
Chapter 1

Introduction

In designing an operating system
one needs both theoretical insight
and horse sense. Without the
former, one designs an ad hoc
mess; without the latter one
designs an elephant in best
Carrara marble (white, perfect,
and immobile).

Roger Needham and David
Hartley [NH69]

Welcome to Computer Systems! This is a brand-new course, so expect sur-
prises, enthusiasm, experimentation, and occasional glitches as we try new ideas
out. We’re going to be covering a wide range of topics in this course, including
(in no particular order):

• The operating system kernel

• Processes and threads

• Shared-memory interprocess communication

• Message-passing, client-server communication, and remote procedure call

• Scheduling

• Virtual memory and demand paging

• Files and file systems

• Performance analysis of computer systems

• Virtualization and virtual machine monitors

• Consensus and agreement protocols

• Time synchronization

• Logical time

• Blockchains and cryptocurrencies

• Byzantine fault tolerance

• Reliable distributed storage

1

2 CHAPTER 1. INTRODUCTION

– and possibly others . . .

Definition 1.1 (Definition). . The script for this course is going to have a
lot of definitions. They are all true, but note that they are not exclusive: a
definition of a term in this refers to the meaning of the term in the context of
the course (see Naming, chapter 2).

Remarks:

• On the rare occasions where we adopt a somewhat idiosyncratic defi-
nition, we’ll remark on it below the definition.

Definition 1.2 (Computer Systems). . Computer Systems (sometimes short-
ened to just “Systems”) is the field of computer science that studies the design,
implementation, and behaviour of real, complete systems of hardware and soft-
ware. Real means that anything that can happen in the real world, in a real
deployment, is within the scope of study. Complete means the ideas we intro-
duce have to make sense in the context of a whole system (such as your phone,
or a Google datacenter, or the totality of Facebook’s infrastructure).

Remarks:

• This course is being taught by Timothy Roscoe and Roger Watten-
hofer, with help from lots of assistants. We come from different back-
ground: the more theoretical and the more practical ends of computer
systems, and it will probably become clear during the course which of
us is which. However, this mixture is deliberate, and hopefully makes
the course more interesting and fun (including for us).

• Computer Systems itself has this mixture of theory and hard prag-
matism. In some cases, the subject of computer systems sometimes
runs considerably ahead of the applicable theory, which comes along
later to formalize existing ideas. In others, systems people borrowed
or stole theoretical concepts from other fields of computer science.
In a few cases, the theory and the implementation (and deployment)
actually did evolve together at the same time.

• Systems is thus as much an approach as a subject area. It’s about
embracing the whole chaotic mess of reality and avoiding idealizing
problems too much, but also using the right theoretical concepts to
approximate reality in useful ways. This is why really good Systems
people are the most highly prized technical workers (even above ma-
chine learning experts) in large tech companies and other organiza-
tions [Mic13].

• This course is also a mixture of traditional operating systems, tra-
ditional distributed systems, and a bunch of newer concepts (like
blockchain). This is also deliberate: in practice, the boundaries be-
tween all these are changing right now, and at least to us it makes
perfect sense to mix them up and treat them as a single subject.

1.1. FORMAT 3

1.1 Format

We’ll run the lectures a little bit differently to what you may have experienced
in, e.g., Systems Programming.

We will distribute a script before each lecture, and you should read this in
advance.

For the most part, there won’t be any slides. Instead, we’ll explain key
concepts or examples on a whiteboard or via a laptop interactively. You should
turn up to the lecture with questions that you would like us to cover. This
is sometimes called a “flipped classroom” model: it’s intended to be highly
interactive, and mostly driven by the topics you’d like to go into in detail,
rather than a pre-prepared set of slides. Since the core material is covered in
the script, we have the freedom to talk about what is most useful in the lectures.

You might be wondering if we have objections to you reading email, watching
YouTube, using Twitter, WhatsApp or SnapChat, or perusing Instagram or
Facebook during lectures.

Remarkably, people who really understand computers, psychology, and edu-
cation have actually looked into this and done Real Science, randomized trials
and all. The results are quite scary [HG03, Fri07, LM11, WZG+11, ARWO12,
SWC13, MO14, CGW17, RUF17]. It turns out that not only does using a lap-
top, phone, or tablet in classes reduce your academic performance and grade,
but there’s a passive effect as well: using a mobile device in a lecture low-
ers the grades of other people around you, even if they’re not using the device
themselves.

We strongly recommend going offline for the 2 × 45 minutes of each lecture.
If you are desperately waiting for that key Instagram photo to show up, it’s now
been established scientifically that it’s nicer to your fellow students if you just
leave the lecture or not turn up instead.

1.2 Prerequisites

This is a 3rd-year elective course in the ETH Zurich Bachelor. As a result, we
assume you’ve completed (and passed) the following courses:

• Design of Digital Circuits

• Parallel Programming

• Systems Programming and Computer Architecture

• Formal Methods and Functional Programming

• Data Modelling and Databases

• Computer Networks

We’ll build on the concepts in these courses. Given the format of the course,
and the compact nature of the notes we’ll distribute beforehand, it’s best to be
pretty familiar with this prior material.

4 CHAPTER 1. INTRODUCTION

1.3 Grading

We’ll have an examination in the Prüfungsession early next year. The course
grade will be based on this examination. Examinable material will be anything
in the script, plus whatever is covered in these interactive sessions.

In addition, an additional quarter-point (0.25) grade can be obtained as a
bonus by creating and submitting to us an original exam question including a
(correct) solution and grading scheme for one of the topics in this course.

We reserve the right to use your question as inspiration in the actual exam
. . .

Please follow the following guidelines:

• You must submit your question before the end of semester.

• The question must be non-trivial, that is, not a pure knowledge question.

• Both the question and the solution should be as precise as possible, includ-
ing how points are awarded. Consider up to 20 points for the question.

• You must come up with your own idea. Do not try to cheat – we know
our exercise sheets and old exams, and we check material which obviously
comes from third-party sources (other books, Wikipedia, . . .). Minimal
variations of such copied questions are not acceptable either.

• Your submission should be in PDF format.

• Send your exam question to Manuel Eichelberger. Please use “[CompSys
Bonus] lastname firstname” as subject line, name your file lastname firstname.pdf

and indicate the topic of your question.

We’ll post the deadline for your question submission about two to three
weeks into the course. There will also be a second chance to submit a revised
question before the end of the course – further details will follow.

1.4 Mistakes

We expect the script for the whole course to evolve somewhat over the course
of the semester – we’ll update it based on the discussions in the class, and also
in response to any errors you find and report to us.

Please send typos, etc to the following email address:
compsys-erratalists.inf.ethz.ch

Bibliography

[ARWO12] Nancy Aguilar-Roca, Adrienne Williams, and Diane O’Dowd. The
impact of laptop-free zones on student performance and attitudes
in large lectures. Computers & Education, 2012.

[CGW17] Susan Payne Carter, Kyle Greenberg, and Michael S. Walker. The
impact of computer usage on academic performance: Evidence from
a randomized trial at the united states military academy. Economics
of Education Review, 2017.

mailto:Manuel Eichelberger <manuelei@ethz.ch>?subject=[CompSys Bonus] lastname firstname

BIBLIOGRAPHY 5

[Fri07] Carrie B. Fried. In-class laptop use and its effects on student learn-
ing. Computers & Education, 2007.

[HG03] Helene Hembrooke and Geri Gay. The laptop and the lecture: The
effects of multitasking in learning environments. Journal of Com-
puting in Higher Education, 2003.

[LM11] Sophie Lindquist and John McLean. Daydreaming and its correlates
in an educational environment. Learning and Individual Differences,
2011.

[Mic13] James Mickens. The night watch. Usenix ;login:, pages 5–8, Novem-
ber 2013.

[MO14] Pam A. Mueller and Daniel M. Oppenheimer. The pen is mightier
than the keyboard: Advantages of longhand over laptop note taking.
Psychological Science, 2014.

[NH69] R. M. Needham and D. F. Hartley. Theory and practice in oper-
ating system design. In Proceedings of the Second Symposium on
Operating Systems Principles, SOSP ’69, pages 8–12, New York,
NY, USA, 1969. ACM.

[RUF17] Susan Ravizza, Mitchell Uitvlugt, and Kimberly Fenn. Logged in
and zoned out: How laptop internet use relates to classroom learn-
ing. Psychological Science, 2017.

[SWC13] Faria Sana, Tina Weston, and Nicholas J. Cepeda. Laptop multi-
tasking hinders classroom learning for both users and nearby peers.
Computers & Education, 2013.

[WZG+11] Eileen Wood, Lucia Zivcakova, Petrice Gentile, Karin Archer,
Domenica De Pasquale, and Amanda Nosko. Examining the im-
pact of off-task multi-tasking with technology on real-time class-
room learning. Computers & Education, 2011.

Chapter 2

Naming

Naming is fundamental to how we construct computer systems, in that naming
issues (and naming decisions) pervade the design at all levels. The general
principles of systematic naming and binding of objects in computer systems are
well-established, but a surprising number of engineers are unaware of them.

That’s the reason we start with the somewhat abstract concept of naming,
before getting on to more obviously “systemsy” topics later on.

2.1 Basic definitions

Definition 2.1 (Name). A name is an indentifier used to refer to an object in
a system.

Remarks:

• This is an intentionally broad definition: a name might be a character
string, or a string of bits – in principle any concrete value. For ex-
ample, 64-bit virtual addresses are names that refer to data stored in
memory pages. Part of the point we’re trying to make in this chapter
is that the same principles apply across scenarios as diverse as virtual
addresses and web pages.

Definition 2.2 (Binding, Context, Namespace, Name Scope, Resolution). A
binding is an association of a name to an object. A context is a particular
set of bindings, and can also be referred to as a namespace or name scope.
Resolution is the process of, given a name and a context, finding the object to
which the name is bound in that context.

Remarks:

• A binding – the association of a name to an object –is a separate thing
from both the name and the object.

