Quorum Intersection). Let S1 with |S1| ≥ 2f + 1 and S2

with |S2| ≥ 2f + 1 each be sets of nodes. Then there exists a correct node in
S1 ∩ S2.

Proof. Let S1, S2 each be sets of at least 2f + 1 nodes. There are 3f + 1 nodes
in total, thus due to the pigeonhole principle the intersection S1 ∩ S2 contains
at least f + 1 nodes. Since there are at most f faulty nodes, S1 ∩ S2 contains
at least 1 correct node.

4.3 PBFT: Agreement Protocol

First we describe how PBFT achieves agreement on a unique order of requests
within a view.

Remarks:

• Figure 4.10 shows how the nodes come to an agreement on a sequence
number for a client request. Informally, the protocal has these three
steps:
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1. The primary sends a pre-prepare-message to all backups, in-
forming them that he wants to execute that request with the
sequence number specified in the message.

2. Backups send prepare-messages to all nodes, informing them
that they agree with that suggestion.

3. All nodes send commit-messages to all nodes, informing everyone
that they have committed to execute the request with that se-
quence number. They execute the request and inform the client.

• Figure 4.10 shows that all nodes can start each phase at different
times.

• To make sure byzantine nodes cannot force the execution of a re-
quest, every node waits for a certain number of prepare- and commit-
messages with the correct content before executing the request.

• Definitions 4.11, 4.14, 4.16 specify the agreement protocol formally.
Backups run Phases 1 and 2 concurrently.

Definition 4.11 (PBFT Agreement Protocol Phase 1; Pre-Prepared Primary).
In phase 1 of the agreement protocol, the nodes execute Algorithm 4.12.

Algorithm 4.12 PBFT Agreement Protocol: Phase 1

Code for primary p in view v:

1: accept request(r)c that originated from client c
2: pick next sequence number s
3: send pre-prepare(v, s, r, p)p to all backups

Code for backup b:

4: accept request(r)c from client c
5: relay request(r)c to primary p

Definition 4.13 (Faulty-Timer). When backup b accepts request r in Algo-
rithm 4.12 Line 4, b starts a local faulty-timer (if the timer is not already
running) that will only stop once b executes r.

Remarks:

• If the faulty-timer expires, the backup considers the primary faulty
and triggers a view change. We explain the view change protocol in
Section 4.4.

• We leave out the details regarding for what timespan to set the faulty-
timer as they are an optimization with several trade-offs to consider;
the interested reader is advised to consult [MC99].

Definition 4.14 (PBFT Agreement Protocol Phase 2; Pre-prepared Backups).
In phase 2 of the agreement protocol, every backup b executes Algorithm 4.15.
Once it has sent the prepare-message, b has pre-prepared r for (v, s).
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Algorithm 4.15 PBFT Agreement Protocol: Phase 2

Code for backup b in view v:

1: accept pre-prepare(v, s, r, p)p
2: if p is primary of view v and b has not yet accepted a pre-prepare-message

for (v, s) and different r then
3: send prepare(v, s, r, b)b to all nodes
4: end if

Definition 4.16 (PBFT Agreement Protocol Phase 3; Prepared- Certificate).
A node i that has pre-prepared a request executes Algorithm 4.17. It waits un-
til it has collected 2f prepare-messages (including i’s own, if it is a backup)
in Line 1. Together with the pre-prepare-message for (v, s, r), they form a
prepared-certificate.

Algorithm 4.17 PBFT Agreement Protocol: Phase 3

Code for node i that has pre-prepared r for (v, s):

1: wait until 2f prepare-messages matching (v, s, r) have been accepted (in-
cluding i’s own message, if it is a backup)

2: send commit(v, s, i)i to all nodes
3: wait until 2f + 1 commit-messages (including i’s own) matching (v, s) have

been accepted
4: execute request r once all requests with lower sequence numbers have been

executed
5: send reply(r)i to client

Remarks:

• Note that the agreement protocol can run for multiple requests in
parallel. Since we are in the variable delay model and messages can
arrive out of order, we thus have to wait in Algorithm 4.17 Line 4
until a request has been executed for all previous sequence numbers.

• The client only considers the request to have been processed once it
received f + 1 reply-messages sent by the nodes in Algorithm 4.17
Line 5. Since a correct node only sends a reply-message once it
executed the request, with f + 1 reply-messages the client can be
certain that the request was executed by a correct node.

• We will see in Section 4.4 that PBFT guarantees that once a single
correct node executed the request, then all correct nodes will even-
tually execute the request with the same sequence number. Thus,
knowing that a single correct node executed a request is enough for
the client.

• If the client does not receive at least f+1 reply-messages fast enough,
it can start over by resending the request to initiate Algorithm 4.12
again. To prevent correct nodes that already executed the request
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from executing it a second time, clients can mark their requests with
some kind of unique identifiers like a local timestamp. Correct nodes
can then react to each request that is resent by a client as required
by PBFT, and they can decide if they still need to execute a given
request or have already done so before.

