
Chapter 8: Consensus 
● Algo Ben-Or : line 7 (if all messages contain the same value v) : do you take your own 

value into account ? Or do you only work with others ? Same question with propose. 
Also, does the empty value count as a value or if there is a propose with a real value you 
can choose this one ? 

○ Yes, your own value can be counted as well. To see this, note that this clearly 
does not interfere with the validity and termination properties, and the proof for 
agreement only assumes that you have knowledge of more than n/2 input values. 

○ For propose, it only makes sense to keep the own proposal message for further 
processing if it contains a value. However, the algorithm does not require this 
(check proofs of lemmas 8.17-8.19). 

○ The empty value ("bottom", LaTeX: \bot) is not a value in the sense of line 17. 
● page 63, the algorithm 8.22, I can't understand why this is a shared coin, this is an 

algorithm for node u, but why we have 0 or 1 for all nodes with constant probability? 
What does the return 0/ return 1 mean? And for the lemma 8.23, could you give me an 
example to illustrate what W is? 

○ It is a shared coin algorithm if all nodes each run this code individually. 
○ We have constant probabilities > 0 for both outcomes 0 and 1 to be attained 

unanimously as shown in Theorem 8.25. There is a chance > 0, however, that 
nodes terminate with different values. 

○ "return 0 / 1" decides on the actual value that a "shared coin flip" shows to a 
specific node u running this code. In most cases (all 1 or all 0, probability for this 
is roughly 0.65) the nodes will see the same resulting value. 

○ Draw an n x (n-f) matrix and make (n-f) crosses in each column. The rows 
represent all nodes, the columns represent different coin sets you received, each 
containing (n-f) coin values. Now take a highlighter and mark every row that 
contains at least (f+1) crosses. These are all the coin values that you received in 
at least (f+1) coin sets, thus, W. The claim is, that there must be at least (f+1) 
such rows. Thus, as n = 3f + 1, we can deduce Lemma 8.24, that is, from the 
perspective of a single node u running the code, it can be entirely sure that all 
nodes will be aware of all the coins that u finds to be in its proper set W (which 
may differ for every node) as they have received it in at least one coin set. 
Intuitively, this comes from the fact that every node waits for (n-f) coin sets and W 
is contained in (f+1) of them, (n-f)+(f+1) > n. 

● Aufgabe 2.2 Assignment 3 Deterministic Random Consensus?!: Ich verstehe nicht ganz 
wieso dieses Argument der Lösung gültig ist. Der letzte Satz sagt: «…this scheduling 
might happen in every round and the algorithm does not terminate.». Das «bad 
scheduling» hört sich nach einem Ereignis an, dass ede Runde mit einer gewissen 
Wahrscheinlichkeit passiert. Wenn das der Fall wäre könnte ich auch beim Randomized 
Consensus von Ben-Or auch annehmen, dass immer das Ereignis v_i = 1 eintritt in Zeile 
23 + immer dieses bad scheduling. Das ist im worst-case auch unendlich lange Laufzeit 
bzw. keine Termination. Im Lemma 8.19 wird auch nur endliche expected termination 
bewiesen und nicht Termination in worst-case. 



Ich verstehe, dass es mit einem node fail nicht zum Agreement kommt und man das 
ähnlich wie Theorem 8.14 machen kann, aber wieso macht man das denn nicht? 
Die Musterlösung macht für mich auch Sinn, wenn das bad scheduling Etwas ist, dass 
einmal passiert und danach fix ist. Aber der Satz müsste anders formuliert sein, oder? 

○ The short answer: this is just how the asynchronous model is defined. We use it 
in order to build systems that are robust towards any mal-functioning such as 
"evil scheduling". 

○ Furthermore, this scheduling is much more practical than you might think: 
Consider a real-world scenario, where some nodes are geographically clustered 
much closer to each other and thus a similar scheduling (that is potentially biased 
as in the exercise) might, indeed, occur in every round. We still want our 
algorithm to work and, eventually, terminate. I don't personally see how a random 
coin toss (that is designed to behave randomly and not evil) will behave just like 
an evil attacker forever. 