• For a name to designate an object, it must be bound to the object in
some context. In other words, whenever names are being used, there is
always a context, even if it’s implicit. Many misunderstandings result
from failing to recognize the context being used to resolve names in a
particular situation.

6

2.2. NAMING NETWORKS 7

Definition 2.3 (Catalog, Dictionary, Directory). A catalog, or dictionary,
or directory, is an object which implements a table of bindings between names
and objects – in other words, it is an object which acts as a context.

2.2 Naming networks

Definition 2.4 (Naming Network, Pathname, Path Component). A naming
network is a directed graph whose nodes are either naming contexts or objects,
and whose arcs are bindings of names in one context to another context. A
pathname is an ordered list of names (called path components) which there-
fore specify a path in the network.

Definition 2.5 (Naming Hierarchy, Tree name, Root). A naming network
which is a tree is called a Naming hierarchy. Pathnames in a naming hierar-
chy are sometimes called tree names. The unique starting point in a naming
hierarchy is called the root.

Example 2.6 (Unix name resolution). . A Unix filename is a pathname, but
there are a few wrinkles. The Unix file system is, for the most part, a naming
hierarchy of directories which contain references to other directories or files.

A Unix filename which starts with “/”, such as /usr/bin/dc, is resolved
using the “root” of the file system as the first context.

Alternatively, a filename which doesn’t start with a “/” is resolved using the
current working directory as the first context.

Every context (i.e. directory) in the Unix file system has a binding of the
name “.” to the context itself.

Each context also has a binding of the name “..”. This is is always bound
to the “parent” directory of the context. The root directory binds “..” to itself.

As we shall see later, a file object can have than one name bound to it, but
a directory cannot. This that the naming network is not quite a tree, but a
directed acyclic graph.

2.3 Indirect entries and symbolic links

By this stage, you may be wondering where “symbolic links” or “shortcuts” fit
it. A symbolic link is a Unix file system construct (created using ln -s) which
creates a kind of alias for a name; the equivalent facility in Windows is called a
shortcut. They are both examples of:

Definition 2.7 (Indirect entry). An indirect entry is a name which is bound
not to an object per se, but instead to another path name. The path name is
resolved relative to the same context as the one in which the indirect entry is
bound.

Remarks:

• We’ll see more about indirect entries later in the chapter on file sys-
tems.

8 CHAPTER 2. NAMING

• Indirect entries arbitrarily created by unprivileged users (Unix sym-
bolic links, for example) can complicate name resolution since there is
no guarantee that the binding will end up at an object at all, or if the
name to which the indirect entry is bound is even syntactically valid
in the context in which it is to be resolved.

2.4 Pure names and addresses

Definition 2.8 (Pure name). A pure name encodes no useful information
about whatever object it refers to [Nee89].

Remarks:

• The names we have considered so far are arguably pure names – in
particular, the only thing we have done with them is to bind them
to an object in a context, and look them up in a context to get the
object again. Some people use the word “identifier” to mean a pure
name.

• One might argue that Unix filenames are not pure, since cv.pdf surely
states that the file format is PDF, but this isn’t strictly true – it’s just
a convention in Unix at least.

Definition 2.9 (Address). An address is a name which encodes some infor-
mation about the location of the object it refers to.

Remarks:

• An IP address is not a pure name: it can be used to route a packet
to the corresponding network interface without you needing to know
anything more about the interface.

• In contrast, an Ethernet 802.11 MAC address (despite the terminol-
ogy) is a pure name: it doesn’t say anything about where to find the
NIC and all you can do is look it up in a switch’s routing table (we’ll
ignore the fact that a MAC address encodes the vendor in the first 3
octets).

2.5 Search paths

Definition 2.10 (Search path). A search path is an ordered list of contexts
which are treated as a single context; to look up a name in such a context, each
constituent context is tried in turn until a binding for the name is found, and
which point resolution terminates.

2.6. SYNONYMS AND HOMONYMS 9

Remarks:

• The Unix shell PATH variable, for example:

/home/troscoe/bin:/usr/bin:/bin:/sbin:/usr/sbin:/etc

– is a search path context for resolving command names: each direc-
tory in the search path is tried in turn to looking for a command.

• Search paths are a bit of a hack really, compared with the elegance
of the naming networks we have considered so far. They certainly
confuse questions like “what does it mean to remove a binding” – if
I remove a name from a search path context, what actually happens?
Is the first binding removed? Or all the bindings? Both are not
necessarily desirable (and might surprise an unsuspecting user). Also,
if the name being looked up is actually a path name, what happens?
Is the search path searched for the first path component, or the full
name? In general, it’s best to avoid them if you possibly can.

2.6 Synonyms and Homonyms

Definition 2.11 (Synonyms, Homonyms). Synonyms are different names
which ultimately resolve to the same object. Homonyms are bindings of the
same name to different objects.

Remarks:

• The existence of synonyms turns a naming hierarchy into a directed
(possibly cyclic) graph. For this reason, the Unix file system permits
cycles by preventing directories from having synonyms (only inodes).

• It should be clear by now that comparing two objects for identity (i.e.
are they the same object?) is different from comparing their names.
Homonyms are another facet of this: names and objects really are
completely separate entities (as are bindings).

Chapter Notes

Jerry Saltzer was one of the first to try to write down naming as a set of abstract
principles [Sal78], drawing on experience in the Multics system [Org72], which
was one of the first system design to take a highly principled approach to naming
and protection. Saltzer’s case studies in the above are paged virtual memory,
programming languages (in particular linkage, which is all about names) and
filing systems. It’s a long and subtle read, going into more depth than we can
here, but is worth reading despite its age and still relevant today.

So-called “union mounts” in a file system are also a search path context.
Plan 9 from Bell Labs introduced union mounts as an attempt to come up
with a cleaner solution to command line binaries than the Unix PATH vari-
able [PPT+93].

The design of good naming schemes, even those based on textual names, is
fraught with subtle difficulties [PW85]. Simpler schemes are usually better.

10 CHAPTER 2. NAMING

Saltzer also addressed the design of naming schemes in reference to the early
Internet architecture in RFC 1498 [Sal93]. It is interesting to judge the Internet’s
design against Saltzer’s principles.

Naming is fundamental to computer science, and is surprisingly subtle.
Throughout the rest of this course, you’ll encounter a variety of naming schemes
and resolution algorithms.

It is important to remember, however, that in human society naming is
much richer than the rather precise and limited definition we use in systems -
it’s deeply cultural and political. For a glimpse of how complex it can get see,
for example, Umberto Eco [Eco76].

Bibliography

[Eco76] Umberto Eco. A Theory of Semiotics. Advances in Semiotics. Indiana
University Press, Bloomington, Indiana, USA, 1976.

[Nee89] R. M. Needham. Distributed systems. chapter Names, pages 89–101.
ACM, New York, NY, USA, 1989.

[Org72] Elliott I. Organick. The Multics System: An Examination of Its
Structure. MIT Press, Cambridge, MA, USA, 1972.

[PPT+93] Rob Pike, Dave Presotto, Ken Thompson, Howard Trickey, and Phil
Winterbottom. The use of name spaces in plan 9. SIGOPS Oper.
Syst. Rev., 27(2):72–76, April 1993.

[PW85] Rob Pike and Peter Weinberger. The hideous name. In Proceedings
of the USENIX Summer 1985 Conference, Portland, OR, 1985.

[Sal78] Jerome H. Saltzer. Naming and binding of objects. In Operating Sys-
tems, An Advanced Course, pages 99–208, London, UK, UK, 1978.
Springer-Verlag.

[Sal93] J. Saltzer. On the Naming and Binding of Network Destinations.
RFC 1498 (Informational), August 1993.

Chapter 3

Classical Operating
Systems and the Kernel

This course is about Computer Systems, and specifically systems software. It
includes material that would traditionally be split between a course on operating
systems, and a different one on distributed systems.

Treating these as a single topic is, we think, a much more accurate picture
of reality. A good illustration of this is a basic definition of what an operating
system actually is.

3.1 The role of the OS

Anderson and Dahlin [AD14], roughly speaking, define an OS functionally :

Definition 3.1 (Operating System). . The operating system for a unit of
computing hardware is that part of the software running on the machine which
fulfils three particular roles: Referee, Illusionist, and Glue.

• As a Referee, the OS multiplexes the hardware of the machine (CPU
cores, memory, devices, etc.) among different principals (users, programs,
or something else), and protects these princpals from each other: prevent-
ing them from reading or writing each others’ data (memory, files, etc.)
and using each others’ resources (CPU time, space, memory, etc.). The
OS is basically a resource manager whose goal is to provide some kind
of fairness, efficiency, and/or predictability.

• As an Illusionist, the OS provides the illusion of “real” hardware re-
sources to resource principals through virtualization. These virtual re-
sources may resemble the underlying physical resources, but frequently look
very different.

• Finally, as Glue, the OS provides abstractions to tie different resources to-
gether, communications functionality to allow principals to exchange data
with each other and synchronise, and hide details of the hardware to allow
programs portability across different platforms.

11

12CHAPTER 3. CLASSICAL OPERATING SYSTEMS AND THE KERNEL

Remarks:

• Most older OS textbooks (which are not recommended for this course)
do claim that the OS essentially provides multiplexing, protection,
communication, and abstraction, but then go on to define it ontologi-
cally as a kernel, libraries, and daemons – we look at these components
below, but only in the context of an OS for a single, simplified ma-
chine.

• Note, however, that this definition is pretty broad in what the hard-
ware actually is. It might be a small Raspberry PI, or a robot, or
a phone, laptop, a tightly coupled cluster of PC-based servers in a
rack, or an entire datacenter – the definition still makes sense in all
these cases. That’s why we’re not separating operating systems and
distributed systems in this course.

• In this course, we’ll cover many of these scales. They have different
properties; for example, whether part of the machine can fail when
the rest keeps going (as in a datacenter or rackscale machine) or it all
fails together (as in a phone or PC). A good way to make sense of this
is the concept of a domain.

