
ETH Zürich (D-ITET)

Laurent Vanbever

October 18 2018

www.vanbever.eu

Automata & languages

A primer on the Theory of Computation

http://www.vanbever.eu

Part 5 out of 5

Last week was all about

Context-Free Languages

Context-Free Languages

a superset of Regular Languages

Example {0n1n | n ≥ 0} is a CFL but not a RL

We saw the concept of

Context-Free Grammars

(V,⌃,R,S)
<latexit sha1_base64="GiR7Sho7A3V4Hhq93pbeX4sdH7I=">AAACGHicbVBNS8MwGE7n15xfVY9egkOYILMVQY9DLx6ncx+wlpFm6RaWtCVJhVH6M7z4V7x4UMTrbv4b063C3Hwg5MnzvC9538eLGJXKsr6Nwsrq2vpGcbO0tb2zu2fuH7RkGAtMmjhkoeh4SBJGA9JUVDHSiQRB3GOk7Y1uM7/9RISkYfCoxhFxORoE1KcYKS31zPOKw5EaYsSSVnoGnQYdcKTvX/EhnXs00tOeWbaq1hRwmdg5KYMc9Z45cfohjjkJFGZIyq5tRcpNkFAUM5KWnFiSCOERGpCupgHiRLrJdLEUnmilD/1Q6BMoOFXnOxLEpRxzT1dmM8pFLxP/87qx8q/dhAZRrEiAZx/5MYMqhFlKsE8FwYqNNUFYUD0rxEMkEFY6y5IOwV5ceZm0Lqq25veX5dpNHkcRHIFjUAE2uAI1cAfqoAkweAav4B18GC/Gm/FpfM1KC0becwj+wJj8AKmDn4g=</latexit><latexit sha1_base64="GiR7Sho7A3V4Hhq93pbeX4sdH7I=">AAACGHicbVBNS8MwGE7n15xfVY9egkOYILMVQY9DLx6ncx+wlpFm6RaWtCVJhVH6M7z4V7x4UMTrbv4b063C3Hwg5MnzvC9538eLGJXKsr6Nwsrq2vpGcbO0tb2zu2fuH7RkGAtMmjhkoeh4SBJGA9JUVDHSiQRB3GOk7Y1uM7/9RISkYfCoxhFxORoE1KcYKS31zPOKw5EaYsSSVnoGnQYdcKTvX/EhnXs00tOeWbaq1hRwmdg5KYMc9Z45cfohjjkJFGZIyq5tRcpNkFAUM5KWnFiSCOERGpCupgHiRLrJdLEUnmilD/1Q6BMoOFXnOxLEpRxzT1dmM8pFLxP/87qx8q/dhAZRrEiAZx/5MYMqhFlKsE8FwYqNNUFYUD0rxEMkEFY6y5IOwV5ceZm0Lqq25veX5dpNHkcRHIFjUAE2uAI1cAfqoAkweAav4B18GC/Gm/FpfM1KC0becwj+wJj8AKmDn4g=</latexit><latexit sha1_base64="GiR7Sho7A3V4Hhq93pbeX4sdH7I=">AAACGHicbVBNS8MwGE7n15xfVY9egkOYILMVQY9DLx6ncx+wlpFm6RaWtCVJhVH6M7z4V7x4UMTrbv4b063C3Hwg5MnzvC9538eLGJXKsr6Nwsrq2vpGcbO0tb2zu2fuH7RkGAtMmjhkoeh4SBJGA9JUVDHSiQRB3GOk7Y1uM7/9RISkYfCoxhFxORoE1KcYKS31zPOKw5EaYsSSVnoGnQYdcKTvX/EhnXs00tOeWbaq1hRwmdg5KYMc9Z45cfohjjkJFGZIyq5tRcpNkFAUM5KWnFiSCOERGpCupgHiRLrJdLEUnmilD/1Q6BMoOFXnOxLEpRxzT1dmM8pFLxP/87qx8q/dhAZRrEiAZx/5MYMqhFlKsE8FwYqNNUFYUD0rxEMkEFY6y5IOwV5ceZm0Lqq25veX5dpNHkcRHIFjUAE2uAI1cAfqoAkweAav4B18GC/Gm/FpfM1KC0becwj+wJj8AKmDn4g=</latexit><latexit sha1_base64="GiR7Sho7A3V4Hhq93pbeX4sdH7I=">AAACGHicbVBNS8MwGE7n15xfVY9egkOYILMVQY9DLx6ncx+wlpFm6RaWtCVJhVH6M7z4V7x4UMTrbv4b063C3Hwg5MnzvC9538eLGJXKsr6Nwsrq2vpGcbO0tb2zu2fuH7RkGAtMmjhkoeh4SBJGA9JUVDHSiQRB3GOk7Y1uM7/9RISkYfCoxhFxORoE1KcYKS31zPOKw5EaYsSSVnoGnQYdcKTvX/EhnXs00tOeWbaq1hRwmdg5KYMc9Z45cfohjjkJFGZIyq5tRcpNkFAUM5KWnFiSCOERGpCupgHiRLrJdLEUnmilD/1Q6BMoOFXnOxLEpRxzT1dmM8pFLxP/87qx8q/dhAZRrEiAZx/5MYMqhFlKsE8FwYqNNUFYUD0rxEMkEFY6y5IOwV5ceZm0Lqq25veX5dpNHkcRHIFjUAE2uAI1cAfqoAkweAav4B18GC/Gm/FpfM1KC0becwj+wJj8AKmDn4g=</latexit>