 
Chapter 9: Scheduling 

● Ich hab beim Lösen der Aufgabe 1.1 von assignment 4 gemerkt, dass ich nicht genau 
weiss was «response time» ist. Dies schnell und einfach gerade an der Aufgabe zu 
erklären, wäre ein Anliegen von mir. Ein allgemeines Rezept für die Berechnung wäre 
auch hilfreich. 

○ The response time depends on the scheduling algorithm, but in general “longest 
time until a process responds in the worst case” 
 
For RR this is when the task just lost it’s time slice i.e. if we have N tasks and the 
scheduling decision isch performed each 10s then the response time is (N -1)* 
10ms.  
 

 
 
For EDF the response time is (if the schedule is feasible) at maximum the time 
between entry time and deadline without the execution time (deadline - entry - 
exec). This means that the worst case for response time is when a task is 
scheduled right at the time when it is barely able to finish. 

 



For SRTF we simply cannot compute the response time since a long running task 
might never be scheduled when there are many short running tasks arriving all 
the time. 

 
Chapter 10: I/O 

● Assignment 4, Exercise 2.2 c): A DMA controller (or DMA engine) has multiple channels 
that can be used by device drivers to request a DMA transfer. The controller itself is 
capable of requesting a 32-bit word every 100 nsec. A response takes equally long. How 
fast does the bus have to be to avoid being a bottleneck? 
Answer: Each bus transaction has a request and a response each taking 100 nsec, or 
200 nsec per bus transaction. This gives 5 million bus transactions / sec. If each one is 
four bytes, the bus should be able to handle 20 MB/sec. The fact that these transactions 
may be distributed over four I/O devices (four channels) in round-robin fashion is 
irrelevant. A bus transaction takes 200 nsec, regardless of whether consecutive requests 
are to the same device or different device, so the number of channels the DMA controller 
has does not matter. 
I don't understand why the bus transactions can't be pipelined, why it isn't possible to 
request a word every 100 nsec. 

○ DMA request is the request to access the shared bus, the reply is the transfer 
itself. The bus is a resources that has to be multiplexed through requesting the 
bus (like a lock) for each access and thus can not be pipelined.  
 

I'm also a bit confused about why a round-robin fashion is chosen to allow access for 
multiple devices, wouldn't it be possible for the DMA controller to multiplex the bus 
access for the devices? 

○ There is not only one DMA controller but multiple (Each device might have one + 
additional others). In most of these case we have some kind of bus arbiter which 
decies the scheduling algorithm. In many cases round robin is the algorithm used 
to multiplex the bus since RR is simple to implement in hardware.  

 
Chapter 11: Byzantine Agreement 

● Assignment 5, 1.1 c: why is the answer w + h + 1 and not just w + h? Can it not see last 
new value and compute or is it just one compute per time unit?So for runtime Analysis 
we Always hafe to count number of msg exchanges plus an extra step for 
calulation/Termination? 

○ It takes w+h rounds for the node to receive all values. The node can however not 
know that it has received all values, since it does not know w and h. Therefore, it 
needs to wait for another round and see that it there is no new values coming.  

  
● Assignment 5, 1.1 d): I dont agree with the master solution. In a) the master solution said 

"agree on the smallest value". So if it is a binary system, the question is only is there a 0 
in the system? It is not stipulated that in this broadcasting set up, that the recipients dont 
know from whom the messages are sent. As soon as it is information Sender, value, the 



corner node will Always recieve also the 0. So the only Problem is in all-same value 
validity… than if all have 1 and just the byzantine 0 it would lead to a disagreement. 
Would the solution not rather be that you have to at least partition the network and 
assume, that byzantine nodes change through coming information? And that is another 
question: byzantine nodes are not allowed identity Theft or change, but can they change 
another nodes values they have to broadcast in such a grid set up? 

○ All-same validity is not the only problem. If the byzantine node tells one node that 
it has input 0 and all other nodes that it has input 1, then the node that is cut off 
will not be able to decide which value to take. The only algorithm which would 
work in such a setting would be to always agree on 0 (independent of the input), 
which is a trivial system. The trivial system is however not very interesting.  
Byzantine agreement that we consider until Chapter 12.5 (which is the standard 
byzantine agreement problem) does not allow to use signatures. Therefore, if a 
node on a grid does not receive a message from another node directly, it cannot 
verify if the forwarded message is correct. So the nodes can change the values 
of other nodes without pretending to be other nodes. 

