Automata & languages

A primer on the Theory of Computation

Laurent Vanbever www.vanbever.eu

ETH Zürich (D-ITET) October 18 2018 Part 5 out of 5

Last week was all about

Context-Free Languages

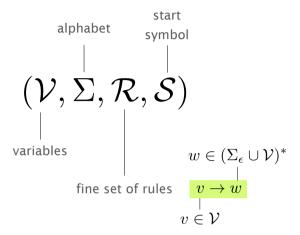
Context-Free Languages

a superset of Regular Languages

Example $\{0^n1^n \mid n \ge 0\}$ is a CFL but not a RL

We saw the concept of

Context-Free Grammars



CFG's: Proving Correctness

- The recursive nature of CFG's means that they are especially amenable to correctness proofs.
- For example let's consider again our grammar

$$G = (S \rightarrow \varepsilon \mid ab \mid ba \mid aSb \mid bSa \mid SS)$$

- We claim that $L(G) = L = \{x \in \{a,b\}^* \mid n_a(x) = n_b(x)\},$ where $n_a(x)$ is the number of a's in x, and $n_b(x)$ is the number of b's.
- *Proof*: To prove that L = L(G) is to show both inclusions:
 - i. $L \subseteq L(G)$: Every string in L can be generated by G.
 - ii. $L \supseteq L(G)$: G only generate strings of L.

Part ii. is easy (see why?), so we'll concentrate on part i.

CFG's: Proving Correctness

- The recursive nature of CFG's means that they are especially amenable to correctness proofs.
- For example let's consider again our grammar

$$G = (S \rightarrow \varepsilon \mid ab \mid ba \mid aSb \mid bSa \mid SS)$$

- We claim that $L(G) = L = \{x \in \{a,b\}^* \mid n_a(x) = n_b(x)\},$ where $n_a(x)$ is the number of a's in x, and $n_b(x)$ is the number of b's.
- *Proof*: To prove that L = L(G) is to show both inclusions:
 - i. $L \subseteq L(G)$: Every string in L can be generated by G.
 - ii. $L \supset L(G)$: G only generate strings of L.

2/18

Proving $L \subseteq L(G)$

- $L \subseteq L(G)$: Show that every string x with the same number of a's as b's is generated by G. Prove by induction on the length n = |x|.
- Base case: The empty string is derived by $S \rightarrow \varepsilon$
- Inductive hypothesis:

Assume that G generates all strings of equal number of a's and b's of (even) length up to n.

Consider any string of length n+2. There are essentially 4 possibilities:

- 1. awb
- 2. bwa
- 3. awa
- 4. bwb

Proving $L \subseteq L(G)$

• Inductive hypothesis:

Consider any string of length n+2. There are essentially 4 possibilities:

- 1. awb
- 2. bwa
- 3. awa
- 4. bwb

Given $S \Rightarrow^* w$, awb and bwa are generated from w using the rules $S \rightarrow aSb$ and $S \rightarrow bSa$ (induction hypothesis)

2/21

Proving $L \subseteq L(G)$

• Inductive hypothesis:

Somewhere along the string (in w), the counter crosses 0:

- u and v have an equal number of a's and b's and are shorter than n.
- Given S ⇒* u and S ⇒* v, the rule S → SS generates awa = uv (induction hypothesis)
- The same argument applies for strings like bwb

Proving $L \subseteq L(G)$

• Inductive hypothesis:

Now, consider a string like awa. For it to be in L requires that w isn't in L as w needs to have 2 more b's than a's.

- Split awa as follows: ${}_0a_1 \dots {}_{-1}a_0$ where the subscripts after a prefix v of awa denotes $n_a(v) n_b(v)$
- Think of this as counting starting from 0.
 Each a adds 1. Each b subtracts 1. At the end, we should be at 0.

Somewhere along the string (in w), the counter crosses 0 (more b's)

2/22

As for Regular Languages,

Context-Free Languages are recognized by "machines"

Language	Regular	Context-Free
Machine	DFA/NFA	PDA

Push-Down Automatas are pretty similar to DFAs

alphabet state
$$M=(Q,\Sigma,\Gamma,\delta,q_0,F)$$
 states accepting states

This week, we'll see that

computers are not limitless

Some problems
cannot be solved
by a computer
(no matter its power)

Push-Down Automatas are pretty similar to DFAs except for... the stack

But before that, we'll prove some extra properties about Context-Free Languages

Today's plan Thu Oct 18 1 PDA ≍ CFG

2 Pumping lemma for CFL

Turing Machines

Even smarter automata...