3.2 Domains

Domains are useful concepts for thinking about computing systems at different
scales.

Definition 3.2 (Domain). . A domain is a collection of resources or principals
which can be treated as a single uniform unit with respect to some particular
property (depending on the domain). Some examples:

• NUMA domain: cores sharing a group of memory controllers in a
NUMA system.

• Coherence domain or coherence island: caches which maintain co-
herence between themselves.

• Failure domain or unit of failure: the collection of computing re-
sources which are assumed to fail together.

• Shared memory domain: cores which share the same physical address
space (not necessarily cache coherent)

• Administrative domain: resources which are all managed by a single
central authority or organization.

• Trust domain: a collection of resources which mutually trust each other.

• Protection domain: the set of objects which are all accessible to a par-
ticular security principal.

• Scheduling domain: set of processes or threads which are scheduled as
a single unit.

3.3. OS COMPONENTS 13

Remarks:

• Each topic we will cover is going to be tied to some combination of
domain boundaries. Sometimes we’ll mention which ones, but it’s
always good to figure out which ones are in play.

• Domains often correspond to the assumptions the software can make
inside a domain, or the functionality the software must provide be-
tween domains. Domains also often can be expressed as invariants or
uniform properties of the units inside each domain.

3.3 OS components

A classical mainstream OS (like Unix or Windows) operates on a single ma-
chine. That’s a single coherence domain, a single unit of failure, a single admin-
istrative domain (hence hierarchical authority), and a single resource allocation
domain (centralized resource control).

Such an OS consists of the kernel, libraries, and daemons.

Definition 3.3 (Kernel). The kernel is that part of an OS which executes in
privileged mode. Historically, it has also been called the nucleus, the nub, the
supervisor, and a variety of other names.

Remarks:

• The kernel is a large part of OS in Unix and Windows, less so in L4,
Barrelfish, etc.

• While most computer systems have a kernel, very small embedded
systems do not.

• The kernel is just a (special) computer program, typically an event-
driven server. It responds to multiple entry points: system calls, hard-
ware interrupts, program traps. It can also have its own long-running
threads, but not always.

Definition 3.4 (System libraries). System Libraries are libraries which are
there to support all programs running on the system, performing either common
low-level functions or providing a clean interface to the kernel and daemons.

Remarks:

• The standard C library is a good example: it provides convenience
functions like strncmp(), essential facilities like malloc(), and inter-
faces to the kernel (system calls like open() and sbrk().

Definition 3.5 (Daemon). A daemon is a user-space process running as part
of the operating system.

Remarks:

• Daemons are different from in-kernel threads. They execute OS func-
tionality that can’t be in a library (since it encapsulates some privi-
lege), but is better off outside the kernel (for reasons of modularity,
fault tolerance, and ease of scheduling).

14CHAPTER 3. CLASSICAL OPERATING SYSTEMS AND THE KERNEL

3.4 Operating System models

There are a number of different architectural models for operating systems.
They are all “ideals”: any real OS is at best an approximation. Nevertheless,
they are useful for classifying different OS designs.

Definition 3.6 (Monolithic kernel). A monolithic kernel-based OS imple-
ments most of the operating systems functionality inside the kernel.

Remarks:

• This is the best-known model, and Unix adheres closely to it.

• It can be efficient, since almost all the functionality runs in a single,
privileged address space.

• Containing faults (software or hardware bugs) in a monolithic kernel
is hard. Recent evidence suggests that this does result in reduced
reliability.

• Monolithic kernels tend to have many threads which execute entirely
in kernel mode, in addition to user-space application processes and
daemons.

Definition 3.7 (Microkernel). A microkernel-based OS implements minimal
functionality in the kernel, typically only memory protection, context switching,
and inter-process communication. All other OS functionality is moved out into
user-space server processes.

Remarks:

• Microkernels use process boundaries to modularize OS functionality.
Device drivers, file systems, pagers, all run as separate processes which
communicate with each other and applications.

• The motivation for microkernels is to make the OS more robust to
bugs and failures, and make it easier to structure and evolve the OS
over time since dependencies between components are in theory more
controlled.

• Microkernels can be slower since more kernel-mode transitions are
needed to achieve any particular result, increasing overhead. However,
the very small size of microkernels can actually improve performance
due to much better cache locality. The debate remains controversial.

• Examples of contemporary microkernels include Minix and the L4
family. There is a myth that microkernels have never been successful.
If you use a phone with a Qualcomm processor, you’re running L4. If
you use an Intel machine with a management engine, you’re running
Minix. That’s well over a billion deployed units right there.

Definition 3.8 (Exokernel). In contrast to microkernels, exokernel-based sys-
tems move as much functionality as possible out of the kernel into system li-
braries linked into each application.

3.5. BOOTSTRAP 15

Remarks:

• Moving OS functionality into application-linked libraries is, at first
sight, an odd idea, but greatly simplifies reasoning about security
in the system and providing performance guarantees to applications
which also need to invoke OS functionality.

• Exokernel designs came out of academic research (MIT and Cam-
bridge), but found their biggest impact in virtual machine monitors:
VMware ESX Server and Xen are both examples of exokernels.

Definition 3.9 (Multikernel). A multikernel-based system targets multipro-
cessor machines, and runs different kernels (or different copies of the same
kernel) on different cores in the system. Each kernel can be structured as a
monolithic, micro- or exo-kernel.

Remarks:

• Multikernels are a relatively new idea (although, if you look back in
history, several old systems look like this as well).

• The individual kernels can be anything (or a mixture); people have
built multikernels using exokernels (e.g. Barrelfish) or complete mono-
lithic systems (e.g. Popcorn Linux). The key characteristic is the ker-
nels themselves do not share memory or state, but communicate via
messages.

• They reflect modern trends in hardware: heterogeneous processors
(making a single kernel program impossible), increasingly networked
interconnects (meaning programmers already worry about inter-core
communication explicitly), and increasingly low-latency inter-machine
networks (in other words, we increasingly need to consider a rack of
servers or an entire datacenter as a single machine). Indeed, a theme
of this course is that the boundary between “operating systems” and
“distributed systems”, always problematic, is now basically meaning-
less. They are the same topic.

3.5 Bootstrap

Definition 3.10 (Bootstrap). . Bootstrapping, or more commonly these days
simply booting, is the process of starting the operating system when the machine
is powered on or reset up to the point where it is running regular processes.

Remarks:

• When a processor is reset or first powered on, it starts executing in-
structions at a fixed address in memory. A computer design must
ensure that the memory at this address holds the right code to start
the machine up in a controlled manner.

• While this code could be the initializing code for the kernel, in practice
it is another program which sets up the hardware. This can be highly

16CHAPTER 3. CLASSICAL OPERATING SYSTEMS AND THE KERNEL

complex process for two reasons: firstly, modern processors and mem-
ory systems are incredibly complicated these days, and there is a lot
to do (potentially hundreds of thousands of lines of code) to execute
before the OS itself can be loaded. This even includes starting mem-
ory controllers: this initialization code often runs only out of cache
and initializes the DRAM controllers itself. This code is sometimes
called the Basic Input/Ouput System (BIOS), or its functionality is
standardized as the Unified Extensible Firmware Interface (UEFI).
The BIOS is generally built into the machine as Read-Only Memory
(ROM).

• The BIOS also sets up a standard execution environment for the next
program to run, so that it doesn’t need to know at compile time
the precise devices that the computer has (storage devices, network
interfaces, how much memory, etc.). This next program can therefore
be the same across a wide range of computers.

• The next program is typically the boot loader, and its job is to find
the operating system kernel itself, load it into memory, and start it
executing.

• The OS kernel itself, once it is entered, initializes its own data struc-
tures and creates the first process (known as init in traditional Unix).
Finally, it starts this new process executing, and the system is now in
a regular steady state.

3.6 Entering and leaving the kernel

Definition 3.11 (Mode transfer). . Mode transfer is the process of software
execution transitioning between different hardware processor modes.

Remarks:

• This typically involves switching between user mode (running regular
programs and daemons) and kernel mode (running the kernel). How-
ever, other modes are possible (such as with virtual machine support).

• The key goal of user to kernel mode transfer is to protect the kernel
from a malicious or buggy user process.

• The kernel is entered from userspace as a result of a procesor excep-
tion: either a synchronous trap or an asynchrounous fault (as we saw
in the Systems Programming course).

• Mode transfer to the kernel cannot be done via any kind of jump
instruction: we cannot allow a user program to start executing at an
arbitrary point in the kernel. Instead, as with faults, when a user
program executes a system call the processor starts executing in the
kernel at a fixed address, and then kernel code has to figure out the
reason for the system call based on the call’s arguments.

3.6. ENTERING AND LEAVING THE KERNEL 17

• In contrast, transfering from kernel to user mode happens under dif-
ferent circumstances: returning from a system call, creating a new
process, or switching to different process after the current process has
been interrupted.

Definition 3.12 (Execution state). . The execution state of a process con-
sists of the current values of user mode processor registers, stack pointer, pro-
gram counter, and other state such as a page table base address.

Remarks:

• When entering the kernel from user mode, the kernel must save the
execution state of the currently running process so it can resume it
later.

• The most common way of creating a new process is to create this
“saved” execution state, and then “resume” it as if it had previously
entered the kernel.

• There is one exception to this “resume” model of process control,
which we will say later when we look at communication primitives:
the upcall.

Definition 3.13 (System call). . A system call is a trap (synchronous excep-
tion) deliberately invoked by a user program to request a service from the kernel.
A system call is defined as taking arguments and returning values.