 
● Assignment 5, 1.2 b: why is it 3(w+h) ? And when is it doable? (because the master 

solution is around 2 times w + h. 
○ The idea is that you would move vertically up, down and up, and horizontally you 

would move to the right, the left and the right again. The bound should hold for 
larger values of w and h.  

 
● Exercise 5) 1.2 Synchronous Consensus in a Grid - Crash Failures: question b. The 

solution states that the largest l you can achieve is 27 by arranging the faulty nodes in 
the diagonals. I found 34 using this strategy : cf image below. What am I missing here? 

○ You are only allowed to crash 13 nodes in the task. 
 

 
 

Chapter 12: Broadcast & Shared Coins 



● I am having a hard time seing the difference between best-effort broadcast and reliable 
broadcast. Best-effort broadcast ensures that a message that is sent from a correct node 
u to another correct node v will eventually be received and accepted by v. So, for me, at 
some point, all correct node will accept message m (as it is a broadcast) : so it is a 
reliable broadcast. What am I missing ? 

○ You are missing the Byzantine nodes in your system. Assume you have a 
byzantine nodes in the system: with reliable broadcast, this node would be 
detected if it sends different messages to different correct nodes, but with best 
effort broadcast this node will not be detected. 

 
● Could you explain the third paragraph of the proof of the Theorem 12.24 on Page 109 

(Algorithm 12.23 solves asynchronous binary agreement for f < n/2 crash failures.) 
○ The main Idea is to just read all stored values. In Algorithm 12.10, all such values 

were written on the blackboard. In this algorithm, each of the “written” values is 
saved at at least n-f correct nodes. If f of these nodes crash, only n-2f nodes are 
left that have this value. In order to read it, you would request all nodes, and 
since f might have crashed, you wait for n-f responses. The only question left is 
whether the nodes which gave you a response (n-f nodes) intersect with the set 
of nodes which hold the value (n-2f nodes). The calculation in the lecture notes 
shows that there is an intersection and that the node will therefore see all written 
values.  

 
● Could you tell me why the expected round is 5 on Page 112?  

○ The Ben-Or algorithm in the synchronous case consists of two rounds: in the first 
round, the input values of the current round are exchanged, and in the second 
round, the shared coin is computed. These two rounds are repeated until 
agreement is established. It might be that all correct nodes finish after 
exchanging their values in the very first communication round of the algorithm 
(due to all-same-validity). If this is not the case, a shared coin round is needed, 
and another “first round” of the Ben-Or algorithm. This gives the described 
formula. 

 
● Solution to assignment 5, 2.3 b), the third last line, I don't understand "Since the intervals 

I of the nodes do not intersect in any value", what is the interval I? 
○ I is the local interval of a node in Algorithm 2. Since each correct node can wait 

for at most n-f values, it will not receive 2f correct values in the worst case, and f 
byzantine values instead. 3 of the nodes will have a local interval I = 
{-3,-3,-3,-2,-1,0,1}, 3 nodes will have I =  {-1,0,1,2,3,3,3}, and one node will only 
receive correct values, i.e. I = {-3,-2,-1,0,1,2,3}. If each of the nodes removes 2 
largest and smallest values, you get the new inputs as described in task 

  
● Chapter 12: Ich verstehe im Algorithmus 12.17 in Zeile 5 die Formulierung «…but not 

msg(v)…» nicht. Ich dachte zuerst, dass wäre ein Fehler und es muss v statt msg(v) 



stehen. Doch dann sah ich, dass etwas Ähnliches in Zeile 6 des Algorithmus 12.10 
vorkommt. Was für eine Rolle spielt das für den Algorithmus? Eine weitere Frage gerade  
zu dem: Wieso terminiert er (Algo 12.17) nicht? Das steht später im Remark. 

○ Line 5 of algorithm 12.17 says “but not msg(v)”, this is the reason: If a node has 
received msg(v), it has already send an echo for this message in line 3 of the 
algorithm. The second if-clause captures the case where a node has not received 
a message directly, but many echoes for this message instead, such that it can 
be sure that enough correct nodes saw the same message. 
Algorithm 12.17 does not terminate, since the messages can be arbitrarily 
delayed and some participating nodes in the broadcast might crash or be 
byzantine.  You can think of it as the normal broadcast routine in the 
asynchronous case: if we assume that a node waits n and not n-f messages, this 
node might never terminate, because it might not receive the last f messages it is 
waiting for. 

