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Context-Free Languages

a superset of Regular Languages

Example {On1n | n > 0}is a CFL but not a RL



We saw the concept of
Context-Free Grammars
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CFG’s: Proving Correctness

Part ii. is easy (see why?), so we’ll concentrate on part i.

2119

CFG’s: Proving Correctness

The recursive nature of CFG’s means that they are especially amenable
to correctness proofs.

e  For example let’s consider again our grammar
G=(S>¢|ab| ba| aSb| bSa | SS)
e Weclaimthat L(G) =L={x € {a,b}* | n,(x) =n,(x)},
where n,(x) is the number of a’s in x, and n,(x) is the number of b’s.

*  Proof: To prove that L = L(G) is to show both inclusions:
i. LcL(G): Every stringin L can be generated by G.
ii. L2 L(G): Gonly generate strings of L.

Proving L < L(G)

e L c L(G): Show that every string x with the same number of a’s as b’s
is generated by G. Prove by induction on the length n = | x|.

e Base case: The empty string is derived by S 2 ¢
e Inductive hypothesis:
Assume that G generates all strings of equal number of a’s and b’s

of (even) length up to n.

Consider any string of length n+2. There are essentially 4 possibilities:

1. awb
2. bwa
3. awa
4. bwb
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Proving L < L(G)

e Inductive hypothesis:

Consider any string of length n+2. There are essentially 4 possibilities:

1. awb
2. bwa
3. awa
4. bwb

Given S =* w, awb and bwa are generated
from w using the rules S = aSb and S > bSa

2/21

Proving L — L(G)

e Inductive hypothesis:

Somewhere along the string (in w), the counter crosses 0:

u
——

001 o _1X0 Y . _1Q9 Withx,y € {a, b}

—
v

— uand v have an equal number of a’s and b’s and are shorter than n.
— Given S =* uand S=* v, the rule S 2 SS generates awa = uv

— The same argument applies for strings like bwb
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Proving L < L(G)

e Inductive hypothesis:

Now, consider a string like awa. For it to be in L requires that wisn’tin L

as w needs to have 2 more b’s than a’s.

— Splitawa as follows:  ga; ... _1ag

where the subscripts after a prefix v of awa denotes n,(v) — n,(v)

— Think of this as counting starting from 0.

Each g adds 1. Each b subtracts 1. At the end, we should be at 0.

Somewhere along the string (in w), the counter crosses 0 (more b’s)

As for Regular Languages,

Context-Free Languages are recognized by “machines”

Regular

DFA/NFA

Context-Free

PDA
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Push-Down Automatas are pretty similar to DFAs
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Push-Down Automatas are pretty similar to DFAs
except for... the stack
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But before that, we’ll prove
some extra properties about Context-Free Languages

Today’s plan PDA = CFG
Pumping lemma for CFL

Turing Machines



Even smarter automata...

e Even though the PDA is more powerful than the FA, it is still really stupid,
since it doesn’t understand a lot of important languages.

e Let’s try to make it more powerful by adding a second stack
— You can push or pop from either stack, also there’s still an input string
— Clearly there are quite a few “implementation details”
— It seems at first that it doesn’t help a lot to add a second stack, but...
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e Lemma: A PDA with two stacks is as powerful as a machine which
operates on an infinite tape (restricted to read/write only “current”
tape cell at the time — known as “Turing Machine”).

— Still that doesn’t sound very exciting, does it...?1?
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Turing Machine

e A Turing Machine (TM) is a device with a finite amount of read-only
“hard” memory (states), and an unbounded amount of read/write
tape-memory. There is no separate input. Rather, the input is assumed to
reside on the tape at the time when the TM starts running.

e Just as with Automata, TM’s can either be input/output machines
(compare with Finite State Transducers), or yes/no decision machines.
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Turing Machine: Example Program

Sample Rules:
- If read 1, write 0, go right, repeat.
- If read O, write 1, HALT!
- If read O, write 1, HALT! (the symbol o stands for the blank cell)

Let’s see how these rules are carried out on an input with the reverse
binary representation of 47:

. 1 1 1 0 1

A string x is accepted by M if after being put on the tape with the
Turing machine head set to the left-most position, and letting M run, M
eventually enters the accept state. In this case w is an element of L(M)
—the language accepted by M.
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Turing Machine: Formal Definition

e Definition: A Turing machine (TM) consists of a 7-tuple
M=(Q,%,T, 8, do Gacc, rej)-
- Q, %, and g, are the same as for an FA.

= 0, and q,,; are accept and reject states, respectively.