- Even though the PDA is more powerful than the FA, it is still really stupid, since it doesn't understand a lot of important languages.
- Let's try to make it more powerful by adding a second stack
 - You can push or pop from either stack, also there's still an input string
 - Clearly there are quite a few "implementation details"
 - It seems at first that it doesn't help a lot to add a second stack, but...

2/1

Automata & languages

A primer on the Theory of Computation



regular language

context-free language

Part 3

turing machine Even smarter automata...

- Even though the PDA is more powerful than the FA, it is still really stupid, since it doesn't understand a lot of important languages.
- Let's try to make it more powerful by adding a second stack
 - You can push or pop from either stack, also there's still an input string
 - Clearly there are quite a few "implementation details"
 - It seems at first that it doesn't help a lot to add a second stack, but...
- Lemma: A PDA with two stacks is as powerful as a machine which
 operates on an infinite tape (restricted to read/write only "current"
 tape cell at the time known as "Turing Machine").
 - Still that doesn't sound very exciting, does it...?!?

Turing Machine

- A Turing Machine (TM) is a device with a finite amount of read-only
 "hard" memory (states), and an unbounded amount of read/write
 tape-memory. There is no separate input. Rather, the input is assumed to
 reside on the tape at the time when the TM starts running.
- Just as with Automata, TM's can either be input/output machines (compare with Finite State Transducers), or yes/no decision machines.

2/2

Turing Machine: Example Program

- Sample Rules:
 - If read 1, write 0, go right, repeat.
 - If read 0, write 1, HALT!
 - If read □, write 1, HALT! (the symbol □ stands for the blank cell)
- Let's see how these rules are carried out on an input with the reverse binary representation of 47:

1	1	1	1	0	1				
---	---	---	---	---	---	--	--	--	--

Turing Machine: Formal Definition

- Definition: A Turing machine (TM) consists of a 7-tuple $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rei})$.
 - -Q, Σ , and q_0 , are the same as for an FA.
 - q_{acc} and q_{rei} are accept and reject states, respectively.
 - $\ \Gamma$ is the tape alphabet which necessarily contains the blank symbol ullet, as well as the input alphabet Σ .
 - $-\delta$ is as follows:

$$\delta: (Q - \{q_{acc}, q_{rei}\}) \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}$$

- Therefore given a non-halt state p, and a tape symbol x, $\delta(p,x) = (q,y,D)$ means that TM goes into state q, replaces x by y, and the tape head moves in direction D (left or right).
- A string x is accepted by M if after being put on the tape with the
 Turing machine head set to the left-most position, and letting M run, M
 eventually enters the accept state. In this case w is an element of L(M)
 the language accepted by M.

Turing Machine: Formal Definition

- Definition: A Turing machine (TM) consists of a 7-tuple $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rei})$.
 - Q, Σ , and q_0 , are the same as for an FA.
 - q_{acc} and q_{rej} are accept and reject states, respectively.
 - $\ \Gamma$ is the tape alphabet which necessarily contains the blank symbol ullet, as well as the input alphabet Σ .
 - δ is as follows:

$$\delta: (Q - \{q_{acc}, q_{rej}\}) \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}$$

- Therefore given a non-halt state p, and a tape symbol x, $\delta(p,x) = (q,y,D)$ means that TM goes into state q, replaces x by y, and the tape head moves in direction D (left or right).

2/5

Comparison

2/4

Device	Separate Input?	Read/Write Data Structure	Deterministic by default?	
FA	Yes	None	Yes	
PDA	Yes	LIFO Stack	No	
TM	No	1-way infinite tape. 1 cell access per step.	Yes (but will also allow crashes)	

Turing Machine: Goals

- First Goal of Turing's Machine: A "computer" which is as powerful as any real computer/programming language
 - As powerful as C, or "Java++"
 - Can execute all the same algorithms / code
 - Not as fast though (move the head left and right instead of RAM)
 - Historically: A model that can compute anything that a human can compute. Before invention of electronic computers the term "computer" actually referred to a *person* who's line of work is to calculate numerical quantities!
 - This is known as the [Church-[Post-]] Turing thesis, 1936.
- Second Goal of Turing's Machine: And at the same time a model that is simple enough to actually prove interesting epistemological results.

Also the Turing Machine (the Computer) is limited

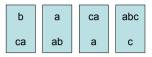
 Similary it is undecidable whether you can cover a floor with a given set of floor tiles (famous examples are Penrose tiles or Wang tiles)

2/8

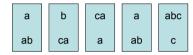
- Examples are leading back to Kurt Gödel's incompleteness theorem
 - "Any powerful enough axiomatic system will allow for propositions that are undecidable."

Can a computer compute anything...?!?

• Given collection of dominos, e.g.



• Can you make a list of these dominos (repetitions are allowed) so that the top string equals the bottom string, e.g.