variables

alphabet
start

symbol

fine set of rules v ! w
<latexit sha1_base64="4ftGxo+dMZvReVQBIBfBupilca4=">AAAB+XicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxgv2ANpTNdtsu3WTD7qSlhP4TLx4U8eo/8ea/cdvmoK0vLDy8M8PMvmEihUHP+3YKG5tb2zvF3dLe/sHhkXt80jAq1YzXmZJKt0JquBQxr6NAyVuJ5jQKJW+Go/t5vTnm2ggVP+E04UFEB7HoC0bRWl3XHZOOFoMhUq3VhExI1y17FW8hsg5+DmXIVeu6X52eYmnEY2SSGtP2vQSDjGoUTPJZqZManlA2ogPethjTiJsgW1w+IxfW6ZG+0vbFSBbu74mMRsZMo9B2RhSHZrU2N/+rtVPs3waZiJMUecyWi/qpJKjIPAbSE5ozlFMLlGlhbyVsSDVlaMMq2RD81S+vQ+Oq4lt+vC5X7/I4inAG53AJPtxAFR6gBnVgMIZneIU3J3NenHfnY9lacPKZU/gj5/MHA72TPQ==</latexit><latexit sha1_base64="4ftGxo+dMZvReVQBIBfBupilca4=">AAAB+XicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxgv2ANpTNdtsu3WTD7qSlhP4TLx4U8eo/8ea/cdvmoK0vLDy8M8PMvmEihUHP+3YKG5tb2zvF3dLe/sHhkXt80jAq1YzXmZJKt0JquBQxr6NAyVuJ5jQKJW+Go/t5vTnm2ggVP+E04UFEB7HoC0bRWl3XHZOOFoMhUq3VhExI1y17FW8hsg5+DmXIVeu6X52eYmnEY2SSGtP2vQSDjGoUTPJZqZManlA2ogPethjTiJsgW1w+IxfW6ZG+0vbFSBbu74mMRsZMo9B2RhSHZrU2N/+rtVPs3waZiJMUecyWi/qpJKjIPAbSE5ozlFMLlGlhbyVsSDVlaMMq2RD81S+vQ+Oq4lt+vC5X7/I4inAG53AJPtxAFR6gBnVgMIZneIU3J3NenHfnY9lacPKZU/gj5/MHA72TPQ==</latexit><latexit sha1_base64="4ftGxo+dMZvReVQBIBfBupilca4=">AAAB+XicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxgv2ANpTNdtsu3WTD7qSlhP4TLx4U8eo/8ea/cdvmoK0vLDy8M8PMvmEihUHP+3YKG5tb2zvF3dLe/sHhkXt80jAq1YzXmZJKt0JquBQxr6NAyVuJ5jQKJW+Go/t5vTnm2ggVP+E04UFEB7HoC0bRWl3XHZOOFoMhUq3VhExI1y17FW8hsg5+DmXIVeu6X52eYmnEY2SSGtP2vQSDjGoUTPJZqZManlA2ogPethjTiJsgW1w+IxfW6ZG+0vbFSBbu74mMRsZMo9B2RhSHZrU2N/+rtVPs3waZiJMUecyWi/qpJKjIPAbSE5ozlFMLlGlhbyVsSDVlaMMq2RD81S+vQ+Oq4lt+vC5X7/I4inAG53AJPtxAFR6gBnVgMIZneIU3J3NenHfnY9lacPKZU/gj5/MHA72TPQ==</latexit><latexit sha1_base64="4ftGxo+dMZvReVQBIBfBupilca4=">AAAB+XicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxgv2ANpTNdtsu3WTD7qSlhP4TLx4U8eo/8ea/cdvmoK0vLDy8M8PMvmEihUHP+3YKG5tb2zvF3dLe/sHhkXt80jAq1YzXmZJKt0JquBQxr6NAyVuJ5jQKJW+Go/t5vTnm2ggVP+E04UFEB7HoC0bRWl3XHZOOFoMhUq3VhExI1y17FW8hsg5+DmXIVeu6X52eYmnEY2SSGtP2vQSDjGoUTPJZqZManlA2ogPethjTiJsgW1w+IxfW6ZG+0vbFSBbu74mMRsZMo9B2RhSHZrU2N/+rtVPs3waZiJMUecyWi/qpJKjIPAbSE5ozlFMLlGlhbyVsSDVlaMMq2RD81S+vQ+Oq4lt+vC5X7/I4inAG53AJPtxAFR6gBnVgMIZneIU3J3NenHfnY9lacPKZU/gj5/MHA72TPQ==</latexit>

