
Computer Engineering and
Networks Laboratory

Computer Engineering Group (TEC)

HS 2018 Prof. L. Thiele / R. Jacob

Discrete Event Systems
Solution to Exercise Sheet 10

A classic complex system design involve many steps. Often enough, various components are
designed independently, and then assemble together to shape the overall system. For example,
a car manufacturer essentially assembles various parts produced by specialized suppliers. The
combined behavior of the assembled parts results in the overall system behavior.

However, if some combined behavior are part of the specification (e.g., one can listen to the
radio while driving), some others must be prevented (e.g., the engine must not start if the gas
tank is open). The interaction between components must be controlled. That is the goal of
system specification.

In this exercise, we look at two of the steps in this process. In the first exercise, we use
representation of sets (and their translation into boolean expressions) in order to express a system
property. Simple properties can be combined together to finally capture complex and high level
ones, like the famous “The system is safe”... what ever that means, depending on the context.
But, almost always, there is more than one option to satisfy all specifications. Otherwise, we
would all have the same car, phone... In the second exercise, we use Binary Decision Diagrams to
compare two boolean equations. In our context, this can be useful to guarantee that our system
design (the choices we made) satisfies indeed the system’s specifications, formulated as a boolean
equation.

1 Sets Representation

1.1 Warm-up

In the early the design phase of a system, it is common to qualify some of the accessible states
as faulty, or error states. One goal is to ensure that the system won’t enter such states. Let us
define a few sets of states:

• X: the whole set of states,

• N : the set of nominal states,

• E: the set of error states,

• O: the set of state where there is a memory overflow.

We denote by ψQ the characteristic function of the set Q, i.e., x ∈ Q ⇔ ψQ(σ(x)) = 1 where
σ(x) is the binary encoding of the state x.

For each sub-question bellow, first draw a 2D-representation of the sets of states before
answering.

a) What is ψX , the characteristic function of the whole set of states?

b) “Each state is either a nominal or an error state or both”. Express this property in term
of sets and characteristic functions.

c) “If a state is in the overflow set, it is not a nominal state”. Express this property in term
of sets and characteristic functions.

d) Describe Q1, the set of error states which are not an overflow, in term of sets and charac-
teristic functions.

e) Describe Q2, satisfying “O ⇒ E”, i.e., the set of state for which this property holds, in
term of sets and characteristic functions.
Hint: “O ⇒ E” reads “O implies E”, in other words, if a state is in O, then it is in
E. Beware that we look for the states for which this property holds true, not a relation
between O and E.

a) ψX = 1

b) N ∪ E = X ⇔ ψN + ψE = 1

c) N ∩ O = ∅ ⇔ ψN · ψO = 0

d) Q1 = E\O ⇔ ψQ1 = ψE · ψO

e) Q2 = (O ∩ E) ∪O = (O ∪O) ∩ (E ∪O)
= X ∩ (E ∪O)
= E ∪O

⇔ ψQ2 = ψE + ψO

1.2 Specification composition

Bellow are a set of constraints, expressed in a textual form, and a set of boolean variables that
encode the system states. Your task consists in (i) expressing each of the constraints
independently, (ii) combining them to express the overall system specification.

2

The system we consider is a sensor network composed of 3 sensor nodes, a bus and a sink (a
node where data is collected). The network can be on nominal or bootstrapping mode. In order
to save energy, nodes are put in sleep mode whenever possible.

C1 When at least one node is using the bus, the sink must be awake to receive data.

C2 No more than one node can use the bus at the same time.

C3 In bootstrapping mode, the sink must be awake and no node can use the bus.

We consider the following encoding:

xs = 1 The sink is awake.
xb = 1 The network is in bootstapping mode.
xi = 1 Node i is using the bus (i ∈ {1, 2, 3}).

a) Express the specification of C1, C2 and C3.

b) What is the specification of the desired behavior? Hint: All constraints should be satisfied.

