Automata & languages

Laurent Vanbever Pa rt 5

www.vanbever.eu

ETH Zurich (D-ITET)
October 18 2018

Context-Free Languages

a superset of Regular Languages

Example {On1n | n > 0}is a CFL but not a RL

We saw the concept of
Context-Free Grammars

start

alphabet symbol

| |
(V,2,R,S)

variables

we (B UV)*
|

fine set of rules vV — w

\
veEY

CFG’s: Proving Correctness

Part ii. is easy (see why?), so we’ll concentrate on part i.

2119

CFG’s: Proving Correctness

The recursive nature of CFG’s means that they are especially amenable
to correctness proofs.

e For example let’s consider again our grammar
G=(S>¢|ab| ba| aSb| bSa | SS)
e Weclaimthat L(G) =L={x € {a,b}* | n,(x) =n,(x)},
where n,(x) is the number of a’s in x, and n,(x) is the number of b’s.

* Proof: To prove that L = L(G) is to show both inclusions:
i. LcL(G): Every stringin L can be generated by G.
ii. L2 L(G): Gonly generate strings of L.

Proving L < L(G)

e L c L(G): Show that every string x with the same number of a’s as b’s
is generated by G. Prove by induction on the length n = | x|.

e Base case: The empty string is derived by S 2 ¢
e Inductive hypothesis:
Assume that G generates all strings of equal number of a’s and b’s

of (even) length up to n.

Consider any string of length n+2. There are essentially 4 possibilities:

1. awb
2. bwa
3. awa
4. bwb

2/18

2/20

Proving L < L(G)

e Inductive hypothesis:

Consider any string of length n+2. There are essentially 4 possibilities:

1. awb
2. bwa
3. awa
4. bwb

Given S =* w, awb and bwa are generated
from w using the rules S = aSb and S > bSa

2/21

Proving L — L(G)

e Inductive hypothesis:

Somewhere along the string (in w), the counter crosses 0:

u
——

001 o _1X0 Y . _1Q9 Withx,y € {a, b}

—
v

— uand v have an equal number of a’s and b’s and are shorter than n.
— Given S =* uand S=* v, the rule S 2 SS generates awa = uv

— The same argument applies for strings like bwb

2/23

Proving L < L(G)

e Inductive hypothesis:

Now, consider a string like awa. For it to be in L requires that wisn’tin L

as w needs to have 2 more b’s than a’s.

— Splitawa as follows: ga; ... _1ag

where the subscripts after a prefix v of awa denotes n,(v) — n,(v)

— Think of this as counting starting from 0.

Each g adds 1. Each b subtracts 1. At the end, we should be at 0.

Somewhere along the string (in w), the counter crosses 0 (more b’s)

As for Regular Languages,

Context-Free Languages are recognized by “machines”

Regular

DFA/NFA

Context-Free

PDA

2/22

Push-Down Automatas are pretty similar to DFAs

start
alphabet state

| |
M = (Q727F757QO7F)

states accepting
states

computers are not limitless

Alan Turing

Some problems
cannot be solved
by a computer

Push-Down Automatas are pretty similar to DFAs
except for... the stack

stack
alphabet

|
M = (Qazaraéa QO7F>

transition
function

QXX xT'e— P(QxT,)

But before that, we’ll prove
some extra properties about Context-Free Languages

Today’s plan PDA = CFG
Pumping lemma for CFL

Turing Machines

Even smarter automata...

e Even though the PDA is more powerful than the FA, it is still really stupid,
since it doesn’t understand a lot of important languages.

e Let’s try to make it more powerful by adding a second stack
— You can push or pop from either stack, also there’s still an input string
— Clearly there are quite a few “implementation details”
— It seems at first that it doesn’t help a lot to add a second stack, but...

211

Automata & languages

regular
language

context-free
language

turing
machine

e Lemma: A PDA with two stacks is as powerful as a machine which
operates on an infinite tape (restricted to read/write only “current”
tape cell at the time — known as “Turing Machine”).

— Still that doesn’t sound very exciting, does it...?1?

2/2

Turing Machine

e A Turing Machine (TM) is a device with a finite amount of read-only
“hard” memory (states), and an unbounded amount of read/write
tape-memory. There is no separate input. Rather, the input is assumed to
reside on the tape at the time when the TM starts running.

e Just as with Automata, TM’s can either be input/output machines
(compare with Finite State Transducers), or yes/no decision machines.

2/3

Turing Machine: Example Program

Sample Rules:
- If read 1, write 0, go right, repeat.
- If read O, write 1, HALT!
- If read O, write 1, HALT! (the symbol o stands for the blank cell)

Let’s see how these rules are carried out on an input with the reverse
binary representation of 47:

. 1 1 1 0 1

A string x is accepted by M if after being put on the tape with the
Turing machine head set to the left-most position, and letting M run, M
eventually enters the accept state. In this case w is an element of L(M)
—the language accepted by M.