v 2 V
<latexit sha1_base64="Yp9mcCAR6oKoSRASXALiJDd8zl8=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUlEqMuiG5cV7AOaUCbTSTt0Mgkzk0qJ/RQ3LhRx65e482+ctFlo64GBwzn3cs+cIOFMacf5tkobm1vbO+Xdyt7+weGRXT3uqDiVhLZJzGPZC7CinAna1kxz2kskxVHAaTeY3OZ+d0qlYrF40LOE+hEeCRYygrWRBnZ1ijwmkBdhPSaYZ535wK45dWcBtE7cgtSgQGtgf3nDmKQRFZpwrFTfdRLtZ1hqRjidV7xU0QSTCR7RvqECR1T52SL6HJ0bZYjCWJonNFqovzcyHCk1iwIzmUdUq14u/uf1Ux1e+xkTSaqpIMtDYcqRjlHeAxoySYnmM0MwkcxkRWSMJSbatFUxJbirX14nncu6a/j9Va15U9RRhlM4gwtwoQFNuIMWtIHAIzzDK7xZT9aL9W59LEdLVrFzAn9gff4A5Z+Twg==</latexit><latexit sha1_base64="Yp9mcCAR6oKoSRASXALiJDd8zl8=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUlEqMuiG5cV7AOaUCbTSTt0Mgkzk0qJ/RQ3LhRx65e482+ctFlo64GBwzn3cs+cIOFMacf5tkobm1vbO+Xdyt7+weGRXT3uqDiVhLZJzGPZC7CinAna1kxz2kskxVHAaTeY3OZ+d0qlYrF40LOE+hEeCRYygrWRBnZ1ijwmkBdhPSaYZ535wK45dWcBtE7cgtSgQGtgf3nDmKQRFZpwrFTfdRLtZ1hqRjidV7xU0QSTCR7RvqECR1T52SL6HJ0bZYjCWJonNFqovzcyHCk1iwIzmUdUq14u/uf1Ux1e+xkTSaqpIMtDYcqRjlHeAxoySYnmM0MwkcxkRWSMJSbatFUxJbirX14nncu6a/j9Va15U9RRhlM4gwtwoQFNuIMWtIHAIzzDK7xZT9aL9W59LEdLVrFzAn9gff4A5Z+Twg==</latexit><latexit sha1_base64="Yp9mcCAR6oKoSRASXALiJDd8zl8=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUlEqMuiG5cV7AOaUCbTSTt0Mgkzk0qJ/RQ3LhRx65e482+ctFlo64GBwzn3cs+cIOFMacf5tkobm1vbO+Xdyt7+weGRXT3uqDiVhLZJzGPZC7CinAna1kxz2kskxVHAaTeY3OZ+d0qlYrF40LOE+hEeCRYygrWRBnZ1ijwmkBdhPSaYZ535wK45dWcBtE7cgtSgQGtgf3nDmKQRFZpwrFTfdRLtZ1hqRjidV7xU0QSTCR7RvqECR1T52SL6HJ0bZYjCWJonNFqovzcyHCk1iwIzmUdUq14u/uf1Ux1e+xkTSaqpIMtDYcqRjlHeAxoySYnmM0MwkcxkRWSMJSbatFUxJbirX14nncu6a/j9Va15U9RRhlM4gwtwoQFNuIMWtIHAIzzDK7xZT9aL9W59LEdLVrFzAn9gff4A5Z+Twg==</latexit><latexit sha1_base64="Yp9mcCAR6oKoSRASXALiJDd8zl8=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUlEqMuiG5cV7AOaUCbTSTt0Mgkzk0qJ/RQ3LhRx65e482+ctFlo64GBwzn3cs+cIOFMacf5tkobm1vbO+Xdyt7+weGRXT3uqDiVhLZJzGPZC7CinAna1kxz2kskxVHAaTeY3OZ+d0qlYrF40LOE+hEeCRYygrWRBnZ1ijwmkBdhPSaYZ535wK45dWcBtE7cgtSgQGtgf3nDmKQRFZpwrFTfdRLtZ1hqRjidV7xU0QSTCR7RvqECR1T52SL6HJ0bZYjCWJonNFqovzcyHCk1iwIzmUdUq14u/uf1Ux1e+xkTSaqpIMtDYcqRjlHeAxoySYnmM0MwkcxkRWSMJSbatFUxJbirX14nncu6a/j9Va15U9RRhlM4gwtwoQFNuIMWtIHAIzzDK7xZT9aL9W59LEdLVrFzAn9gff4A5Z+Twg==</latexit>

