
Networked Systems Group (NSG)

HS 2018 Prof. L. Vanbever & A. El-Hassany, & M. Apostolaki.
based on Prof. R. Wattenhofer’s material

Discrete Event Systems
Solution to Exercise Sheet 5

1 Context Free or Not?

a) For reasons of brevity, we only give the productions of the grammar.

First, we create an equal number of symbols for w and z using rule (2), and then an equal
number of symbols for x and y using rule (3).

S → A (1)

A→ YAY | #B# (2)

B → YBY | # (3)

Y → a | b (4)

b) If |w| = |y| and |x| = |z|, the resulting language is not context free, thus a CFG does not
exist. This can be seen using the tandem pumping lemma as follows.

Let the word considered be s = ap#ap#ap#ap ∈ L with |s| = 4p+ 3 ≥ p. For any division
s = defgh with |eg | ≥ 1 and |efg | ≤ p, the pumpable regions e and g can never consist of
boths as from w and y or both x and z because of the condition |efg | ≤ p. Hence, any
pumping would inevitably only modify the number of as in one part thereby creating a
word s′ /∈ L. Therefore, L cannot be context free.

2 Counter Automaton

a) A counter automaton is basically a finite automaton augmented by a counter. For every
regular language L ∈ Lreg , there is a finite automaton A which recognizes L. We can
construct a counter automaton C for recognizing L by simply taking over the states and
transitions of A and not using the counter at all. Clearly C accepts L. This holds for every
regular language and therefore, Lreg ⊆ Lcount .

b) Consider the language L of all strings over the alphabet Σ = {0, 1} with an equal number
of 0s and 1s. We can construct a counter automaton with a single state q that incre-
ments/decrements its counter whenever the input is a 0/1. If the value of the counter is
equal to 0, it accepts the string. Hence, L is in Lcount . On the other hand, it can be proven
(using the pumping lemma) that L is not in Lreg and it therefore follows Lcount * Lreg .

Some languages where the (non-finite) frequency of one or several symbols depends on the
frequency of other symbols can be recognized by counter automata. Such languages cannot
be recognized by finite automata.

A counter automaton can recognize languages where the (non-finite) frequency of one sym-
bol depends on the frequency of the other symbols. Such languages cannot be recognized
by finite automatons.

c) First, we show that a pushdown automaton can simulate a counter automaton. Hence,
PDAs are at least as powerful as CAs! The simulation of a given CA works as follows. We
construct a PDA which has exactly the same states as the CA. The transitions also remain
between the same pairs of states, but instead of operating on an INC/DEC register, we
have to use a stack. Concretely, we store the state of the counter on the stack by pushing
‘+’ and ‘−’ on the stack. For instance, a counter value ‘3’ is represented by three ‘+’ on
the stack, and similarly a value ‘−5’ by five ‘−’. Therefore, when the CA checks whether
the counter equals 0, the PDA can check whether its stack is empty.

In the following, we give just one example of how the transitions have to be transformed.
Assume a transition of the counter automaton which, on reading a symbol s, increments the
counter—independently of the counter value. For the PDA, we can simulate this behavior
with three transitions: On reading s and if the top element of the stack is ‘−’, a minus is
popped; if the top element is a ‘+’, another ‘+’ is pushed; and if the stack is empty, also a
‘+’ is pushed.

Hence, we have shown that the PDA is at least as powerful as the CA, and it remains
to investigate whether both CA and PDA are equivalent, or whether a PDA is stronger.
Although it is known that the PDA is actually more powerful, the proof is difficult: There
is no pumping lemma for CAs for example such that we can prove that a given context-free
language cannot be accepted by a CA. However, of course, if you have tackled this issue,
we are eager to know your solution... :-)

3 An Unsolvable Problem

a) It is surprisingly easy to prove that your boss is demanding too much. Assume a func-
tion halt(P: Program): boolean which takes a program P as a parameter and returns a
boolean value denoting whether P terminates or not.

Now consider the following program X which calls the halt() function with itself as an
argument just to do the contrary:

function X() {

if (halt(X))

while(true);

else

return;

}

Obviously, if halt(X) is true X will loop forever, and vice versa.

b) If the simulation stops we can definitively decide that the program does not contain an
endless loop. However, while the simulation is still running, we do not know whether it will
finish in the next two seconds or run forever. Put differently: There is no upper bound on
the execution time of the simulation after which we can be sure that the program contains
an endless loop.

c) As we have seen, it is not possible to predict whether a general program terminates or not.
However, under certain constraints we can solve the halting problem all the same. For
example, consider a restricted language with only one form of a loop (no recursion etc.):

for (init; end; inc) {...}

where init, end and inc are constants in Z. The loop starts with the value init and adds
inc to init in every round until this sum exceeds end if end > 0 or until it falls below
end if end < 0. Obviously, there is a simple way to decide whether a program written in
this language terminates: For every loop, we check whether sgn(inc) = sgn(end), where
sgn(·) is the algebraic sign. If not, the program contains an endless loop (unless init itself
already fulfills the termination criterion which is also easy to verify).

2