Example 3.14 (Unix write()). Consider the write() system call in Unix
(type “man 2 write” for more documentation).

write() has the following functional prototype:

ssize t write(int fd, const void *buf, size t count);

Such a call would be implemented as follows:

Algorithm 3.15 System call for write(fd, buf, count)

Procedure in user space

1: Load fd, buf, and count into processor registers
2: Load system call number for write into a register
3: Trap
4: Read result from a register
5: return Result

Execution in the kernel (the trap handler)

6: Set up execution environent (stack, etc.)
7: Read system call number from register
8: Jump to write code based on this
9: Read fd, buf, and count from processor registers

10: Check buf and count for validity
11: Copy count bytes from user memory into kernel buffer
12: Do the rest of the code for write
13: Load the return value into a register
14: Resume the calling process, transfer to user mode

18CHAPTER 3. CLASSICAL OPERATING SYSTEMS AND THE KERNEL

Remarks:

• This is very similar to a Remote Procedure Call, which we will see
later.

• The code sequences in user space and kernel that marshal the argu-
ments and return values are called stubs.

• In traditional operating systems, this code is mostly written by hand.
However, it requires care to get right, and the consequences of a bug
here can result in corruption of the kernel, or worse.

Bibliography

[AD14] Thomas Anderson and Michael Dahlin. Operating Systems: Principles
and Practice. Recursive Books, 2nd edition, 2014.

Chapter 4

Processes

The process is a fundamental concept in operating systems. In this chapter
we look at what a process is, the concept of an execution environment, how
processes are created and destroyed, and how they interact with threads. In
the next chapter we’ll look at scheduling, which is the process of picking which
process to run.

4.1 Basic definitions

Definition 4.1 (Process). A process is the execution of a program on a com-
puter with restricted rights.

Remarks:

• A process can be thought of as an instance of a program – there can
be multiple processes in a computer executing different instances of
the same program.

• A process combines execution – running the program – and protection.
An operating system protects processes (and their data and resources)
from other processes in the computer.

• A process is a resource principal : In terms of implementation, a pro-
cess bundles a set of hardware and software resources together: some
memory, some CPU cycles, file descriptors, etc.

• A process can be thought of as a virtualized machine executing a pro-
gram, albeit a machine very different from the underlying hardware.

• Processes are typically named in the system using process identifiers,
or PIDs.

• The complete software of a running computer system can be thought
as the set of running processes plus the kernel.

19

20 CHAPTER 4. PROCESSES

4.2 Execution environment

Definition 4.2 (Execution environment). The execution environment of a
process is the (virtual) platform on which is executes: the virtual address space,
available system calls, etc.

Remarks:

• The execution environment of the kernel is purely defined by the ma-
chine hardware (in the absence of virtualization). In contrast, in a
process it is defined by the user-mode processor architecture plus
whatever the kernel chooses to present to the process, for example
the virtual address space

• The set of system calls constitutes the API to the kernel, but can
also be thought of as extensions to the set of machine instructions the
process can execute. A process can be thought of (and older texts on
operating systems talk about this much more) as a virtual machine
for executing the user’s program. This machine has a processor (or
more than one processor, if the program is multi-threaded), a lot of
memory (due to paging), etc.

• The process’s virtual processor (or processors) doesn’t have a simple
relationship to the real processors that the OS kernel is managing.
However, in Unix and Windows, the process appears to have one or
more virtual processors exclusively to itself. In practice, the OS is
constantly preempting the process, running other processes, handling
interrupts, etc. Because the process is always resumed exactly where
it left off when the kernel was entered, the program running in the
process behaves as if it had the processor entirely to itself and nothing
else happened.

• Some OS designs go beyond this “resume” model. Unix also has
signals (which we will see in a later chapter) that are analogous to
hardware interrupts, except that they are generated by the kernel
(sometimes on behalf of another process) and delivered to the process
in user space as an upcall.

• Other OSes are more radical: instead of resuming a process after the
kernel has been entered, they always jump back into the process at
a single, fixed address, and let the process’ own code at that address
figure out how to resume from where it was. This mechanism is called
scheduler activations, and they even available in new versions of Win-
dows.

4.3 Process creation

How is a process created? There are a number of ways operating systems create
processes, but they boil down to one of two models.

4.3. PROCESS CREATION 21

Definition 4.3 (Child, Parent). When a process creates (via the OS) another
new process, the creating process is called the parent and the newly created
process the child.

This creates a process tree: every process in the system has a parent (except
one, the root of the tree).

Definition 4.4 (Spawn). An OS spawns a child process by creating it from
scratch in a single operation, with a program specified by the parent.

Remarks:

• Unless you’re familiar with fork() (below), this is the obvious way to
create a process.

• Windows creates processes by spawning using the CreateProcess()

system call.

• The spawn operation has to explicitly specify everything about a pro-
cess that needs to be fixed before it starts: what program it will run,
with which arguments, what protection rights it will have, etc. This
can be quite complex; on Windows CreateProcess() takes 10 argu-
ments, two of which are pointers to more (optional) arguments.

Definition 4.5 (Fork). In Unix, a fork operation creates a new child process
as an exact copy of the calling parent.

Remarks:

• Since the child is an exact copy of the parent, one process calls fork(),
but both parent and child return from it.

• The only difference between the parent and child processes is the re-
turn value from fork(): the parent gets the PID of the child it just
created (or -1 upon error). In the child, the same invocation of fork()
returns 0.

• In contrast to spawn, fork doesn’t need any arguments at all: the OS
doesn’t need to know anything about the child except that it’s an
exact copy of the parent.

• On the face of it, fork() is expensive: it involves copying the entire
address space of the parent. This is, indeed, what it used to do, but
in the chapter on virtual memory we will encounter a technique called
copy-on-write which makes fork() much cheaper (though not free).

Definition 4.6 (Exec). In Unix, an exec operation replaces the contents of
the calling process with a new program, specified as a set of command-line ar-
guments.

22 CHAPTER 4. PROCESSES

Remarks:

• exec() does not create a new process, instead it is the complement
to fork() – without it, you could not run any new programs.

• exec() never returns (except if it fails), instead the new program
starts where you might expect in main().

• Splitting process creation in Unix into fork and exec allows the pro-
grammer to change whatever features of the child process (e.g. pro-
tection rights, open files, etc.) themselves in the code between fork()

returning and exec() being called, rather than having to specify all
of this to a spawn call.

Definition 4.7 (The initial process). The initial process, often called init,
is the first process to run as a program when a machine boots.

Remarks:

• On Unix, the first process naturally cannot be forked. Instead, it
is constructed by the kernel, and given the PID of 0. PID 0 never
runs a user program; in older Unix versions it was called swapper.
Instead, PID 0 calls the kernel entry point to fork to create init,
which therefore has a PID of 1.

4.4 Process life cycle

What happens to a process after it has been created?

Definition 4.8 (Process states). Each process is said to be one of a set of states
at any point in time. Running processes are actually executing code, either
in kernel mode or in user space. Runnable (also called waiting or ready)
processes can execute, but are not currently doing so. Blocked (also called
asleep) processes are waiting for an event to occur (such as an I/O operation
to finish, or a page fault to be serviced) before they can run.

Example 4.10 (Unix process lifecycle). Figure 4.9 shows a slightly simplified
process state machine for Unix. A running process moves between kernel and
user space, but can stop running due to either blocking (being put to sleep) or
some other process running instead (preemption).

Remarks:

• A process which executes a blocking system call (like read() or recv())
enters the asleep state until the operation is ready to complete.

• A process running in user space must always first enter the kernel
(via a system call, or an asynchronous trap) before it can change to
another state.

• A process which exits (either voluntarily or otherwise) becomes a zom-
bie.

4.5. COROUTINES 23

Running
in kernel

Running in
user spacereturn

Asleep

sleep

Preempted

preempt

Zombie

exit

syscall,
interrupt

Created

fork()

deleted

Ready
schedule

wake up return

wai t

Figure 4.9: Simplified lifecycle of a Unix process

Definition 4.11 (Zombie). A process which exits is generally not removed com-
pletely from the system, but enters a state between being alive and being deleted
from the OS. A process in this state is a zombie.

Remarks:

• Zombies solve a problem. If a process which exited is completely
deleted from the system, there is no record of it left. This means that
the process’ parent cannot determine anything about it (such as its
exit code). Instead, the exiting process hangs around until its parent
asks for its exit status, and can then be safely deleted.

• In Unix, the operation for reading a process’ exit status (and thus
deleting it) is called wait().

Definition 4.12 (Orphan). A process which is alive, but whose parent has
exited, is an orphan.

Remarks:

• In Unix, orphans are adopted not by the parent’s parent, but by init,
i.e. process ID 1.

• A key role of the init process is to “reap” orphan processes by calling
wait.

4.5 Coroutines

Before we get into threads, it’s worth pointing out the variety of different ways
of expressing concurrency and parallelism.

24 CHAPTER 4. PROCESSES

Definition 4.13 (Coroutines). A coroutine is a generalization of the concept
of a subroutine. A coroutine can be entered at multiple times, at multiple points,
and return multiple times. Programming with coroutines is sometimes referred
to as cooperative multitasking.

Example 4.14. The classic simple use-case of coroutines is a pair of activities,
one of which processes data created by the other:

Algorithm 4.15 Test-And-Set

1: inputs
2: q {A queue data structure}
3: coroutine producer:
4: loop
5: while q not full do
6: i← new item
7: q.insert(i)
8: end while
9: yield to consume

10: end loop
11: end coroutine
12: coroutine consume:
13: loop
14: while q not empty do
15: i← q.remove()
16: process(i)
17: end while
18: yield to produce
19: end loop
20: end coroutine

This requires no threads, merely a different form of control flow to what you
may be used to. Coroutines are an old idea, and express concurrency (more than
one thing going on at the same time) without parallelism (actual simultaneous
execution of multiple tasks). They are the basis not only for subroutines (which
are strictly nested coroutines) but also iterators, which you might have seen in
C++ or Python, for example. However, coroutines are more general than these.

4.6 Threads

Early multiprocessing operating systems (like the original Unix) did not pro-
vide threads: each process was single-threaded. This was not a problem when
most computers were single-processor machines and programming languages
were relatively low-level. However, the model prevents a programmer from us-
ing threads as language abstractions to express concurrency in her program (as
coroutines can), and also prevents her from exploiting parallel hardware such
as multiple cores.