w 2 (⌃✏ [V)⇤
<latexit sha1_base64="Cf8VqZA4dOD9BP1xC/XP06rDZZA=">AAACE3icbZC7TsMwFIadcivlFmBksaiQSocqQUgwVrAwFkEvUhMix3Vbq7YT2Q6oivoOLLwKCwMIsbKw8TY4bQZo+SVLn/5zjnzOH8aMKu0431ZhaXllda24XtrY3NresXf3WipKJCZNHLFIdkKkCKOCNDXVjHRiSRAPGWmHo8us3r4nUtFI3OpxTHyOBoL2KUbaWIFdfYAeFbDi3dABR4FHYkVZJKCHkxh6HOkhRixtTY7vqoFddmrOVHAR3BzKIFcjsL+8XoQTToTGDCnVdZ1Y+ymSmmJGJiUvUSRGeIQGpGtQIE6Un05vmsAj4/RgP5LmCQ2n7u+JFHGlxjw0ndmWar6Wmf/Vuonun/spFXGiicCzj/oJgzqCWUCwRyXBmo0NICyp2RXiIZIIaxNjyYTgzp+8CK2Tmmv4+rRcv8jjKIIDcAgqwAVnoA6uQAM0AQaP4Bm8gjfryXqx3q2PWWvBymf2wR9Znz/P3J18</latexit><latexit sha1_base64="Cf8VqZA4dOD9BP1xC/XP06rDZZA=">AAACE3icbZC7TsMwFIadcivlFmBksaiQSocqQUgwVrAwFkEvUhMix3Vbq7YT2Q6oivoOLLwKCwMIsbKw8TY4bQZo+SVLn/5zjnzOH8aMKu0431ZhaXllda24XtrY3NresXf3WipKJCZNHLFIdkKkCKOCNDXVjHRiSRAPGWmHo8us3r4nUtFI3OpxTHyOBoL2KUbaWIFdfYAeFbDi3dABR4FHYkVZJKCHkxh6HOkhRixtTY7vqoFddmrOVHAR3BzKIFcjsL+8XoQTToTGDCnVdZ1Y+ymSmmJGJiUvUSRGeIQGpGtQIE6Un05vmsAj4/RgP5LmCQ2n7u+JFHGlxjw0ndmWar6Wmf/Vuonun/spFXGiicCzj/oJgzqCWUCwRyXBmo0NICyp2RXiIZIIaxNjyYTgzp+8CK2Tmmv4+rRcv8jjKIIDcAgqwAVnoA6uQAM0AQaP4Bm8gjfryXqx3q2PWWvBymf2wR9Znz/P3J18</latexit><latexit sha1_base64="Cf8VqZA4dOD9BP1xC/XP06rDZZA=">AAACE3icbZC7TsMwFIadcivlFmBksaiQSocqQUgwVrAwFkEvUhMix3Vbq7YT2Q6oivoOLLwKCwMIsbKw8TY4bQZo+SVLn/5zjnzOH8aMKu0431ZhaXllda24XtrY3NresXf3WipKJCZNHLFIdkKkCKOCNDXVjHRiSRAPGWmHo8us3r4nUtFI3OpxTHyOBoL2KUbaWIFdfYAeFbDi3dABR4FHYkVZJKCHkxh6HOkhRixtTY7vqoFddmrOVHAR3BzKIFcjsL+8XoQTToTGDCnVdZ1Y+ymSmmJGJiUvUSRGeIQGpGtQIE6Un05vmsAj4/RgP5LmCQ2n7u+JFHGlxjw0ndmWar6Wmf/Vuonun/spFXGiicCzj/oJgzqCWUCwRyXBmo0NICyp2RXiIZIIaxNjyYTgzp+8CK2Tmmv4+rRcv8jjKIIDcAgqwAVnoA6uQAM0AQaP4Bm8gjfryXqx3q2PWWvBymf2wR9Znz/P3J18</latexit><latexit sha1_base64="Cf8VqZA4dOD9BP1xC/XP06rDZZA=">AAACE3icbZC7TsMwFIadcivlFmBksaiQSocqQUgwVrAwFkEvUhMix3Vbq7YT2Q6oivoOLLwKCwMIsbKw8TY4bQZo+SVLn/5zjnzOH8aMKu0431ZhaXllda24XtrY3NresXf3WipKJCZNHLFIdkKkCKOCNDXVjHRiSRAPGWmHo8us3r4nUtFI3OpxTHyOBoL2KUbaWIFdfYAeFbDi3dABR4FHYkVZJKCHkxh6HOkhRixtTY7vqoFddmrOVHAR3BzKIFcjsL+8XoQTToTGDCnVdZ1Y+ymSmmJGJiUvUSRGeIQGpGtQIE6Un05vmsAj4/RgP5LmCQ2n7u+JFHGlxjw0ndmWar6Wmf/Vuonun/spFXGiicCzj/oJgzqCWUCwRyXBmo0NICyp2RXiIZIIaxNjyYTgzp+8CK2Tmmv4+rRcv8jjKIIDcAgqwAVnoA6uQAM0AQaP4Bm8gjfryXqx3q2PWWvBymf2wR9Znz/P3J18</latexit>