2/4

2/6

Turing Machine: Formal Definition

e Definition: A Turing machine (TM) consists of a 7-tuple
M=(Q,%,T, 8, do Gacc, rej)-
- Q, %, and g, are the same as for an FA.

= 0, and q,,; are accept and reject states, respectively.

— T'is the tape alphabet which necessarily contains the blank symbol e, as
well as the input alphabet X.

— disasfollows:

8:(0_{Qacc’qrcj})xr_)QXFX{LSR}

— Therefore given a non-halt state p, and a tape symbol x, 5(p,x) = (q,y,D)
means that TM goes into state g, replaces x by y, and the tape head moves
in direction D (left or right).

2/5
Comparison
Device Separate Read/Write Data Deterministic by
Input? Structure default?
FA Yes None Yes
PDA Yes LIFO Stack No
1-way infinite tape. 1 ves
™ No cell access per step. (but will also allow
crashes)
217

Turing Machine: Goals

First Goal of Turing’s Machine: A “computer” which is as powerful as any
real computer/programming language

— As powerful as C, or “Java++”

— Can execute all the same algorithms / code

— Not as fast though (move the head left and right instead of RAM)

— Historically: A model that can compute anything that a human can compute.
Before invention of electronic computers the term “computer” actually
referred to a person who's line of work is to calculate numerical quantities!

— This is known as the [Church-[Post-]] Turing thesis, 1936.

Second Goal of Turing’s Machine: And at the same time a model that is
simple enough to actually prove interesting epistemological results.

2/8

Also the Turing Machine (the Computer) is limited

Similary it is undecidable whether
you can cover a floor with a given

set of floor tiles (famous examples
are Penrose tiles or Wang tiles)

I D4 o [N K X
i TX0 (0 T4 I PR DX

Examples are leading back to Kurt Godel's
incompleteness theorem

— “Any powerful enough axiomatic system will
allow for propositions that are undecidable.”

2/10

Can a computer compute anything...?!?

e Given collection of dominos, e.g.

b a ca abc

ca ab a c

e Can you make a list of these dominos (repetitions are allowed) so that the
top string equals the bottom string, e.g.

a b ca a abc

ab ca a ab ©

e This problem is known as Post-Correspondance-Problem.
e Itis provably unsolvable by computers!

Decidability

2/9

e A function is computable if there is an algorithm (according to the Church-

Turing-Thesis a Turing machine is sufficient) that computes the function
(in finite time).

2/1

e Asubset T of a set M is called decidable (or recursive), if the function
f: M > {true, false} with f(m) = true if m € T, is computable.

Input I
e A more general class are the
semi-decidable problems, for which
Algorithm the algorithm must only terminate Algorithm

(Turing Machine) in finite time in either the true or (Turing Machine)
the false branch, but not the other.

2112 2/13

Halting Problem Halting Problem: Proof

¢ The halting problem is a famous example of an undecidable ¢ Now we write a little wrapper around our halting procedure
(semi-decidable) problem. Essentially, you cannot write a computer
program that decides whether another computer program ever

. . . i procedure test (program) {
terminates (or has an infinite loop) on some given input.

if halting(program, program)=true
then loop forever
¢ In pseudo code, we would like to have: else return

procedure halting (program, input) { . i
if program(input) terminates e Now we simply run: test (test) ! Does it halt?!?
then return true
else return false

2114 2/15

Excursion: P and NP

e P isthe complexity class containing decision problems which can be
solved by a Turing machine in time polynomial of the input size.

e NP is the class of decision problems solvable by a non-deterministic
polynomial time Turing machine such that the machine answers "yes,"
if at least one computation path accepts, and answers “no,” if all
computation paths reject.

2/16 2017

NP-complete problems

e Animportant notion in this context is the large set of NP-complete
decision problems, which is a subset of NP and might be informally
described as the "hardest" problems in NP.

e Ifthereis a polynomial-time algorithm for even one of them, then there is
a polynomial-time algorithm for all the problems in NP.

— E.g. Given a set of n integers, is there a non-empty subset which sums up to

— Informally, there is a Turing machine which can check the correctness of an 0? This problem was shown to be NP-complete.

answer in polynomial time. — Also the traveling salesperson problem is NP-complete, or Tetris, or

— E.g. one can check in polynomial time whether a traveling salesperson path Minesweeper.

connects n cities with less than a total distance d.

2/18 2/19

Summary (Chomsky Hierarchy)

Undecidable
“God”

Turing-Machine
Computer

Context-Free
Programming Language

2/22

P vs. NP

¢ One of the big questions in Math and CS: Is P = NP?
— Or are there problems which cannot be solved in polynomial time.
— Big practical impact (e.g. in Cryptography).
— One of the seven S1M problems by the Clay Mathematics Institute of
Cambridge, Massachusetts.

2/21

Bedtime Reading

If you're leaning towards “human = machine”

Thc’ & y :
Emperoris
" F" New Mind |

ROGER PENROSE

GODEL,ESCHER,BACH:

If you're leaning towards “human © machine”

2/23