 
● Ex. 5, 2.3 : question b & c: byzantine are able to delay the arrival of 2 values. But can 

they delay everything and block the execution ?  When trying to find how many 
byzantine we can tolerate, we show that with 2 byzantine that can delay it does not work 
(in case of 9 nodes). The result of question c is f < n/4, so in our case, it makes f=2 
possible. I also did not quite get the proof. The nodes are only supposed to remove the 
largest and the smallest f values (so for two nodes : one large, one small. What happens 
for 3 ?), so why does it considers 2f + 2f ? It should only be 2f ? Or does it considers the 
possibility to delay? 

○ The correct result of question c) is f<n/5, so it does not contradict the counter 
example from task b).  
Byzantine nodes can delay all messages arbitrarily long. Any correct node can 
only wait for n-f messages in the asynchronous case (otherwise byzantine nodes 
might decide not to send any messages at all, and the correct node will wait 
forever). However, in the worst case, the correct node will not receive f correct 
values, because these were delayed by the byzantine scheduler. Moreover, it will 
have f byzantine values among the n-f received values. In total, any correct node 
can expect to receive at most n-2f correct values.  From the received n-f values, 
each node must remove f too large and f too small values, since these values 
might be arbitrarily large/small. This way, each correct node removes at least 
another f correct values.  
In total, each node removed 2f correct values. What we need to take into account 
now, is that the views of the correct nodes might differ. The nodes might also 
receive different byzantine values, and not know about that since they do not 
broadcast the values reliably. This is the reason, why any pair of correct nodes 
intersects in (n-f) - 2f - 2f = n-5f values.  

 
Chapter 13: Consistency & Logical Time 



● I did not quite get how you count the number of consistent snapshot (mu) (even with the 
exercise 6 - 2.2, there only is the final result without details. If it is too difficult to explain 
the general idea, can you explain the solution of the 6 - 2.2, only the mu part, not mus 
and muc) 

○ This is a combinatorial problem: Given two threads with a message sent between 
them, the number of consistent snapshots before the message was sent is equal 
to all possible combinations of partial executions. Let's say we have two threads 
A and B with one message sent from B to A. The number of consistent snapshots 
is equal the number of partial executions of A before the message was received 
times the number of partial executions of B (all partial executions of B are 
possible since after sending the message B can continue the execution before A 
receives the message). To this you add the number of partial executions of A 
after the message was received times the number of partial executions of B after 
the message was send, which is the number of consistent snapshots after the 
message was received. (No execution also counts as partial execution). This can 
be generalized to any number of messages exchanged between the two 
processes by summing all combinations of parts where the threads can act 
independently where for each combination the number of consistent snapshots is 
(n+1)*(m+1) where n is the number of independently executable instructions in 
thread A and m is the number of independently executable instructions in thread 
B and the +1 counts the empty set partial execution. 

● Could you explain the proof of Lemma 13.13 on Page 117? (Sequentially consistent and 
quiescent consistency do not imply one another.) 

○ This proof relies on the formal definitions. The first part uses the fact, that 
sequential consistency does not require the effect of two operations to be in the 
same order as the time of the operations, if the operations are on different nodes. 
Imagine a server with two clients: each client sends a request for an operation to 
the server, client A before client B. The operations on the clients are done as 
soon as the request is send, however, the server might choose to reorder the 
requests. The system is sequentially consistent, since each client doesn’t care 
whether its request got processed first or second, but not quiescent consistent 
consistent if the server executes request B before A since the send operation of 
A terminated before the send operation of B started. 
The second part relies on the fact, that if there is no quiescent point, any 
execution is quiescent consistent, even one that is not sequentially consistent.  

 
Chapter 14: Time, Clocks & GPS 

● 14.6: Lower Bound Proof of Lemma 14.41: Why does the Clock speed up? And how to 
you get to the clock skew of 1? 

○ Since v_1 runs faster than v_2, t_1 > t_2. Therefore, v_2 speeds up in the sense 
that it will continuously make forward time jumps whenever a message from v_1 
arrives. The same holds for all neighbors. The clock skew of 1 assumes a 



worst-case message delivery time, which is 1 according to the section 
introduction. 

