
Networked Systems Group (NSG)

HS 2018 Prof. L. Vanbever & A. El-Hassany, & M. Apostolaki.
based on Prof. R. Wattenhofer’s material

Discrete Event Systems
Solution to Exercise Sheet 4

1 Pumping Lemma Revisited

a) Let us assume that L is regular and show that this results in a contradiction.

We have seen that any regular language fulfills the pumping lemma. This means, there
exists a number p, such that every word w ∈ L with |w| ≥ p can be written as w = xyz
with |xy| ≤ p and |y| ≥ 1, such that xyiz ∈ L for all i ≥ 0. Note, the expression w = xyiz
can be written as xyiz = 1|x|1i|y|1|z|. Because |w| = p2, we know that |z| = p2 − |x| − |y|,
and therefore, xyiz = 1|x|1i|y|1p

2−|x|−|y| = 1p
2+(i−1)|y|.

In order to obtain the contradiction, we need to find at least one word w ∈ L with |w| ≥ p
that does not adhere to the above proposition. We choose w = xyz = 1p

2

and consider the
case i = 2 for which the Pumping Lemma claims w′ = xy2z ∈ L. Note the next square
after p2 is (p + 1)2 and our proof’s main idea to show that when we pump the resulting
string is going to be between two squars but not a square.

We can relate the lengths of w = xyz and w′ = xy2z as follows.

p2 = |w| = |xyz| < |w′| = |xy2z| ≤ p2 + p

now we plug in the next squre to the inequality.

p2 ≤ p2 + p < p2 + 2p+ 1 = (p+ 1)2

So we have p2 < |w′| < (p+ 1)2 which implies that |w′| cannot be a square number since it
lies between two consecutive square numbers. Therefore, w′ /∈ L and hence, L cannot be
regular.

b) Consider the alphabet Σ = {a1, a2, ..., an} and the language L =
⋃n

i−1 a
∗
i . The language is

regular, as it is the union of regular languages, and the smallest possible pumping number p
for L is 1. But any DFA needs at least n+ 1 states to distinguish the n different characters
of the alphabet. Thus, for the DFA, we cannot deduce any information from p about the
minimum number of states.

2 Context Free or Not?

a) For reasons of brevity, we only give the productions of the grammar.

First, we create an equal number of symbols for w and z using rule (2), and then an equal
number of symbols for x and y using rule (3).

S → A (1)

A→ YAY | #B# (2)

B → YBY | # (3)

Y → a | b (4)

b) An example for a grammar G producing the language L2 is G = (V,Σ, R, S) with

V = {X,A},
Σ = {0, 1},

R =

{
X → XAX | A,
A→ 0 | 1

}
,

S = X

Note: The language is regular!

c) A rather natural grammar generating L3 uses the following productions:

S → A1A

A→ A1 | 1A | A01 | 0A1 | 01A | A10 | 1A0 | 10A | ε

Another slightly more complicated solution yielding simpler productions looks as follows:

S → A1A

A→ AA | 1A0 | 0A1 | 1 | ε

The idea of both grammars is to first ensure that there is at least one 1 more and then
have a production that generates all possible strings with the same number of 0s and 1s or
further 1s at arbitrary places.

3 Pushdown Automata: Reloaded

a) ε, 0, 00, (), (0), 0(), ()0, 000

b) It is ambiguous, because the word 00 has two different leftmost derivations.

S → SA

→ A

→ AA

→ 0A

→ 00

S → SA

→ SAA

→ AA

→ 0A

→ 00

It can also be seen by taking a look at these two derivation trees that both belong to the
word 00:

S

S A

ε A A

0 0

S

S A

S A 0

ε 0

Because the two derivation trees are structurewise different, the word 00 can be derived
ambiguously from G.

2

Ambiguity of Grammars

Definition: A string s is derived ambiguously in a context-free grammar G if it has
two or more different leftmost/rightmost derivations (or two structurewise different
derivation trees). Grammar G is ambiguous if it generates some string ambiguously.

A leftmost/rightmost derivation replaces in every step the leftmost/rightmost variable.

Example: The grammar with the productions ‘S → S · S | S + S | a’ is ambiguous
since the string s = a · a+ a has two different leftmost derivations.