CFG’s: Proving Correctness

• The recursive nature of CFG’s means that they are especially amenable
to correctness proofs.

• For example let’s consider again our grammar
G = (S Æ e | ab | ba | aSb | bSa | SS)

• We claim that L(G) = L = { x � {a,b}* | na(x) = nb(x) },
where na(x) is the number of a’s in x, and nb(x) is the number of b’s.

• Proof: To prove that L = L(G) is to show both inclusions:
i. L � L(G): Every string in L can be generated by G.
ii. L � L(G): G only generate strings of L.

2/18

CFG’s: Proving Correctness

• The recursive nature of CFG’s means that they are especially amenable
to correctness proofs.

• For example let’s consider again our grammar
G = (S Æ e | ab | ba | aSb | bSa | SS)

• We claim that L(G) = L = { x � {a,b}* | na(x) = nb(x) },
where na(x) is the number of a’s in x, and nb(x) is the number of b’s.

• Proof: To prove that L = L(G) is to show both inclusions:
i. L � L(G): Every string in L can be generated by G.
ii. L � L(G): G only generate strings of L.

Part ii. is easy (see why?), so we’ll concentrate on part i.

2/19

Proving L � L(G)

• L � L(G): Show that every string x with the same number of a’s as b’s
is generated by G. Prove by induction on the length n = |x|.

• Base case: The empty string is derived by S Æ e

• Inductive hypothesis:
Assume that G generates all strings of equal number of a’s and b’s
of (even) length up to n.

Consider any string of length n+2. There are essentially 4 possibilities:
1. awb
2. bwa
3. awa
4. bwb

2/20

Proving L � L(G)

• Inductive hypothesis:

Consider any string of length n+2. There are essentially 4 possibilities:
1. awb
2. bwa
3. awa
4. bwb

Given S �* w, awb and bwa are generated
from w using the rules S Æ aSb and S Æ bSa (induction hypothesis)

2/21

Proving L � L(G)

• Inductive hypothesis:

Now, consider a string like awa. For it to be in L requires that w isn’t in L
as w needs to have 2 more b’s than a’s.

– Split awa as follows: 0𝑎1 … −1𝑎0
where the subscripts after a prefix v of awa denotes 𝑛𝑎 𝑣 − 𝑛𝑏 𝑣

– Think of this as counting starting from 0.
Each a adds 1. Each b subtracts 1. At the end, we should be at 0.

Somewhere along the string (in w), the counter crosses 0 (more b’s)

2/22

Proving L � L(G)

• Inductive hypothesis:

Somewhere along the string (in w), the counter crosses 0:

0𝑎1 … −1𝑥0 𝑦… −1𝑎0 with 𝑥, 𝑦 ∈ 𝑎, 𝑏

– u and v have an equal number of a’s and b’s and are shorter than n.
– Given S �* u and S �* v, the rule S Æ SS generates awa = uv

(induction hypothesis)

– The same argument applies for strings like bwb

2/23

𝑢

𝑣

Context-FreeRegular

DFA/NFA PDA

Language

Machine

As for Regular Languages,

Context-Free Languages are recognized by “machines”

M = (Q,⌃,�, �, q0, F)

states

alphabet
start

state

accepting

states

Push-Down Automatas are pretty similar to DFAs

except for…

M = (Q,⌃,�, �, q0, F)

transition

function

Q⇥ ⌃✏ ⇥ �✏ ! P (Q⇥ �✏)

Push-Down Automatas are pretty similar to DFAs

except for… the stack

stack
alphabet

This week, we’ll see that

computers are not limitless

Alan Turing (1912-1954)

Some problems

by a computer

(no matter its power)

cannot be solved

Pumping lemma for CFL

Today’s plan

Turing Machines

PDA ≍ CFG1

2

3

Thu Oct 18

But before that, we’ll prove

some extra properties about Context-Free Languages

Even smarter automata…

• Even though the PDA is more powerful than the FA, it is still really stupid,
since it doesn’t understand a lot of important languages.

• Let’s try to make it more powerful by adding a second stack
– You can push or pop from either stack, also there’s still an input string
– Clearly there are quite a few “implementation details”
– It seems at first that it doesn’t help a lot to add a second stack, but…

2/1

Even smarter automata…

• Even though the PDA is more powerful than the FA, it is still really stupid,
since it doesn’t understand a lot of important languages.

