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1 piChain and PBFT

Quiz

1.1 PBFT: basics

a) According to Lemma 25.18, it is impossible that two prepared-certificates for the same
sequence number are gathered within the same view (not even at different nodes). Therefore,
once a node has a prepared-certificate, it can be sure that no correct node will execute a
different request for the same sequence number.

b) The new primary has to send around the new-view-certificate V; that certificate has to
be valid and the set of pre-prepared-messages O has to be constructed validly from V
in the way specified by the protocol. Since V already determines the content of O and the
view-change-messages in V are signed, correct replicas can rely on O if the above conditions
hold.

c) Not necessarily. It is possible that some node u collected a prepared-certificate for a triple
(v, s, r), but as soon as u collected the prepared-certificate, a view change happened. In
that case, no correct node can have executed that request yet, but u’s view-change-message
could still end up in the set V of the new-view-message for the next view.

d) The proof of Theorem 25.25 shows that if a request was executed by a correct node, then a
prepared-certificate will end up in V. If we take the contrapositive of that statement, we find
that if there is no prepared-certificate for a request in V, then no correct node has executed
that request yet. Omitting prepared-certificates for requests that no correct node executed
cannot harm correctness of the system.

Basic

1.2 PBFT: we need the phases of the agreement protocol

a) Backups start their faulty-timer after they receive a request. If backups do not forward
requests to the primary, then a faulty client could just send requests to the backups, and the
backups’ faulty timers would permanently keep expiring, inducing view change after view
change.

A byzantine client could make sure to send a request to a backup even without knowing
which node is the primary by simply sending distinct requests to all nodes; all but one node



will be backups, and all of their faulty-timers would start running for requests that the
primary has never seen and for which the primary can therefore not start the agreement
protocol.

b) Lemma 25.18 implies that two correct nodes cannot agree to execute different requests
within a single view, and the proof does not rely on nodes waiting for commit-messages, so
this Lemma remains intact even with the alteration made in this exercise.

However, the commit-messages are important for the view change protocol to maintain safety
across views, which we can see in the proof of Theorem 25.25. Consider the following sequence
of events:

1. Node u collects a prepared-certificate matching (v, s, r), and directly executes r. No
other node has seen a prepared-certificate yet, and a view change occurs at this moment.

2. The new primary p′ of view v′ > v collects 2f + 1 view-change-messages, and u’s
message is too slow to be included. p′ thus does not add a pre-prepared(v′, s, r, p′)p′ -
message to O.

3. In the new view v′, correct nodes (with the “help” of byzantine nodes) run the agreement
protocol for (v′, s, r′) for some r′ 6= r. As soon as correct node w 6= u collects a prepared-
certificate matching (v′, s, r′), node w will execute r′ with sequence number s.

With this, u will execute r with sequence number s, and w will execute r′ 6= r with sequence
number s.

If s < sVmax (cf. Algorithm 25.23), then r′ will be null. However, if s > sVmax, then r′ can
be a distinct non-null request.

Advanced

1.3 PBFT: multiple prepared-certificates for the same sequence num-
ber!? (How does it happen)

In Quiz question c), we saw that a correct node can collect a prepared-certificate that will not be
included in a new-view-message. Working from this insight, we can imagine the following sequence
of events:

1. Only correct node u collects a prepared-certificate for (v, s, r).

2. A view change to view v+1 happens, and the prepared-certificate that u collected for (v, s, r)
is not included in the view change.

3. Correct node w collects a prepared-certificate for (v + 1, s, r′) for some r′ 6= r.

4. A view change to view v + 2 happens. Both prepared-certificates are included in the
new-view-message.

1.4 Authenticated Agreement

a) We can do roughly the same as we did in Algorithm 25.2, but for multiple values in parallel.
Every backup will be collecting messages for every value they hear about. If a correct node
gathered agreement for multiple values (or for no values) after f + 1 rounds, then it knows
that the primary must be faulty. The new algorithm can be seen in Algorithm 1.

b) The proof is very similar to the one in the script, so we will only give a rough sketch of how
to adapt it here:
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Algorithm 1 Byzantine Agreement with Authentication

Code for primary p:

1: x← input value of p
2: broadcast value(x)p
3: decide x and terminate

Code for backup b:

4: A← ∅
5: for all rounds i ∈ {1, . . . , f + 1} do
6: for all messages value(x)u that b received this round do
7: Vx ← {all messages value(x)v that b received since round 1}
8: if |Vx| ≥ i and value(x)p ∈ Vx then
9: A← A ∪ {x}

10: broadcast Vx ∪ value(x)b
11: end if
12: end for
13: end for
14: if |A| = 1 then
15: decide on the single element in A and terminate
16: else
17: decide “sender faulty” and terminate
18: end if

• If the primary is correct, then he only sends one message value(x)p in the first round,
and all correct backups decide on x after round f + 1.