● Ex. 6, 1.2 : question b. Isn’t it more likely to be in (4,4) ? I drew it, set up the different 
points and it seems more likely to me to be in (4,4) : cf. image below. 

○ Algebraically: 
r_(4,4) = sqrt((2-4)^2+(1-4)^2) - sqrt((6-4)^2+(6-4)^2) - 1 = sqrt(13) - sqrt(8) - 1 = 
-0.22 
r_(2,6) = sqrt((2-2)^2+(1-6)^2) - sqrt((6-2)^2+(6-6)^2) - 1 = 5 - 4 - 1 = 0 
So the *magnitude* of the residual for (2,6) is smaller. 

○ Geometrically: 
The point (2,6) is at a distance 4 to A and distance 5 to B, which exactly matches 
the observed delay difference of 1 km. 

 

 
 
Chapter 15: Quorum Systems 

● Can you explain again the notion of load (how do you find it when you face an example, 
with or without access strategy) ? For example, I am not able to explain why the load is s 
in the exercise 1.3 - question a (assignment 7) 

○ The load of a quorum system is the highest access probability of any node using 
the access strategy that gives the lowest maximum access probability of any 
node. 
If you know the access strategy, you can calculate the access probability for each 
node. You check in which quorums this node is and how often they get accessed. 
Then you select the node with the highest load. 
If you don’t have the access strategy, you have to find the access strategy that 
minimizes the maximum load. 
In exercise 1.3 each access to a quorum system causes an access to s nodes. 
Therefore it is best for the load to distribute these accesses evenly among all 
nodes such that the load is the same for all. 



● table 15.5, why in the majority quorum system, the load of the busiest node > 1/2 (I can't 
figure it out directly from the definition of load)? 

○ In the majority quorum system more than half of the nodes have to be accessed 
each time, therefore there has to be at least one node that is accessed more than 
½ of the times 

● Theorem 15.6, the first paragraph I understand "Each time a quorum is accessed, at 
least one node in Q is accessed as well", but why this yields a lower bound of 
Lz(vi)>=1/q? And the second paragraph I understand "at least q nodes need to be 
accessed", but I don't understand why Lz(vi )>=q/n. 

○ Each time a quorum gets accessed, at least one node in Q is also accessed. If Q 
consists of only one node, this node has to be part of every quorum and its load 
is therefore 1. If Q has more nodes, these accesses can be better distributed 
among the q nodes of Q. The lowest possible load for the nodes in Q is therefore 
1/q.  
The q accessed nodes for each quorum access can ideally be equally distributed 
among all nodes, achieving a load of q/n. Therefore, at least one node (of V?) 
has to have a load of at least q/n. 

● Assignment 7, 1.3 a), in the solution, why intuitively “Summed up over all servers we 
reach a total load of s”? And I don't understand the formal proof in the next question. 

○ In exercise 1.3 each access to the quorum system causes an access to s nodes 
as each quorum contains s nodes. Therefore it is best for the load to distribute 
these accesses evenly among all nodes such that the load is the same for all. 
The equation in the solution of b) shows that the sum of the load of all nodes has 
to be s. To minimize the maximum load of any node, we have to distribute this 
load evenly among all nodes, such that each node has load s/n which can be 
achieved with a balanced access strategy. 

 
Chapter 16: Eventual Consistency & Bitcoin 

● consider that at some point two miners found a block at the same time, then the 
block-chain will fork. 

○ am I right that both the blocks will be broadcasted to all the other nodes, and all 
nodes will have this fork to eventually agree on the longest path? 

○ if 1.1 is true, consider that in the next round some miner is mining the next block, 
where is this block supposed to be inserted: so far both the branches have the 
same length. Do the miners pick up the branch to mine on randomly? 

■ No. Bitcoin is a peer-to-peer network, and some nodes will see some 
updates before others, etc. Some nodes and miners will see fork prong-A, 
and some will see prong-B. The miners who see a specific prong will 
update their UTXO set with the block from that prong, and will make that 
block the parent block to the block that they are currently mining. A full 
node will just update its UTXO set similarly. If they see another block in 
the future which is longer, they will undo the previous updates to the 
UTXO set and make updates as per the longer chain.  