• Let’s try to make it more powerful by adding a second stack
– You can push or pop from either stack, also there’s still an input string
– Clearly there are quite a few “implementation details”
– It seems at first that it doesn’t help a lot to add a second stack, but…

• Lemma: A PDA with two stacks is as powerful as a machine which
operates on an infinite tape (restricted to read/write only “current”
tape cell at the time – known as “Turing Machine”).

– Still that doesn’t sound very exciting, does it…?!?

2/2

regular
language

context-free
language

turing
machine

Part 3

Automata & languages

A primer on the Theory of Computation

Turing Machine

• A Turing Machine (TM) is a device with a finite amount of read-only
“hard” memory (states), and an unbounded amount of read/write
tape-memory. There is no separate input. Rather, the input is assumed to
reside on the tape at the time when the TM starts running.

• Just as with Automata, TM’s can either be input/output machines
(compare with Finite State Transducers), or yes/no decision machines.

2/3

Turing Machine: Example Program

• Sample Rules:
– If read 1, write 0, go right, repeat.
– If read 0, write 1, HALT!
– If read □, write 1, HALT! (the symbol □ stands for the blank cell)

• Let’s see how these rules are carried out on an input with the reverse
binary representation of 47:

2/4

1 1 1 1 0 1

Turing Machine: Formal Definition

• Definition: A Turing machine (TM) consists of a 7-tuple
M = (Q, S, G, d, q0, qacc, qrej).
– Q, S, and q0, are the same as for an FA.
– qacc and qrej are accept and reject states, respectively.
– G is the tape alphabet which necessarily contains the blank symbol x, as

well as the input alphabet S.
– d is as follows:

– Therefore given a non-halt state p, and a tape symbol x, d(p,x) = (q,y,D)
means that TM goes into state q, replaces x by y, and the tape head moves
in direction D (left or right).

2/5

}RL,{}),{-(:δ rejacc uGuoGu QQ qq

Turing Machine: Formal Definition

• Definition: A Turing machine (TM) consists of a 7-tuple
M = (Q, S, G, d, q0, qacc, qrej).
– Q, S, and q0, are the same as for an FA.
– qacc and qrej are accept and reject states, respectively.
– G is the tape alphabet which necessarily contains the blank symbol x, as

well as the input alphabet S.
– d is as follows:

– Therefore given a non-halt state p, and a tape symbol x, d(p,x) = (q,y,D)
means that TM goes into state q, replaces x by y, and the tape head moves
in direction D (left or right).

• A string x is accepted by M if after being put on the tape with the
Turing machine head set to the left-most position, and letting M run, M
eventually enters the accept state. In this case w is an element of L(M)
– the language accepted by M.

2/6

}RL,{}),{-(:δ rejacc uGuoGu QQ qq

Comparison

2/7

Device Separate
Input?

Read/Write Data
Structure

Deterministic by
default?

FA Yes None Yes

PDA Yes LIFO Stack No

TM No 1-way infinite tape. 1
cell access per step.

Yes
(but will also allow

crashes)

Turing Machine: Goals

• First Goal of Turing’s Machine: A “computer” which is as powerful as any
real computer/programming language

– As powerful as C, or “Java++”
– Can execute all the same algorithms / code
– Not as fast though (move the head left and right instead of RAM)
– Historically: A model that can compute anything that a human can compute.

Before invention of electronic computers the term “computer” actually
referred to a person who’s line of work is to calculate numerical quantities!

– This is known as the [Church-[Post-]] Turing thesis, 1936.

• Second Goal of Turing’s Machine: And at the same time a model that is
simple enough to actually prove interesting epistemological results.

2/8

Can a computer compute anything…?!?

• Given collection of dominos, e.g.

• Can you make a list of these dominos (repetitions are allowed) so that the
top string equals the bottom string, e.g.

• This problem is known as Post-Correspondance-Problem.
• It is provably unsolvable by computers!