• If the primary is byzantine, then there are these cases:

1. No correct node ever adds a value to A, then all correct nodes output “sender
faulty”.

2. (The proof of this case is analogous to correct nodes deciding on 1 in the proof in
the script. Check the proof in the script if some detail here is unclear.)
At least one correct node adds at least one value x to A. For any value x that
gets added to A by some correct node, the first time a correct node adds x to A
necessarily happens in a round i < f + 1, and all correct nodes will have x ∈ A in
round i + 1 ≤ f + 1. Since this holds for all x, all correct nodes have the same A
after round f + 1.
If A contains exactly one value after round f + 1, then all correct nodes decide on
that value, otherwise all of them decide on “sender faulty”.

Mastery

1.5 PBFT: multiple prepared-certificates for the same sequence num-
ber!? (How can we fix it)

Notice that step 2. of the solution to Exercise 1.3 can only occur if the prepared-certificate that
u collected was for a request that no correct node executed, see the solution to Quiz question d).
This means that we can ignore that prepared-certificate without worrying about it.

On the other hand, for every request that was executed by some correct node, a prepared-
certificate for it will end up in every subsequent new-view-message, see the proof of Theorem 25.25.
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From these considerations, we define the protocol to do the following in Algorithm 25.23: if
multiple prepared-certificates for sequence number s end up in V, then let v∗ be the highest view
number for which a prepared-certificate (v∗, s, r) exists in V. The primary p of new view v will
include a pre-prepare(v, s, r, p)p-message in O and ignore all other prepared-certificates for s.
The claim we now make is this:

Theorem 1. Let v∗ be the maximum view number of any prepared-certificate for s in V. If the
V-component of a new-view-message contains multiple prepared-certificates for the same sequence
number s, then due to Lemma 25.18, there is at most one such prepared-certificate per view v∗.
While constructing O in Algorithm 25.23 during a view change, let the primary of the new view
only include a pre-prepare-message for the prepared-certificate matching s with the highest view
number among the prepared-certificates for s in V (this is the latest prepared-certificate for s).
Then, if some correct node executes a request r with sequence number s in view v, then the latest
prepared-certificate for s in V during every view change after v will match (s, r).

Proof. If no new-view-message ever contains two prepared-certificates for the same sequence num-
ber s but different requests r′ 6= r, then the Theorem is already proved in the proof of Theo-
rem 25.25 in the script. If no correct node ever executed a request at some sequence number s,
then there cannot be a problem with correctness at s either. Thus, assume that a correct node
executed request r with sequence number s in view v, and some subsequent new-view-message
contains multiple prepared-certificates for s. We prove the theorem by induction, showing that
once a correct node executed r with sequence number s in view v, then all prepared-certificates
for sequence number s that nodes collect in later views will match (s, r).

Base case: Consider the first view v′ > v in which the new primary p′ sends a valid new-view-
message. Since correct backups reject invalid messages, no correct node entered any view v† with
v < v† < v′, so no prepared-certificates were collected in any such view v†. Thus, v is the highest
view number for which any node collected a prepared-certificate for s. As shown in the proof of
Theorem 25.25, a prepared-certificate matching (v, s, r) will be in V in the new-view-message for v′.

Induction step: Consider a view change from v′ to v′′ with v < v′ < v′′ and assume that up to v′,
the latest prepared-certificate in the V-component of new-view-messages for s has matched (s, r).
Because backups respond to O in Algorithm 25.24 before responding to any other pre-prepare-
messages, nodes can only have collected a prepared-certificate for s with the same r during view
v′. Thus, during the view change from v′ to v′′, the latest prepared-certificate for s that is in V
will match (s, r) as well.

Notice how this clarifies the answer to Exercise 1.3: it can happen that multiple prepared-
certificates for the same sequence number s exist in a new-view-message. However, if the new
primary always picks the latest such prepared-certificate to react to when constructing O, then
that guarantees that once a request r was executed at s by any correct node, then no node will
ever be able to gather a prepared-certificate for (s, r′) with r′ 6= r. Thus no correct node will ever
execute anything but r at sequence number s.

2 Advanced Blockchain

2.1 Randomness from Previous Block

The validator who has been assigned the hash range starting from 000000... to say, 000000FFFFFF...
has incentive to construct a block such that the hash of that block will land in the their range of
hash. In other words, they control the randomness of the process. This way, they will iterate over
many combinations of block content till they find the right block that will result in a specific hash
that is favorable to them in the next round. QED.
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