Definition 4.16 (User threads). . User threads are implemented entirely
within a user process (as a library or as part of the language runtime). They

4.6. THREADS 25

are sometimes known as lightweight processes, but this latter term is a bit
ambiguous.

Remarks:

• On a multiprocessor, user threads can be multiplex across multiple
kernel threads (see below) to give a process true parallelism.

• Since user threads are context switched entirely in user space, they
can be very fast.

• User threads can implement a “directed yield” to another thread, pro-
viding most of the functionality of coroutines.

• If a user thread is about to block (for example, when it is about to ex-
ecute a system call which might block the whole process), it is typical
for the thread library to intercept the call and turn it into a non-
blocking variant so another user thread in the same process can run
while the system call is serviced – otherwise, performance is severely
impacted. Indeed, one use for user-level threads is as a convenient
programming abstraction above non-blocking I/O primitives.

• This trick of intercepting blocking calls does not work, however, for
unintentional synchronous processor exceptions, in an particular page
faults. A page fault on one user-level thread will block the entire
process, since the kernel has no way of scheduling one of the other
threads (or indeed being aware of them).

Where the OS has no support for threads whatsoever, user threads are an
attractive option. However, most mainstream OSes today provide threads in
the kernel.

Definition 4.17 (Kernel threads). . Kernel threads are implemented by the
OS kernel directly, and appear as different virtual processors to the user process.

Remarks:

• This is the default model in, for example, Linux.

• Each thread is now scheduled by the kernel itself, which keeps track
of which threads are part of which process.

• Whereas a process used to be a thread of execution in a virtual address
space, in this model it becomes a non-empty set of threads which share
a virtual address space and which might also be scheduled intelligently
together.

• Each kernel thread can now block (including on page faults) without
stopping other threads in the same process.

• The kernel is now more complicated, since it has to track the relation
between threads, address spaces, and processes.

• Thread creation, and context-switching between threads, is slower
since it requires the kernel to be entered.

26 CHAPTER 4. PROCESSES

Chapter Notes

Processes have been around for a long time; they were a well-established idea
when Unix was created [RT73].

Scheduler activations were described as such by Anderson (he of the text-
book) and others [ABLL92], though the Psyche operating system (presented in
the same session of the same conference!) also used upcall-based dispatch [MSLM91],
and the basic idea may have appeared earlier in IBM mainframes. While micro-
kernel-based operating systems [Lie93, Lie95] tend to provide just threads and
address spaces, exokernel-based systems [EKO95, LMB+96], tend to use up-
calls since thread-management is pushed into user space anyway, and the ba-
sic philosophy is to expose as much as possible to the user process (or its li-
braries, at least) [EK95]. This also is a natural fit for virtual machine moni-
tors [BDGR97, BDR+12], since the upcall is delivered as a “hardware” interrupt
to the guest operating system.

Bibliography

[ABLL92] Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowska, and
Henry M. Levy. Scheduler activations: Effective kernel support for
the user-level management of parallelism. ACM Trans. Comput.
Syst., 10(1):53–79, February 1992.

[BDGR97] Edouard Bugnion, Scott Devine, Kinshuk Govil, and Mendel Rosen-
blum. Disco: Running commodity operating systems on scalable
multiprocessors. ACM Trans. Comput. Syst., 15(4):412–447, Novem-
ber 1997.

[BDR+12] Edouard Bugnion, Scott Devine, Mendel Rosenblum, Jeremy Sug-
erman, and Edward Y. Wang. Bringing virtualization to the x86
architecture with the original vmware workstation. ACM Trans.
Comput. Syst., 30(4):12:1–12:51, November 2012.

[EK95] D. R. Engler and M. F. Kaashoek. Exterminate all operating system
abstractions. In Proceedings of the Fifth Workshop on Hot Topics in
Operating Systems (HotOS-V), HOTOS ’95, pages 78–, Washington,
DC, USA, 1995. IEEE Computer Society.

[EKO95] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr. Exokernel: An
operating system architecture for application-level resource manage-
ment. In Proceedings of the Fifteenth ACM Symposium on Operating
Systems Principles, SOSP ’95, pages 251–266, New York, NY, USA,
1995. ACM.

[Lie93] Jochen Liedtke. Improving ipc by kernel design. In Proceedings of
the Fourteenth ACM Symposium on Operating Systems Principles,
SOSP ’93, pages 175–188, New York, NY, USA, 1993. ACM.

[Lie95] J. Liedtke. On micro-kernel construction. In Proceedings of the
Fifteenth ACM Symposium on Operating Systems Principles, SOSP
’95, pages 237–250, New York, NY, USA, 1995. ACM.

BIBLIOGRAPHY 27

[LMB+96] I. M. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham, D. Evers,
R. Fairbairns, and E. Hyden. The Design and Implementation of an
Operating System to Support Distributed Multimedia Applications.
IEEE Journal on Selected Areas in Communications, 14(7):1280–
129, September 1996.

[MSLM91] Brian D. Marsh, Michael L. Scott, Thomas J. LeBlanc, and Evan-
gelos P. Markatos. First-class user-level threads. In Proceedings of
the Thirteenth ACM Symposium on Operating Systems Principles,
SOSP ’91, pages 110–121, New York, NY, USA, 1991. ACM.

[RT73] Dennis M. Ritchie and Ken Thompson. The unix time-sharing sys-
tem. SIGOPS Oper. Syst. Rev., 7(4):27–, January 1973.

Chapter 5

Inter-process
communication

5.1 Hardware support for synchronization

You should have already seen a number of hardware mechanisms for synchro-
nizing threads. The most basic one available to an OS is to disable interrupts:

Algorithm 5.1 Protecting a critical section by disabling interrupts

1: Disable all interrupts and traps
2: Access state in a critical section
3: Enable interrupts

Remarks:

• This technique doesn’t work in a situation with multiple cores or hard-
ware threads running concurrently. Neither does it take into account
DMA devices.

• Processes can’t be rescheduled inside critical section. Indeed, this is
effectively a mutex on the entire state of the machine.

• That said, inside the kernel on a uniprocessor it is extremely efficient
for short critical sections.

To provide synchronization on a multiprocessor in user space, you need help
from the memory system and instruction set.

5.1.1 Shared-memory synchronization instructions

Most of this section should be a recap from the Systems Programming and
Parallel Programming courses.

28

5.1. HARDWARE SUPPORT FOR SYNCHRONIZATION 29

Algorithm 5.2 Test-And-Set

1: inputs
2: p {Pointer to a word in memory}
3: outputs
4: v {Flag indicating if the test was successful}
5: do atomically:
6: v ← *p
7: *p ← 1
8: end do atomically
9: return v

Remarks:

• Plenty of processors provide an instruction for this, or something
equivalent like Read-And-Clear.

• Some Systems-on-Chip also provide peripheral hardware registers that
function this way as well when you read from them.

Algorithm 5.3 Compare-and-Swap

1: inputs
2: p {Pointer to a word in memory}
3: v1 {Comparison value}
4: v2 {New value}
5: outputs
6: {Original value}
7: do atomically:
8: if *p = v1 then
9: *p ← v2

10: return v1
11: else
12: return *p
13: end if
14: end do atomically

30 CHAPTER 5. INTER-PROCESS COMMUNICATION

Remarks:

• This is available on most modern processors as an instruction.

• It is strictly more powerful than TAS. In fact, it is as powerful as
needed: you can show [HFP02] that any other atomic operation can
be efficiently simulated with CAS, though not with TAS.

Algorithm 5.4 Load-linked / Store Conditional (LL/SC)

Load-linked

1: inputs
2: p {Pointer to a word in memory}
3: outputs
4: v {Value read from memory}
5: do atomically:
6: v ← *p
7: mark p as “locked”
8: end do atomically
9: return v

Store-conditional

10: inputs
11: p {Pointer to a word in memory}
12: v {Value to store to memory}
13: outputs
14: r {Result of store}
15: do atomically:
16: if *p has been updated since load-linked then
17: r ← 1
18: else
19: *p ← v
20: r ← 0
21: end if
22: end do atomically
23: return r

Remarks:

• Also known as “Load-locked”, “Load-reserve”, etc.

• Well-suited to RISC load-store architectures

• Often implemented by marking the line in the cache

5.1.2 Hardware Transactional Memory

LL/SC can be viewed as providing highly restricted form of transaction (on a
single word), which aborts if a conflicting update to the word has taken place
during the transaction.

5.1. HARDWARE SUPPORT FOR SYNCHRONIZATION 31

Definition 5.5 (Transactional Memory). . Transactional Memory is a pro-
gramming model whereby loads and stores on a particular thread can be grouped
into transactions. The read set and write set of a transaction are the set of
addresses read from and written to respectively during the transaction. A data
conflict occurs in a transaction if another processor reads or writes a value from
the transaction’s write set, or writes to an address in the transaction’s read set.
Data conflicts cause the transaction to abort, and all instructions executed since
the start of the transaction (and all changes to the write set) to be discarded.

Example 5.6. Intel’s Transactional Synchronization Extensions (TSX) provide
three basic instructions for implementing “Restricted Transactional Memory” or
RTM: XBEGIN (which starts a transaction), XEND (which commits a transaction),
and XABORT (which forces the transaction to abort). There is also XTEST, which
returns whether it is executing under a transaction.

If a transaction aborts, the processor rolls back the write set and jumps to a
fallback instruction address specified by the XBEGIN instruction, with register
information saying why the transaction aborted. This code can then choose to
retry the transaction, or so something else (like take out a conventional lock
instead).

TSX also provides an alternative to RTM called Hardware Lock Elision
(HLE). Under HLE, the code is written to take out locks using atomic instruc-
tions as above, but the processor doesn’t actually do this the first time. Instead,
it executes the critical section under a transaction, and only if it aborts does it
try again, this time really taking out the lock.

Remarks:

• As wiith LL/SC, HTM is usually implemented using the cache co-
herency protocol to make lines in the cache as part of the read and
write sets. Coherency messages signal remote accesses, which then
cause aborts. For this reason, conflict detection is actually done at
the granularity of entire cache lines rather than just words.