2/9

b

ca

a

ab

ca

a

abc

c

abc

c

a

ab

b

ca

ca

a

a

ab

Also the Turing Machine (the Computer) is limited

• Similary it is undecidable whether
you can cover a floor with a given
set of floor tiles (famous examples
are Penrose tiles or Wang tiles)

• Examples are leading back to Kurt Gödel's
incompleteness theorem

– “Any powerful enough axiomatic system will
allow for propositions that are undecidable.”

2/10

Decidability

• A function is computable if there is an algorithm (according to the Church-
Turing-Thesis a Turing machine is sufficient) that computes the function
(in finite time).

2/11

Decidability

• A function is computable if there is an algorithm (according to the Church-
Turing-Thesis a Turing machine is sufficient) that computes the function
(in finite time).

• A subset T of a set M is called decidable (or recursive), if the function
f: M Æ {true, false} with f(m) = true if m ∈ T, is computable.

2/12

Input

falsetrue

Algorithm
(Turing Machine)

Decidability

• A function is computable if there is an algorithm (according to the Church-
Turing-Thesis a Turing machine is sufficient) that computes the function
(in finite time).

• A subset T of a set M is called decidable (or recursive), if the function
f: M Æ {true, false} with f(m) = true if m ∈ T, is computable.

• A more general class are the
semi-decidable problems, for which
the algorithm must only terminate
in finite time in either the true or
the false branch, but not the other.

2/13

Input

falsetrue

Algorithm
(Turing Machine)

Halting Problem

• The halting problem is a famous example of an undecidable
(semi-decidable) problem. Essentially, you cannot write a computer
program that decides whether another computer program ever
terminates (or has an infinite loop) on some given input.

• In pseudo code, we would like to have:

procedure halting(program, input) {

if program(input) terminates
then return true
else return false

}

2/14

Halting Problem: Proof

• Now we write a little wrapper around our halting procedure

procedure test(program) {

if halting(program,program)=true
then loop forever
else return

}

• Now we simply run: test(test)! Does it halt?!?

2/15

Excursion: P and NP

• P is the complexity class containing decision problems which can be
solved by a Turing machine in time polynomial of the input size.

2/16

Excursion: P and NP

• P is the complexity class containing decision problems which can be
solved by a Turing machine in time polynomial of the input size.

• NP is the class of decision problems solvable by a non-deterministic
polynomial time Turing machine such that the machine answers "yes,"
if at least one computation path accepts, and answers “no,” if all
computation paths reject.

2/17

Excursion: P and NP

• P is the complexity class containing decision problems which can be
solved by a Turing machine in time polynomial of the input size.

• NP is the class of decision problems solvable by a non-deterministic
polynomial time Turing machine such that the machine answers "yes,"
if at least one computation path accepts, and answers “no,” if all
computation paths reject.

– Informally, there is a Turing machine which can check the correctness of an
answer in polynomial time.

– E.g. one can check in polynomial time whether a traveling salesperson path
connects n cities with less than a total distance d.

2/18

NP-complete problems

• An important notion in this context is the large set of NP-complete
decision problems, which is a subset of NP and might be informally
described as the "hardest" problems in NP.

• If there is a polynomial-time algorithm for even one of them, then there is
a polynomial-time algorithm for all the problems in NP.
– E.g. Given a set of n integers, is there a non-empty subset which sums up to

0? This problem was shown to be NP-complete.
– Also the traveling salesperson problem is NP-complete, or Tetris, or

Minesweeper.

2/19

P vs. NP

• One of the big questions in Math and CS: Is P = NP?

– Or are there problems which cannot be solved in polynomial time.

– Big practical impact (e.g. in Cryptography).

– One of the seven $1M problems by the Clay Mathematics Institute of

Cambridge, Massachusetts.

2/21

Summary (Chomsky Hierarchy)

2/22

Turing-Machine
Computer

Context-Free
Programming Language

Regular
Cola Machine

Undecidable
“God”

Bedtime Reading

If you’re leaning towards “human = machine”

If you’re leaning towards “human ⊃machine”

2/23