— T'is the tape alphabet which necessarily contains the blank symbol e, as
well as the input alphabet X.

— disasfollows:

8:(0_{Qacc’qrcj})xr_)QXFX{LSR}

— Therefore given a non-halt state p, and a tape symbol x, 5(p,x) = (q,y,D)
means that TM goes into state g, replaces x by y, and the tape head moves
in direction D (left or right).

2/5
Comparison
Device Separate Read/Write Data Deterministic by
Input? Structure default?
FA Yes None Yes
PDA Yes LIFO Stack No
1-way infinite tape. 1 ves
™ No cell access per step. (but will also allow
crashes)
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Turing Machine: Goals

First Goal of Turing’s Machine: A “computer” which is as powerful as any
real computer/programming language

— As powerful as C, or “Java++”

— Can execute all the same algorithms / code

— Not as fast though (move the head left and right instead of RAM)

— Historically: A model that can compute anything that a human can compute.
Before invention of electronic computers the term “computer” actually
referred to a person who's line of work is to calculate numerical quantities!

— This is known as the [Church-[Post-]] Turing thesis, 1936.

Second Goal of Turing’s Machine: And at the same time a model that is
simple enough to actually prove interesting epistemological results.
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Also the Turing Machine (the Computer) is limited

Similary it is undecidable whether
you can cover a floor with a given

set of floor tiles (famous examples
are Penrose tiles or Wang tiles)

I D4 o [N K X
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Examples are leading back to Kurt Godel's
incompleteness theorem

— “Any powerful enough axiomatic system will
allow for propositions that are undecidable.”
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Can a computer compute anything...?!?

e Given collection of dominos, e.g.

b a ca abc

ca ab a c

e Can you make a list of these dominos (repetitions are allowed) so that the
top string equals the bottom string, e.g.

a b ca a abc

ab ca a ab ©

e This problem is known as Post-Correspondance-Problem.
e Itis provably unsolvable by computers!

Decidability
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e A function is computable if there is an algorithm (according to the Church-

Turing-Thesis a Turing machine is sufficient) that computes the function
(in finite time).
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e Asubset T of a set M is called decidable (or recursive), if the function
f: M > {true, false} with f(m) = true if m € T, is computable.

Input I
e A more general class are the
semi-decidable problems, for which
Algorithm the algorithm must only terminate Algorithm

(Turing Machine) in finite time in either the true or (Turing Machine)
the false branch, but not the other.
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Halting Problem Halting Problem: Proof

¢ The halting problem is a famous example of an undecidable ¢ Now we write a little wrapper around our halting procedure
(semi-decidable) problem. Essentially, you cannot write a computer
program that decides whether another computer program ever

. . . i procedure test (program) {
terminates (or has an infinite loop) on some given input.

if halting(program, program)=true
then loop forever
¢ In pseudo code, we would like to have: else return

procedure halting (program, input) { . i
if program(input) terminates e Now we simply run: test (test) ! Does it halt?!?
then return true
else return false
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Excursion: P and NP

e P isthe complexity class containing decision problems which can be
solved by a Turing machine in time polynomial of the input size.

e NP is the class of decision problems solvable by a non-deterministic
polynomial time Turing machine such that the machine answers "yes,"
if at least one computation path accepts, and answers “no,” if all
computation paths reject.
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NP-complete problems

e Animportant notion in this context is the large set of NP-complete
decision problems, which is a subset of NP and might be informally
described as the "hardest" problems in NP.

e Ifthereis a polynomial-time algorithm for even one of them, then there is
a polynomial-time algorithm for all the problems in NP.

— E.g. Given a set of n integers, is there a non-empty subset which sums up to

— Informally, there is a Turing machine which can check the correctness of an 0? This problem was shown to be NP-complete.

answer in polynomial time. — Also the traveling salesperson problem is NP-complete, or Tetris, or

— E.g. one can check in polynomial time whether a traveling salesperson path Minesweeper.

connects n cities with less than a total distance d.
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Summary (Chomsky Hierarchy)

Undecidable
“God”

Turing-Machine
Computer

Context-Free
Programming Language
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P vs. NP

¢ One of the big questions in Math and CS: Is P = NP?
— Or are there problems which cannot be solved in polynomial time.
— Big practical impact (e.g. in Cryptography).
— One of the seven S1M problems by the Clay Mathematics Institute of
Cambridge, Massachusetts.
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Bedtime Reading

If you're leaning towards “human = machine”

Thc’ & y :
Emperoris
" F" New Mind |

ROGER PENROSE

GODEL,ESCHER,BACH:

If you're leaning towards “human © machine”
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