 
Miners who see both prongs together can chose to extend whatever 
prong they want. But there is a subtle catch here. The protocol rules say 
that the chain with the largest amount of work is the canonical chain. So, 
even if two chains are of equal length (height), they might have different 
total proof of work. Peter Wuille answers this question here: 
https://bitcoin.stackexchange.com/questions/5540/what-does-the-term-lon
gest-chain-mean . The comment by Daira Hopwood on Wuille's answer 
specifies exactly how the "work" of a chain is calculated. 

● Assignment 7, Question 2.4 a), why transactions are instantly finalized? We don't need 
to wait until that a block containing this transaction has been mined? 

○ The opening transaction of a payment channel that creates the multi-sig output is 
already in the blockchain and is finalized. So, the source of the funds is secure. 
Now, the payment channel is updated by exchanging these commitment 
transactions that split the opening balance between the two parties, and is 
always signed by each party in such a way that if the channel were to be closed 
right now, both parties will get their current share of the opening transaction 
value. So, in this sense, the moment you have your version of the commitment 
(channel update) transaction, you can be sure that the money is yours, because 
you can always submit it to the Bitcoin network and get your share. It's true that 
this transaction has to be finalized in a mined block on the main blockchain, but 
there is no risk of double spend attacks here, because the multisig opening 
transaction output cannot be spent soley by the counter-party. 

● Assignment 7, Question 2.4, c) the question says that "Bitcoin also allows to define 
timelocks relative to the time the spent outputs were created." What does this mean? 

○ Bitcoin allows you to specificy outputs that can be spent only after some unix 
timestamp, or after a known number of blocks have been mined after the block in 
which the said transaction was mined. In that sense, it allows both “absolute” 
timelocks, and “relative timelocks”. Google for words like cltv, csv, nlocktime, etc. 

 
Chapter 23: Game Theory 

● assignment 11, 1.3 : what is the cost of accessing the file in case your demand is not 1 
and you have to go through several nodes ? Your demand * (sum of costs) or do you 
have to consider that the middle nodes asked first and consider their demand 
(something like costv*demandv + costw*demandw). In the first example I thought that 
the only NE was (1,0,0) because the cost for w if u caches is 5/6…  

○ The model in short again: Every node i caches or does not cache (Y_i = 1 or 0). If 
it caches, its’ cost is \alpha_i, otherwise it’s c*d_i where c is the length of the 
shortest path to a node that caches. The demand of other nodes, or any ordering 
does not come into play. 

○ “the cost for w if u caches is 5/6…”: please verify that the cost for w if only u 
caches is 8 * ⅓ > \alpha_w = 2 

○ There is a typo in the solution sheet: D_w = {v  ̶u̶  }, sorry for the confusion. 



 
Chapter 24: Distributed Storage 

● What is the motivation of k in the algo 24.1 "Consistent Hashing", instead of just having 
one specific hash function in use? 

○ If we use k=1 then every item will be stored exactly once. If we want to store it 
more often we use a larger k.  

● Can you quickly come back on DHT, I’m having a hard time understanding it. 
○ The idea is that we have machines that can “move around” in the hypergraph, or 

in other words, change their neighbourhood. This is necessary if a very high 
number of machines is constantly failing. If we simply assign one machine to a 
node of a graph (e.g., 8 machines to the 8 corners of a 3D cube), then the graph 
can be “broken” pretty quickly. If we now just assign multiple physical machines 
to each node of the cube, the graph is still easy to be broken by an attacker, 
because she just needs to target a single corner of the cube. In the DHT (the 
virtual hypercube example in the script), the neighbouring nodes can help the 
node under attack by “sending” over machines. This makes it much more robust, 
i.e., more machines can fail in a worst case manner before either data is lost or 
the hypergraph becomes partitioned into subgraphs that cannot communicate 
anymore.  

● solution of assignment 11 2.3: I do agree with the master solutions, but since it is written 
in the exercise that the iterative hashing method is used in practice as well ("There are 
several constructions for these hash functions, the most common being iterative hashing 
and salted hashing."), there must be a benefit for choosing it over the salted hashing, 
isn't it? But anyway, the question is actually more about pro/cons of the two different 
approaches. 