C1 ψC1 = (x1 + x2 + x3)→ xs = xs + x1 · x2 · x3
C2 ψC2 = x1 · x2 · x3 + x1 · x2 · x3 + x1 · x2 · x3 + x1 · x2 · x3
C3 ψC3 = xb → xsx1x2x3 = xs · x1 · x2 · x3 + xb

The specification consists in satisfying all constraints at all times:

ψN = ψC1 · ψC2 · ψC3

2 Binary Decision Diagrams

For an Reduced Ordered Binary Decision Diagram (ROBDD), we denote by Π : x1 < x2 < . . . <
xn the variable order, where x1 is the highest variable of the tree, x2 the second highest, and so
on. An ordering Π1 is said to be better than Π2 for an ROBDD G if G contains less nodes when
using Π1 rather than Π2 (eventually after merging equivalent nodes).
In the following, use the following notation to represent BDDs: A solid arc () if the
variable labeling the parent node evaluates to 1, and the dashed arc (− − −−) otherwise. Do
not use color (it is a bad habit to take. . .).

2.1 Verification using BDDs

You are in the process of designing a processing architecture. Your specification analysis results
in the following desired function to implement:

f1 : (x1x2 + x1x3 + x2x3 + x1x2x3)

For practical reason, you only dispose of invert- and NOR- gates to implement your circuit.
Considering those constraints, your automated synthesis program returns this schematics:

3

Your team-leader is quite old fashion and does trust these new fancy software so much (or
maybe he/she is just testing you!). He/She asks that you verify the schematic circuit does indeed
implement the same function as f1. This can be done efficiently using ROBDDs.

a) Express the function f2 realized by the circuit.

b) Draw and compare the RODBBs of f1 and f2 using the ordering of variables Π : x1 <
x2 < x3. Do they implement the same behavior?

a) f2 : y = x1 + x2 + x3 + x1 + x2 + x3 + x1 + x2 + x3

b) For f1, we have

Fall x1 = 0
y|x1=0 = x2x3 + x2x3

Fall x2 = 0
y|x1=0,x2=0 = x3

Fall x2 = 1
y|x1=0,x2=1 = x3

Fall x1 = 1
y|x1=1 = x2 + x3 + x2x3

Fall x2 = 0
y|x1=1,x2=0 = 1

Fall x2 = 1
y|x1=1,x2=1 = x3

For f2, we have

Fall x1 = 0
y|x1=0 = x2 + x3 + x2 + x3

Fall x2 = 0
y|x1=0,x2=0 = x3 + 1 + x3 = x3

Fall x2 = 1
y|x1=0,x2=1 = 1 + x3 = x3

Fall x1 = 1
y|x1=1 = 1 + 1 + x2 + x3 = x2 + x3

Fall x2 = 0
y|x1=1,x2=0 = 1

Fall x2 = 1
y|x1=1,x2=1 = x3

Both ROBDDs have the same falls. They are equivalent.

2.2 BDDs with respect to different orderings

a) Consider the boolean function g(x1, x2, y1, y2) = (x1 == y1) · (x2 == y2) and the ordering
of variables Π : x1 < x2 < y1 < y2. Give the Boole-Shannon decomposition of g with
respect to Π.
Hint: “(x == y)” is a short for the boolean expression: x · y + x · y

b) Draw the corresponding ROBDD for g.

c) Let us now consider the new ordering Π′ : x1 < y1 < x2 < y2. Use it to reconstruct the
ROBDD of g. Is Π′ a better ordering than Π for g?

a) g = x1{x2[y1(y2) + y1(0)] + x2[y1(y2) + y1(0)]}+ x1{x2[y1(0) + y1(y2)] + x2[y1(0) + y1(y2)}

4

b)

c) With the new ordering Π′, the Boole-Shannon decomposition becomes

g = x1{y1[x2(y2) + x2(y2)] + y1[0]}+ x1{y1[0] + y1[x2(y2) + x2(y2)]}

This is a better ordering as it leads to a ROBDD with fewer nodes as with Π (6 instead of
9).

5