• As with many speculation-based CPU features, HTM is notoriously
difficult to get right. The first Intel Haswell and Broadwell processors
to be sold supporting TSX had to have the functionality disabled in
microcode after serious bugs came to light.

• There are many things other than conflicts or an explicit instruction
that can cause an HTM transaction to abort (false sharing, interrupts,
etc.) The “false abort rate” is an important measure of the effective-
ness of a HTM implementation.

• There is a limit to the size of read and write sets that can be checked
(such as in the L1 cache). If this is exceeded, the transaction aborts.
It’s important not to retry a transaction like this, since it’s always
going to abort. The abort handling code is therefore usually sup-
plied with information about whether the CPU thinks the transaction
should be retried or not.

32 CHAPTER 5. INTER-PROCESS COMMUNICATION

5.2 Shared-memory synchronization models

We’ll assume you’re already familiar with semaphores (and P, V operations),
mutexes (Acquire, Release), condition variables (Wait, Signal/Notify, Broad-
cast/NotifyAll), and monitors (Enter, Exit).

Our focus here is the interaction of these operations with the rest of the OS,
in particular the scheduler. Assuming for a moment a priority-based scheduler
(as in Unix, Windows, etc.).

Definition 5.7. Spinlock. A spinlock is a multiprocessor mutual exclusion
primitive based on one processor spinning on a memory location written by
another.

Algorithm 5.8 TAS-based spinlock

1: inputs
2: p is an address of a word in memory

Acquire the lock

3: repeat
4: v ← TAS(*p)
5: until v = 0
6: . . .

Release the lock

7: *p ← 0

Remarks:

• Spinlocks only make sense on a multiprocessor: if you’re spinning,
nobody else is going to release the lock.

• A pure spinlock only makes sense if the duration that any process
holds the lock is short, otherwise, it’s better to block.

Definition 5.9 (Spin-block problem). . The spin-block problem is to come up
with a strategy for how long a thread should spin waiting to acquire a lock before
giving up and blocking, given particular values for the cost of blocking, and the
probability distribution of of lock hold times.

Theorem 5.10. (Competitive spinning): in the absence of any other informa-
tion about the lock hold time, spinning for a time equal to the cost of a context
switch results in overhead at most twice that of the optimal offline algorithm
(which has perfect knowledge about the future). This bound is also tight: no
online algorithm can do better than a factor of two. Proof: see Anna Karlin et
al. [KMMO90].

Remarks:

• The proof is subtle (and worth reading!), but the intuition is as follows:
in the best case, you avoid a context switch and save time. Otherwise,
your overhead is at worst twice as bad as immediately blocking.

5.3. MESSAGES: IPC WITHOUT SHARED MEMORY 33

5.3 Messages: IPC without shared memory

The alternative to communication using shared data structures protected by
thread synchronization primitives is to send messages instead. You’ve already
seen this in networking using sockets.

Message passing is best thought of as an abstraction: it’s perfectly possible
to implement thread synchronization using only messages, and vice versa. This
was famously demonstrated by Hugh Lauer and Roger Needham [LN79], which
showed that the two models are essentially equivalent, but can vary greatly in
performance based on the properties of the underlying hardware.

Definition 5.11 (Asynchronous IPC). In asynchronous or buffered IPC
the sender does not block, but the send operation instead returns immediately.
If the receiving process is not waiting for the message, the message is buffered
until the receive call is made. On the receive side, the receive call blocks if no
message is available.

Definition 5.12 (Synchronous IPC). In contrast, in a synchronous or un-
buffered IPC system, both sender and receiver may block until both are ready
to exchange data.

Remarks:

• Asynchrous IPC is the model you’re probably most familiar with from
network sockets. “Asynchronous” and “synchronous” are heavily over-
loaded terms in computer science, but here “asynchronous” means
that the send and receive operation do not need to overlap in time: a
send can complete long before the corresponding receive starts.

• Asynchronous IPC implies a buffer to hold messages which have been
sent but not yet received. If this buffer becomes full, it’s not clear what
to do: you can discard messages (as in UDP), or block the sender from
sending (as in TCP) until the buffer is drained.

• Synchronous IPC, on the other hand, requires no buffering, merely
two threads synchronizing in the OS kernel.

• You’ve probably heard of “non-blocking” I/O, which is an orthogonal
concept.

Definition 5.13 (Non-blocking I/O). Blocking communication operations may
block the calling thread (such as the asynchronous receive call described above).
Non-blocking variants of these operations instead immediately return a code
indicating that the operation should be retried.

Remarks:

• Non-blocking operations can be thought of as polling ; there’s usually
some kind of operation that can tells which potential non-blocking
operations would succeed if they were tried right now: see select()

or epoll() in Unix.

• You can have synchronous, non-blocking operations: the send call only
succeeds when the receiver is waiting.

34 CHAPTER 5. INTER-PROCESS COMMUNICATION

Example 5.14. Unix pipes: Pipes are the more fundamental IPC mechanism
in Unix, and are closely related to fork(); one might reasonable claim that
Unix is any OS based on fork() and pipe().

A pipe is a unidirectional, buffered communication channel between two pro-
cesses, created by:

int pipe(int pipefd[2])

Each end is identified by a file descriptor, returned by reference in the array
pipefd. One sets up a pipe between two processes by creating the pipe, then
forking the other the process. This is, at heart, how the shell works.

When you create a pipe, you immediately get both end-points in one go. We
can make this model more flexible, for example allowing the processes at each
end of the pipe to be created independently.

Example 5.15. Unix domain sockets. Like network sockets, Unix domain
sockets can be bound to an address, which in this case is a filename. The filename
can then be used by clients to connect to the socket.

int s = socket(AF UNIX, type, 0);

This allows us to split up, on the client side, the name of a communication
end-point (the filename in this case) from the reference you use to actually send
and receive data (the file descriptor you get back from open).

Example 5.16. Unix named pipes. named pipes (also called “FIFO”s) go
one step further by allowing both client and server to open the FIFO based on its
name (it’s also a special file type). You can create a FIFO from the command
line:

$ mkfifo /tmp/myfifo

5.4 Upcalls

So far, every operation to do with communication that we have seen has involved
the sender or receiver (in other words, a userspace process) calling “down” into
the OS to perform an operation (send, receive, etc.).

Definition 5.17 (Upcall). . An upcall is an invocation by the operating system
(usually the kernel) of a function inside a user process. The called function in
the user program is called the entry point, or the upcall handler.

Remarks:

• This is the inverse of a regular system call: the OS calls the program.
It is a very important structuring concept for systems, and yet not
widely known among non-systems programmers. One way to view an
upcall is as the generalization of an interrupt.

5.4. UPCALLS 35

• Obviously, the kernel has to know what to call in the user program,
i.e. the address of the upcall handler.

• If the OS is running conventional processes, and the process has been
preempted when the kernel is entered, this naturally raise the question
of what happens to the previous thread context that was saved by the
OS.

• One approach is to keep this around, and treat the upcall as running
in a “special” context which only exists until it returns (to the kernel).

• Alternatively, the OS might choose to pass the previously-saved thread
context to the user program, in case it wants to do someting with it
(like resume the thread).

Example 5.18 (Unix signals). are an example of a the first type of upcall
mechanism: the user program registers “signal handlers” as functions that can
be called to deliver a signal. Unix systems have a fixed number of signal types
(see “man 7 signal”). For each signal, an action can be specified: ignore the
signal, call a handler function, terminate the process completely, etc.

Remarks:

• Signals raise some interesting concurrency questions. Which stack
does the signal handler run on, for example?

• Another is: what happens if the signal handler issues a system call?
Since it’s not really part of the regular process, what happens? It turns
out that signal handlers are quite limited in what they are allowed to
do. For example, “man 7 signal-safety” will list the system calls
that a signal handler is allowed to make, and there are not many of
them. They do include signal() and sigaction(), however.

• Signal handlers can’t, in general, safely access program global or static
variables, since the main process might have these protected under a
lock when the signal handler is called. This includes many standard C
library calls cannot (including the reentrant “ r” variants of functions
like strtok().

• It is possible to longjmp() out of a signal handler (and into the pro-
cess) if you are careful. It’s a good exercise to figure out what the OS
needs to do so that the process keeps running smoothly.

• As with all upcalls, what happens if another signal arrives? If multiple
signals of the same type are to be delivered, Unix will discard all but
one – signals of the same type are basically indistinguishabe. If signals
of different types are to be delivered, Unix will deliver them all, but
is free to do so in any order.

Example 5.19 (Scheduler activations). take the idea of upcalls much further
than signals. Every time a process is resumed by the kernel, instead of simply
restoring its registers, the kernel upcalls into the process letting it know where
the previous execution state has been stored. This allows the process to resume

36 CHAPTER 5. INTER-PROCESS COMMUNICATION

it, or do something different: the original motivation for this design was to run
highly efficient user-level threads that were aware of when the process itself was
preempted and rescheduled. Indeed, the first implementatins also upcalled the
process (on one core) whenever it was descheduled (on another core), just to let
it know. The upcall handler is basically the entry point to a user-level thread
scheduler.

Remarks:

• Scheduler activations allow a thread implementation that elegantly
combines the performance of user-space threads, and the predictability
and flexibility of kernel threads, and this why they were adopted in
recent versions of Windows.

• As with signals, what happens if more than one schedular activation
is pending? The original implementation used a stack and a reentrant
activation handler to allow multiple scheduler activations to be active
at a time; but an alternative approach (published at the same time,
but under a different name) simply disables upcalls until the activation
handler tells the kernel it’s OK. In the meantime, the kernel simply
resumes the process instead.

5.5 Client-Server and RPC

Message-passing can be fast, and has quite nice semantics (either a message is
sent or it isn’t, and it’s either received or it isn’t). Moreover, over a network
(as we’ll see later in the course), it’s the only way to communicate. We will
soon encounter cases which, for the moment at least, we do not see in a single-
machine OS: lost messages, reordered messages, or messages that are delayed
by some unbounded time.