○ An example of where iterative hashing is useful is for searching substrings in a 
text. Computing the hashes of, e.g., “hall” and “allo” is done consecutively, and 
since only one character changes, this can be done in constant time with iterative 
hashing. This can significantly speed up the search. Also see 
https://en.wikipedia.org/wiki/Rabin%E2%80%93Karp_algorithm  

 
Chapter 25: Authenticated Agreement 

● Let's say View Change occurred, so the algorithm 25.22 is being executed. If I 
understand the lecture right, the Pb set contains ALL prepare certificates the node b has 
collected from the beginning of time (since the system was started). With this 
assumption I don't understand the protocol and see several contradictions later on: 

○ Alg. 25.22 Remark: "It is possible that V contains a prepared-certificate for a 
sequence number s while it does not contain one for some sequence number s` 
< s) - why? V is a collection of Pb's from 2f+1 nodes, and for each node Pb 
contains ALL certificates for the entire time of the system operation, so why can 
some seq. numbers be missed? No, Pb contains all the prepared certificates that 
only b has collected and not necessarily all the prepared certificates collected by 
every correct node. Due to asynchrony, it could happen that a correct node ‘u’ 

https://en.wikipedia.org/wiki/Rabin%E2%80%93Karp_algorithm


gathers a prepared certificate for s and another correct node ‘v’ gathers a 
prepared certificate for s’ < s. Then, the view-change messages from the correct 
nodes in the set V may not contain the view-change message from ‘v’. 

○ If V indeed contains all certificates "since the system was started", then all 
possible (s, v) with s < s^max will qualify for the condition of the Alg. 25.23, line 2, 
so all pre-prepare messages (with all (s, r) starting 0 to s^max) will be added to 
O. See answer above. 

○ I think something already went wrong in my intuition, since if O contains all 
pre-prepare messages, everything further is completely meaningless - the 
backups will just execute all requests from the beginning of time again ;) Again, 
see answer above.  

● For the view change protocol, why we need the set O? O may contain the pre-prepare 
messages for requests executed in view v (algorithm 25.23, line 2), so since they are 
already executed, why we need them in the new view and execute them again (algorithm 
25.24, line 5)? And why we have to add null-request for the s' which is smaller than s? 

○ The set O may also contain pre-prepare messages for requests that have not 
been executed, since it could happen that a correct node collected a prepared 
certificate but triggered the view change before it could commit. Alg 25.24, line 5 
ensures that these prepare-certificates that could not be executed in the previous 
view are executed in the new view. It could also happen that a request is 
re-executed but that is not a problem for correctness as long as every correct 
node (re-)execute the requests in the same order. One could optimize this away 
by including snapshots, but the lecture notes present a simplified version only. 
 
The null-request is a stand-in for no-operation and the primary p must sign the 
message so that the nodes agree later to do a no-operation for the corresponding 
sequence number. 

● Assignment 12, 1.1 d), why omitting prepared-certificates for requests that no correct 
node executed cannot harm correctness of the system? The solution to c) is just an 
example, we could have a request r which some node collects a prepared-certificate of it 
but no nodes executed it. If the prepared-certificate for this request is omitted, then in the 
new view we still will not execute it, why it's not a problem? 

○ It’s not a problem since for correctness we only need to ensure that requests are 
executed in the same order by every correct node and not that every request for 
which a prepared certificate is collected is executed. 

 
Chapter 26: Advanced Blockchain 

● Def 26.9 : How exactly do you find weights ? How do you know the number of tree 
descendant of a ? 

○ Short answer: You construct the tree recursively and count the descendants. 
○ Long answer: Given a block b, we look at all blocks reachable from it 

(dag-ancestors). 
(Forgot to dash one edge...) 



 
 

Order the references for other blocks just as we are now doing for b, and each 
block becomes a tree-child of the first reference. 

 
Tree edges are steady, and non-tree edges are dashed. 

 
 

Compare b’s parents. Below you have the number of tree-descendants written for 
some blocks (in colour). 

 



 
 

g has 7 tree-descendants and h has 1, so gamma is the last reference of b. e has 
3 and d has 2, so beta becomes the first reference, alpha second, and gamma 
third. 

 

 
 
Unknown Chapter 

● Was bedütet das omega(D)? 
○ O-notation: Complexity is at least on the order of D. 

(https://en.wikipedia.org/wiki/Big_O_notation#The_Knuth_definition) 