S → S · S
→ a · S
→ a · S + S

→ a · a+ S

→ a · a+ a

S → S + S

→ S · S + S

→ a · S + S

→ a · a+ S

→ a · a+ a

Intuitively, the derivation on the left corresponds to the arithmetic expression a·(a+a)
because we first derive a product and then substitute one factor by a sum while the
derivation on the right corresponds to (a ·a) +a because we first have a sum and then
substitute one summand by a product.

The productions of an equivalent non-ambiguous grammar are A→ S + a | S · a | a.

3

c) A simple non-deterministic PDA for L(G) looks as follows:

ε, ε→ $

0, ε→ ε

(, ε→ (

), (→ ε

ε, $→ ε

Deterministic PDAs

A push-down automaton M is deterministic iff in each state, there is exactly one
successor state for every combination (a, b) ∈ Σ × Γ where Σ is the string input
alphabet and Γ is the stack alphabet. Note that if a state q has only one outgoing
transition ‘ε, ε→ $’ the PDA is still deterministic since there is no ambiguity of what
the successor state of q will be. If a state q, however, has two outgoing transitions,
‘a, ε → x’ and ‘ε, b → y’ leading into different states, it is unclear which transition
the system should take if the string input in state q is ‘a’ and the top element on the
stack is ‘b’. A PDA containing such ambiguous transisitions is not deterministic.
Unlike in deterministic finite automata, we take the liberty of omitting transitions
leading to an (imaginary) fail state as well as the fail state itself when drawing deter-
ministic PDAs.

Considering this, the PDA given above is not deterministic: From the middle state, there
are two transitions ‘(, ε→ (’ and ‘ε, $→ ε’, such that we do not know which one to take if
we read a ‘(’ while the top element on the stack is ‘$’. We can overcome this problem in
different ways.

If we assume that our PDA recognizes the end of the input string (denoted by ‘−’), it is
easy to transform the non-deterministic PDA above into a deterministic one:

ε, ε→ $

0, ε→ ε

(, ε→ (

), (→ ε

−, $→ ε

If we assume that the PDA is not able to determine the end of the input, it is not that
easy to derive the deterministic PDA from the non-deterministic one.

An example of a deterministic PDA accepting L(G) is the following:

ε, ε→ $

0, ε→ ε
(, ε→ (

0, ε→ ε

(, ε→ (

), (→ εε, (→ (

ε, $→ $

4

The deterministic PDA using as few states as possible is the following:

0, ε→ ε (, ε→ # 0, ε→ ε

(, ε→ (

), (→ ε

),#→ ε

4 Push Down Automata: The Never Ending Story

a) This PDA should recognize all palindromes. However, we don’t know where the middle of
the word to recognize is. Therefore, we have to construct a non-deterministic automaton
that decides itself when the middle has been reached.

Note that we need to support words of even and odd length. Words of even length have a
counterpart for each letter. However, the center letter of an odd word has no counterpart.

q0 q1 q2 q3
ε, ε→ $

1, ε→ 1
0, ε→ 0

ε, ε→ ε
1, ε→ ε
0, ε→ ε

1, 1→ ε
0, 0→ ε

ε, $→ ε

b) Consider the word w to be an array of symbols. If w ∈ L, there is at least one offset c,
such that w[c] 6= w[|w| − c]. That is, there are two symbols x and y in w s.t. x 6= y and
the distance of x from the start of w equals the distance of y from the end of w.

The PDA reads c − 1 symbols, and stores a token α on the stack for each read symbol.
Then, it reads the c-th symbol, and puts the symbol onto the stack. Afterwards, the PDA
allows to read arbitrarily many symbols from the input, and does not modify the stack.
Then, when only c symbols are left on the input stream, the PDA requires that the symbol
on the stack must differ from the one on the input. Finally, the PDA reads the remaining
c− 1 symbols and accepts if the stack is empty.

Note that this is again a non-deterministic PDA, as we do not know the value of c.

q0 q1 q2 q3 q4
ε, ε→ $

0, ε→ α
1, ε→ α

0, ε→ 0
1, ε→ 1

0, ε→ ε
1, ε→ ε

0, 1→ ε
1, 0→ ε

0, α→ ε
1, α→ ε

ε, $→ ε

5