Until then, consider just two parties communicating by messages (often the
common case). Typically, this interaction is asymmetric: one end of the com-
munication is offering a service, while the other is using it.

Definition 5.20 (Client-Server). In the client-server paradigm distributed
computing, a server offers a service to potentially multiple clients, who connect
to it to invoke the service.

Remarks:

• This is a distributed computing concept, but it applies even in the
single-machine OS case (which is why we introduce it here). Indeed,
the distinction between inter-process communication (with a single
OS) and networked communication (between machines over a network)
is increasingly blurred these days, and we’ll see more of this later.
Rather than focussing on whether one or more machines is involved,
it’s better to think about what network model is assumed between
endpoints: can messages be lost? Reordered? Delayed indefinitely?
etc.

5.5. CLIENT-SERVER AND RPC 37

• Pipes can’t handle client-server communication, since either the client
or server (or a common ancestor) must have forked the other. Client-
server requires a way to name the end-point where the server is offering
the service, so that clients can connect to it. You have seen one way
to deal with this: sockets, where the server address is passed to the
connect() call by the client.

• If you write client-server code using sockets, however, you immediately
encounter an issue: you find yourself writing the same “wrapper” code
over and over again for every service and every client.

Definition 5.21 (Remote Procedure Call). Remote Procedure Call or RPC
is a programming technique whereby remove client-server interactions are made
to look to the programmer of both the client and the server as simple procedure
calls: the client program calls the server using a simple procedure call, and the
server program implements the service purely as a procedure with the appropriate
name.

How this works is as follows: the signature of the remote procedure is fed
into a stub compiler, which outputs two chunks of code that go into libraries.

The first is the client stub (or proxy which implements the client side
procedure: this takes its arguments, marshals them into a buffer, sends the
buffer to the server, and waits for a message in reply. When this comes back, it
unmarshals the return value(s) from the call, and returns to the client program.

The second is the server stub, which performs the correspnding actions on
the server side: wait for a message, unmarshal the arguments, call the server
code with the arguments, marshal the return value(s) into a buffer, and send it
back to the client.

Remarks:

• As described, this allows only one procedure to be made available
remotely. In practice, this generalizes. The stub compiler can generate
code for a interface, which is a collection of related procedures. All
RPCs to the same interface go over the same connection, with an
extra, hidden argument marshalled in: the procedure number of the
function to call on the other side.

• For languages without strong type systems like C, a separate language
is needed to define interfaces.

Definition 5.22 (Interface Definition Language). . An Interface Defini-
tion Language or IDL is a small, domain-specific language for writing RPC
interface definitions.

Remarks:

• If the RPC is to be carried over a network, both sides need to agree on
a common representation for the arguments and results of the RPC.
This requires, in networking terms, a presentation-layer protocol. An
example is XDR, the eXternal Data Representation used for, among
other applications, the Unix Network File System (NFS).

38 CHAPTER 5. INTER-PROCESS COMMUNICATION

• If the RPC is, instead, local to a machine (in which case it is called,
without apparent irony, Local RPC), the use of a presentation-layer
protocol is less important. However, the performance tradeoff is now
different. For classical networked RPC, the time to execute the sim-
plest possible RPC (the “Null RPC”, which just returns) is dominated
by the network propagation delay. On a single machine, through the
kernel, it can be dominated by the cost of entering and exiting the ker-
nel. For a server which is executing lots of requests, or a client which
needs to send many requests in sequence, this can be a bottleneck.

Example 5.23 (RPC over synchronous IPC). . A client executing an RPC
needs to perform two operations, which are typically system calls: first, the send
call, and second, the receive call to get the reply. Similarly, a server processing
requests need to receive the message, then execute another system call to send
the result back.

For this reason, high-performance local RPC systems allow the OS the com-
bine two operations in a single system call. There are two important cases.

The first is sometimes called “send with closed receive”: the operation sends
a message to a given destination, and then the thread blocks waiting for a reply
from that destination. This performs the whole of the client side of an RPC
communication in one syscall.

The second is sometimes called “send with open receive”: this sends a mes-
sage to a destination and then blocks waiting for a message from any source.
This is both halves of the server side combined, but in reverse order: the server
calls this to send a reply and then block waiting for the next call.

5.6 Distributed objects

How does this get set up? As with TCP network connections, a server needs
to create an end-point (in the TCP case, a listening socket) and advertise its
address somewhere, while a client has to look up this address and connect to it.
This usually requires a 3rd party.

Definition 5.24 (Name server). . A name server is a service (usually invoked
using RPC) which holds the addresses of other RPC services. Servers register
their services with the name server, and clients lookup the service they want to
get the address to connect to.

The data that the name server stores and hands out for a service is sometimes
called an interface reference. It’s a name for the service, and it can be passed
around freely (which is why the nameserver can be an RPC server like any
other).

Definition 5.25 (RPC binding). . To contact an RPC service, a client has to
acquire an interface reference for the service, and then establish a binding
to the service. Establishing the binding is basically setting up a connection, and
results in an invocation reference, which is the required client stub.

Binding can be explicit, in which case the client has to call some kind of
“bind” or “connect” procedure to establish it. However, implicit binding is
also possible: as part of unmarshalling an interface reference, the binding is
established immediately and an invocation reference returned to the client (or
server) instead.

BIBLIOGRAPHY 39

Remarks:

• This is similar to the notion of a binding we saw early on, but here
the binding is an association between the client stub and the remote
service: the local pointer or reference the client program has to its
stub is now, implicitly, bound to the remote server.

• We didn’t talk about this in Chapter 2, but the client binding (and
the analogous binding on the server side) are often first-class objects
themselves: you can perform operations on them to manipulate the
connection or query its status, for example.

By now, you’re probably thinking that this is beginning to feel somewhat
object-oriented.

Definition 5.26. Distributed object system. A distributed object system is
an RPC system with implicit binding where interface references are viewed as
object references, and the IDL (if present) defines classes of which services are
instances.

A local datastructure called the object table holds a mapping from interface
references to invocation references, so that when an interface reference arrives
twice, only a single client stub is created.

Remarks:

• Note that a distributed object system need not be tied to a partic-
ular language: well-known exaples like CORBA and DCOM are not.
However, they do need to define tbeir own type system if they cannot
lift one from a single programming language. Most examples use C
primitive types, plus records and (discriminated) unions, plus variable
lengh arrays (sequences) and, of course, interface/object references.

• The type system for interfaces can be arbitrarily sophisticated, sup-
porting subtyping (interface inheritance), and (in some cases) distrib-
uted garbage collection.

RPC, and distributed objects, are intuitive for programmers, but also are
predicated on things mostly working: either your RPC was delivered, was exe-
cuted, and you got a reply, or you get a program exception saying it didn’t.

However, when implementing some distributed algorithms which are designed
to handle lost messages, delays, node failures, etc., this model isn’t realistic
(often because these algorithms are intended to create this reliability). Hence,
when discussing things like consensus, we tend to talk in terms of messages,
whereas talking to web services is couched in terms of RPCs.

Bibliography

[HFP02] Timothy L. Harris, Keir Fraser, and Ian A. Pratt. A practical
multi-word compare-and-swap operation. In Dahlia Malkhi, editor,
Distributed Computing, pages 265–279, Berlin, Heidelberg, 2002.
Springer Berlin Heidelberg.

40 CHAPTER 5. INTER-PROCESS COMMUNICATION

[KMMO90] Anna R. Karlin, Mark S. Manasse, Lyle A. McGeoch, and Susan
Owicki. Competitive randomized algorithms for non-uniform prob-
lems. In Proceedings of the First Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’90, pages 301–309, Philadelphia,
PA, USA, 1990. Society for Industrial and Applied Mathematics.

[LN79] Hugh C. Lauer and Roger M. Needham. On the duality of operating
system structures. SIGOPS Oper. Syst. Rev., 13(2):3–19, April
1979.

Chapter 6

Introduction to Distributed
Systems

Why Distributed Systems?

Today’s computing and information systems are inherently distributed. Many
companies are operating on a global scale, with thousands or even millions of
machines on all the continents. Data is stored in various data centers, computing
tasks are performed on multiple machines. At the other end of the spectrum,
also your mobile phone is a distributed system. Not only does it probably share
some of your data with the cloud, the phone itself contains multiple processing
and storage units. Your phone is a complicated distributed architecture.

Moreover, computers have come a long way. In the early 1970s, microchips
featured a clock rate of roughly 1 MHz. Ten years later, in the early 1980s,
you could get a computer with a clock rate of roughly 10 MHz. In the early
1990s, clock speed was around 100 MHz. In the early 2000s, the first 1 GHz
processor was shipped to customers. In 2002 one could already buy a processor
with a clock rate between 3 and 4 GHz. If you buy a new computer today,
chances are that the clock rate is still between 3 and 4 GHz, since clock rates
basically stopped increasing. Clock speed can apparently not go beyond a few
GHz without running into physical issues such as overheating. Since 2003,
computing architectures are mostly developing by the multi-core revolution.
Computers are becoming more parallel, concurrent, and distributed.

Finally, data is more reliably stored on multiple geographically distributed
machines. This way, the data can withstand regional disasters such as floods,
fire, meteorites, or electromagnetic pulses, for instance triggered by solar super-
storms. In addition, geographically distributed data is also safer from human
attacks. Recently we learned that computer hardware is pretty insecure: spec-
tre, meltdown, rowhammer, memory deduplication, and even attacks on secure
hardware like SGX. If we store our data on multiple machines, it may be safe
assuming hackers cannot attack all machines concurrently. Moreover, data and
software replication also helps availability, as computer systems do not need to
be shut down for maintenance.

In summary, today almost all computer systems are distributed, for different
reasons:

41

42 CHAPTER 6. INTRODUCTION TO DISTRIBUTED SYSTEMS

• Geography: Large organizations and companies are inherently geograph-
ically distributed, and a computer system needs to deal with this issue
anyway.