2/9

- This problem is known as Post-Correspondance-Problem.
- It is provably unsolvable by computers!

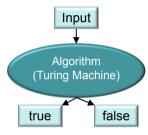
Decidability

 A function is computable if there is an algorithm (according to the Church-Turing-Thesis a Turing machine is sufficient) that computes the function (in finite time).

2/10 2/11

Decidability

- A function is computable if there is an algorithm (according to the Church-Turing-Thesis a Turing machine is sufficient) that computes the function (in finite time).
- A subset T of a set M is called decidable (or recursive), if the function
 f: M → {true, false} with f(m) = true if m ∈ T, is computable.



2/12

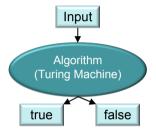
Halting Problem

- The halting problem is a famous example of an undecidable (semi-decidable) problem. Essentially, you cannot write a computer program that decides whether another computer program ever terminates (or has an infinite loop) on some given input.
- In pseudo code, we would like to have:

```
procedure halting(program, input) {
   if program(input) terminates
   then return true
   else return false
}
```

Decidability

- A function is computable if there is an algorithm (according to the Church-Turing-Thesis a Turing machine is sufficient) that computes the function (in finite time).
- A subset T of a set M is called decidable (or recursive), if the function
 f: M → {true, false} with f(m) = true if m ∈ T, is computable.
- A more general class are the semi-decidable problems, for which the algorithm must only terminate in finite time in either the true or the false branch, but not the other.



2/13

Halting Problem: Proof

Now we write a little wrapper around our halting procedure

```
procedure test(program) {
    if halting(program, program) = true
    then loop forever
    else return
}
```

• Now we simply run: test (test)! Does it halt?!?

2/14 2/15

Excursion: P and NP

• P is the complexity class containing decision problems which can be solved by a Turing machine in time polynomial of the input size.

Excursion: P and NP

 P is the complexity class containing decision problems which can be solved by a Turing machine in time polynomial of the input size.

NP is the class of decision problems solvable by a non-deterministic
polynomial time Turing machine such that the machine answers "yes,"
if at least one computation path accepts, and answers "no," if all
computation paths reject.

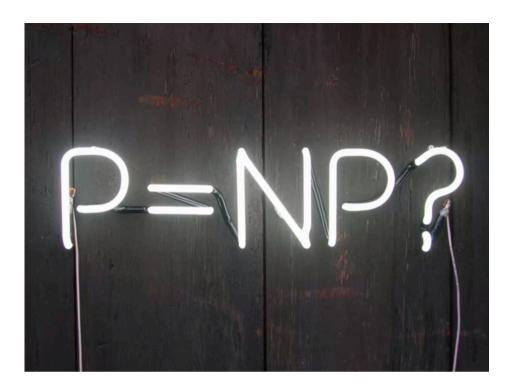
2/16 2/17

Excursion: P and NP

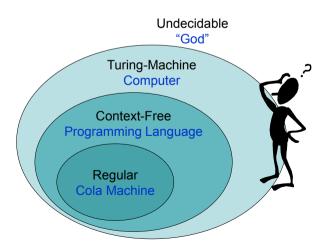
- P is the complexity class containing decision problems which can be solved by a Turing machine in time polynomial of the input size.
- NP is the class of decision problems solvable by a non-deterministic
 polynomial time Turing machine such that the machine answers "yes,"
 if at least one computation path accepts, and answers "no," if all
 computation paths reject.
 - Informally, there is a Turing machine which can check the correctness of an answer in polynomial time.
 - E.g. one can check in polynomial time whether a traveling salesperson path connects n cities with less than a total distance d.

NP-complete problems

- An important notion in this context is the large set of NP-complete decision problems, which is a subset of NP and might be informally described as the "hardest" problems in NP.
- If there is a polynomial-time algorithm for even one of them, then there is a polynomial-time algorithm for all the problems in NP.
 - E.g. Given a set of n integers, is there a non-empty subset which sums up to
 O? This problem was shown to be NP-complete.
 - Also the traveling salesperson problem is NP-complete, or Tetris, or Minesweeper.



Summary (Chomsky Hierarchy)



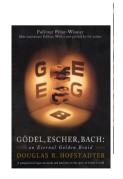
P vs. NP

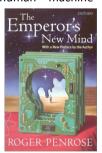
- One of the big questions in Math and CS: Is P = NP?
 - Or are there problems which cannot be solved in polynomial time.
 - Big practical impact (e.g. in Cryptography).
 - One of the seven \$1M problems by the Clay Mathematics Institute of Cambridge, Massachusetts.

2/21

Bedtime Reading

If you're leaning towards "human = machine"





If you're leaning towards "human ⊃ machine"

2/22