Lemma 4.18 (Unique Sequence Numbers within View). If a node gathers a
prepared-certificate for (v, s, r), then no node can gather a prepared-certificate
for (v, s, r′) with r′ 6= r.

Proof. Assume two (not necessarily distinct) nodes gather prepared-certificates
for (v, s, r) and (v, s, r′). Since a prepared-certificate contains 2f + 1 messages,
a correct node sent a pre-prepare- or prepare-message for each of (v, s, r) and
(v, s, r′) due to Lemma 4.9. A correct primary only sends a single pre-prepare-
message for each (v, s), see Algorithm 4.12 Lines 2 and 3. A correct backup only
sends a single prepare-message for each (v, s), see Algorithm 4.15 Lines 2 and
3. Thus, r′ = r.

Remarks:

• Due to Lemma 4.18, once a node has a prepared-certificate for (v, s, r),
no correct node will execute some r′ 6= r with sequence number s
during view v because correct nodes wait for a prepared-certificate
before executing a request (cf. Algorithm 4.17).

• However, that is not yet enough to make sure that no r′ 6= r will be
executed by a correct node with sequence number s during some later
view v′ > v. How can we make sure that that does not happen?

4.4 PBFT: View Change Protocol

If the primary is faulty, the system has to perform a view change to move to
the next primary so the system can make progress. Nodes use their faulty-timer
(and only that!) to decide whether they consider the primary to be faulty (cf.
Definition 4.13).

Remarks:

• During a view change, the protocol has to guarantee that requests that
have already been executed by some correct nodes will be executed
with the same sequence numbers by all correct nodes.

• How can we guarantee that this happens?

Definition 4.19 (PBFT: View Change Protocol). In the view change protocol,
a node whose faulty-timer has expired enters the view change phase by run-
ning Algorithm 4.22. During the new view phase (which all nodes continually
listen for), the primary of the next view runs Algorithm 4.23 while all other
nodes run Algorithm 4.24.
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Figure 4.20: Node n0 is the primary of current view v, node n1 the primary of
view v + 1. Once backups consider n0 to be faulty, they start the view change
protocol (cf. Algorithms 4.22, 4.23, 4.24). The X signifies that n0 is faulty.

Remarks:

• The idea behind the view change protocol is this: during the view
change protocol, the new primary gathers prepared-certificates from
2f + 1 nodes, so for every request that some correct node executed,
the new primary will have at least one prepared-certificate.

• After gathering that information, the primary distributes it and tells
all backups which requests need to be to executed with which sequence
numbers.

• Backups can check whether the new primary makes the decisions re-
quired by the protocol, and if it does not, then the new primary must
be byzantine and the backups can directly move to the next view
change.

Definition 4.21 (New-View-Certificate). 2f+1 view-change-messages for the
same view v form a new-view-certificate.

Algorithm 4.22 PBFT View Change Protocol: View Change Phase

Code for backup b in view v whose faulty-timer has expired:

1: stop accepting pre-prepare/prepare/commit-messages for v
2: let Pi be the set of all prepared-certificates that b has collected since the

system was started
3: send view-change(v + 1,Pi, i)i to all nodes

Remarks:

• It is possible that V contains a prepared-certificate for a sequence
number s while it does not contain one for some sequence number s′ <
s. For each such sequence number s′, we fill up O in Algorithm 4.23
Line 4 with null-requests, i.e. requests that backups understand to
mean “do not do anything here”.

Theorem 4.25 (Unique Sequence Numbers across Views). Together, the agree-
ment protocol and the view change protocol guarantee that if a correct node ex-
ecutes a request r in view v with sequence number s, then no correct node will
execute any r′ 6= r with sequence number s in any view v′ ≥ v.



44 CHAPTER 4. AUTHENTICATED AGREEMENT

Algorithm 4.23 PBFT View Change Protocol: New View Phase - Primary

Code for primary p of view v + 1:

1: accept 2f + 1 view-change-messages (including possibly p’s own) in a set
V (this is the new-view-certificate)

2: let O be a set of pre-prepare(v + 1, s, r, p)p for all pairs (s, r) where at
least one prepared-certificate for (s, r) exists in V

3: let sVmax be the highest sequence number for which O contains a
pre-prepare-message

4: add to O a message pre-prepare(v + 1, s′, null, p)p for every sequence
number s′ < sVmax for which O does not yet contain a pre-prepare-message

5: send new-view(v + 1,V,O, p)p to all nodes
6: start processing requests for view v+1 according to Algorithm 4.12 starting

from sequence number sVmax + 1

Algorithm 4.24 PBFT View Change Protocol: New View Phase - Backup

Code for backup b of view v + 1 if b’s local view is v′ < v + 1:

1: accept new-view(v + 1,V,O, p)p
2: stop accepting pre-prepare-/prepare-/commit-messages for v// in case

b has not run Algorithm 4.22 for v + 1 yet

3: set local view to v + 1
4: if p is primary of v + 1 then
5: if O was correctly constructed from V according to Algorithm 4.23 Lines 2

and 4 then
6: respond to all pre-prepare-messages in O as in normal case operation,

starting from Algorithm 4.15
7: start accepting messages for view v + 1
8: else
9: trigger view change to v + 2 using Algorithm 4.22

10: end if
11: end if

Proof. If no view change takes place, then Lemma 4.18 proves the statement.
Therefore, assume that a view change takes place, and consider view v′ > v. We
will show that if some correct node executed a request r with sequence number
s during v, then a correct primary will send a pre-prepare-message matching
(v′, s, r) in the O-component of the new-view(v′,V,O, p)-message. This guar-
antees that correct nodes will eventually agree on (s, r).

Consider the new-view-certificate V (see Algorithm 4.23 Line 1). If any
correct node executed request r with sequence number s, then due to Al-
gorithm 4.17 Line 3, there is a set R1 of at least 2f + 1 nodes that sent a
commit-message matching (s, r), and thus the correct nodes in R1 all collected
a prepared-certificate in Algorithm 4.17 Line 1.

The new-view certificate contains view-change-messages from a set R2 of
2f + 1 nodes. Thus according to Lemma 4.9, there is at least one correct node
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cr ∈ R1∩R2 that both collected a prepared-certificate matching (s, r) and whose
view-change-message is contained in V.

Therefore, if cr executed r with sequence number s, then V contains a
prepared-certificate matching (s, r) from cr. Thus, if cr executed r with se-
quence number s, then due to Algorithm 4.23 Line 2, a correct primary p sends
a new-view(v′,V,O, p)-message where O contains a pre-prepare(v′, s, r, p)-
message.

Correct backups will enter view v′ only if the new-view-message for v′ con-
tains a valid new-view-certificate V and if O was constructed correctly from
V, see Algorithm 4.24 Line 5. They will then respond to the messages in O
before they start accepting other pre-prepare-messages for v′ due to the or-
der of Algorithm 4.24 Lines 6. Therefore, for the sequence numbers that ap-
pear in O, correct backups will only send prepare-messages responding to the
pre-prepare-messages found in O due to Algorithm 4.15 Lines 2 and 3. This
guarantees that in v′, for every sequence number s that appears in O, backups
can only collect prepared-certificates for the triple (v′, s, r) that appears in O.

Together with the above, this proves that if some correct node executed
request r with sequence number s in v, then no node will be able to collect a
prepared-certificate for some r′ 6= r with sequence number s in any view v′ ≥ v,
and thus no correct node will execute r′ with sequence number s.

Remarks:

• A faulty new primary could delay the system indefinitely by never
sending a new-view-message. To prevent this, as soon as a node sends
its view-change-message for v + 1, it starts its faulty-timer and stops
it once it accepts a new-view-message for v + 1. If the timer runs out
before being stopped, the node triggers another view change.

• Since at most f consecutive primaries can be faulty, the system makes
progress after at most f + 1 view changes.

• We described a simplified version of PBFT; any practically relevant
variant makes adjustments to what we presented. The references
found in the chapter notes can be consulted for details that we did
not include.

Chapter Notes

PBFT is perhaps the central protocol for asynchronous byzantine state replica-
tion. The seminal first publication about it, of which we presented a simplified
version, can be found in [MC99]. The canonical work about most versions of
PBFT is Miguel Castro’s PhD dissertation [Cas01].

Notice that the sets Pi in Algorithm 4.22 grow with each view change as
the system keeps running since they contain all prepared-certificates that nodes
have collected so far. All variants of the protocol found in the literature in-
troduce regular checkpoints where nodes agree that enough nodes executed all
requests up to a certain sequence number so they can continuously garbage-
collect prepared-certificates. We left this out for conciseness.
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Remember that all messages are signed. Generating signatures is some-
what pricy, and variants of PBFT exist that use the cheaper, but less powerful
Message Authentication Codes (MACs). These variants are more complicated
because MACs only provide authentication between the two endpoints of a mes-
sage and cannot prove to a third party who created a message. An extensive
treatment of a variant that uses MACs can be found in [CL02].

The publication of PBFT started an “arms race” that lead to the develop-
ment of numerous asynchronous byzantine state replication protocols. Other im-
portant protocols are Q/U [AEMGG+05], HQ [CML+06], and Zyzzyva [KAD+07].
An overview over the relevant literature can be found in [? ].

This chapter was written in collaboration with Georg Bachmeier.
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