• Parallelism: To speed up computation, we employ multicore processors or
computing clusters.

• Reliability: Data is replicated on different machines to prevent data loss.

• Availability: Data is replicated on different machines to allow for access
at any time, without bottlenecks, minimizing latency.

Even though distributed systems have many benefits, such as increased stor-
age or computational power, they also introduce challenging coordination prob-
lems. Some say that going from one computer to two is a bit like having a
second child. When you have one child and all cookies are gone from the cookie
jar, you know who did it! Coordination problems are so prevalent, they come
with various flavors and names: consistency, agreement, consensus, blockchain,
ledger, event sourcing, etc.

Coordination problems will happen quite often in a distributed system. Even
though every single node (computer, core, network switch, etc.) of a distributed
system will only fail once every few years, with millions of nodes, you can expect
a failure every minute. On the bright side, one may hope that a distributed
system with multiple nodes may tolerate some failures and continue to work
correctly.

Distributed Systems Overview

We introduce some basic techniques to building distributed systems, with a
focus on fault-tolerance. We will study different protocols and algorithms that
allow for fault-tolerant operation, and we will discuss practical systems that
implement these techniques.

We will see different models (and even more combinations of models) that
can be studied. We will not discuss them in detail now, but simply define them
when we use them. Towards the end of the course a general picture should
emerge, hopefully!

The focus is on protocols and systems that matter in practice. In other
words, in this course, we do not discuss concepts because they are fun, but
because they are practically relevant.

Nevertheless, have fun!

Chapter Notes

Many good textbooks have been written on the subject, e.g. [AW04, CGR11,
CDKB11, Lyn96, Mul93, Ray13, TS01]. James Aspnes has written an excellent
freely available script on distributed systems [Asp14]. Similarly to our course,
these texts focus on large-scale distributed systems, and hence there is some
overlap with our course. There are also some excellent textbooks focusing on
small-scale multicore systems, e.g. [HS08].

BIBLIOGRAPHY 43

Some chapters of this course have been developed in collaboration with (for-
mer) PhD students, see chapter notes for details. Many colleagues and students
have helped to improve exercises and script. Thanks go to Pascal Bissig, Philipp
Brandes, Christian Decker, Manuel Eichelberger, Klaus-Tycho Förster, Arthur
Gervais, Barbara Keller, Rik Melis, Darya Melnyk, Peter Robinson, Selma Stein-
hoff, David Stolz, and Saravanan Vijayakumaran. Jinchuan Chen, Qiang Lin,
Yunzhi Xue, and Qing Zhu translated this text into Simplified Chinese, and a
long the way found improvements to the English version as well. Thanks!

Bibliography

[Asp14] James Aspnes. Notes on Theory of Distributed Systems, 2014.

[AW04] Hagit Attiya and Jennifer Welch. Distributed Computing: Funda-
mentals, Simulations and Advanced Topics (2nd edition). John Wi-
ley Interscience, March 2004.

[CDKB11] George Coulouris, Jean Dollimore, Tim Kindberg, and Gordon Blair.
Distributed Systems: Concepts and Design. Addison-Wesley Pub-
lishing Company, USA, 5th edition, 2011.

[CGR11] Christian Cachin, Rachid Guerraoui, and Lus Rodrigues. Intro-
duction to Reliable and Secure Distributed Programming. Springer
Publishing Company, Incorporated, 2nd edition, 2011.

[HS08] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Pro-
gramming. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2008.

[Lyn96] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 1996.

[Mul93] Sape Mullender, editor. Distributed Systems (2nd Ed.). ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA, 1993.

[Ray13] Michel Raynal. Distributed Algorithms for Message-Passing Sys-
tems. Springer Publishing Company, Incorporated, 2013.

[TS01] Andrew S. Tanenbaum and Maarten Van Steen. Distributed Sys-
tems: Principles and Paradigms. Prentice Hall PTR, Upper Saddle
River, NJ, USA, 1st edition, 2001.

Chapter 7

Fault-Tolerance & Paxos

How do you create a fault-tolerant distributed system? In this chapter we start
out with simple questions, and, step by step, improve our solutions until we
arrive at a system that works even under adverse circumstances, Paxos.

7.1 Client/Server

Definition 7.1 (node). We call a single actor in the system node. In a com-
puter network the computers are the nodes, in the classical client-server model
both the server and the client are nodes, and so on. If not stated otherwise, the
total number of nodes in the system is n.

Model 7.2 (message passing). In the message passing model we study dis-
tributed systems that consist of a set of nodes. Each node can perform local
computations, and can send messages to every other node.

Remarks:

• We start with two nodes, the smallest number of nodes in a distributed
system. We have a client node that wants to “manipulate” data (e.g.,
store, update, . . .) on a remote server node.

Algorithm 7.3 Näıve Client-Server Algorithm

1: Client sends commands one at a time to server

Model 7.4 (message loss). In the message passing model with message loss,
for any specific message, it is not guaranteed that it will arrive safely at the
receiver.

Remarks:

• A related problem is message corruption, i.e., a message is received
but the content of the message is corrupted. In practice, in contrast
to message loss, message corruption can be handled quite well, e.g. by
including additional information in the message, such as a checksum.

44

7.1. CLIENT/SERVER 45

• Algorithm 7.3 does not work correctly if there is message loss, so we
need a little improvement.

Algorithm 7.5 Client-Server Algorithm with Acknowledgments

1: Client sends commands one at a time to server
2: Server acknowledges every command
3: If the client does not receive an acknowledgment within a reasonable time,

the client resends the command

Remarks:

• Sending commands “one at a time” means that when the client sent
command c, the client does not send any new command c′ until it
received an acknowledgment for c.

• Since not only messages sent by the client can be lost, but also ac-
knowledgments, the client might resend a message that was already
received and executed on the server. To prevent multiple executions of
the same command, one can add a sequence number to each message,
allowing the receiver to identify duplicates.

• This simple algorithm is the basis of many reliable protocols, e.g.
TCP.

• The algorithm can easily be extended to work with multiple servers:
The client sends each command to every server, and once the client
received an acknowledgment from each server, the command is con-
sidered to be executed successfully.

• What about multiple clients?

Model 7.6 (variable message delay). In practice, messages might experience
different transmission times, even if they are being sent between the same two
nodes.

Remarks:

• Throughout this chapter, we assume the variable message delay model.

Theorem 7.7. If Algorithm 7.5 is used with multiple clients and multiple
servers, the servers might see the commands in different order, leading to an
inconsistent state.

Proof. Assume we have two clients u1 and u2, and two servers s1 and s2. Both
clients issue a command to update a variable x on the servers, initially x = 0.
Client u1 sends command x = x+ 1 and client u2 sends x = 2 · x.

Let both clients send their message at the same time. With variable message
delay, it can happen that s1 receives the message from u1 first, and s2 receives
the message from u2 first.1 Hence, s1 computes x = (0 + 1) · 2 = 2 and s2

computes x = (0 · 2) + 1 = 1.

1For example, u1 and s1 are (geographically) located close to each other, and so are u2

and s2.

46 CHAPTER 7. FAULT-TOLERANCE & PAXOS

Definition 7.8 (state replication). A set of nodes achieves state replication,
if all nodes execute a (potentially infinite) sequence of commands c1, c2, c3, . . . ,
in the same order.

Remarks:

• State replication is a fundamental property for distributed systems.

• For people working in the financial tech industry, state replication is
often synonymous with the term blockchain. The Bitcoin blockchain
we will discuss in Chapter 16 is indeed one way to implement state
replication. However, as we will see in all the other chapters, there
are many alternative concepts that are worth knowing, with different
properties.

• Since state replication is trivial with a single server, we can desig-
nate a single server as a serializer. By letting the serializer distribute
the commands, we automatically order the requests and achieve state
replication!

Algorithm 7.9 State Replication with a Serializer

1: Clients send commands one at a time to the serializer
2: Serializer forwards commands one at a time to all other servers
3: Once the serializer received all acknowledgments, it notifies the client about

the success

Remarks:

• This idea is sometimes also referred to as master-slave replication.

• What about node failures? Our serializer is a single point of failure!

• Can we have a more distributed approach of solving state replication?
Instead of directly establishing a consistent order of commands, we
can use a different approach: We make sure that there is always at
most one client sending a command; i.e., we use mutual exclusion,
respectively locking.

Algorithm 7.10 Two-Phase Protocol

Phase 1

1: Client asks all servers for the lock

Phase 2

2: if client receives lock from every server then
3: Client sends command reliably to each server, and gives the lock back
4: else
5: Clients gives the received locks back
6: Client waits, and then starts with Phase 1 again
7: end if

7.2. PAXOS 47

Remarks:

• This idea appears in many contexts and with different names, usually
with slight variations, e.g. two-phase locking (2PL).

• Another example is the two-phase commit (2PC) protocol, typically
presented in a database environment. The first phase is called the
preparation of a transaction, and in the second phase the transaction
is either committed or aborted. The 2PC process is not started at the
client but at a designated server node that is called the coordinator.

• It is often claimed that 2PL and 2PC provide better consistency guar-
antees than a simple serializer if nodes can recover after crashing. In
particular, alive nodes might be kept consistent with crashed nodes,
for transactions that started while the crashed node was still running.
This benefit was even improved in a protocol that uses an additional
phase (3PC).

• The problem with 2PC or 3PC is that they are not well-defined if
exceptions happen.

• Does Algorithm 7.10 really handle node crashes well? No! In fact,
it is even worse than the simple serializer approach (Algorithm 7.9):
Instead of needing one available node, Algorithm 7.10 requires all
servers to be responsive!

• Does Algorithm 7.10 also work if we only get the lock from a subset
of servers? Is a majority of servers enough?

• What if two or more clients concurrently try to acquire a majority
of locks? Do clients have to abandon their already acquired locks, in
order not to run into a deadlock? How? And what if they crash before
they can release the locks?

• Bad news: It seems we need a slightly more complicated concept.

• Good news: We postpone the complexity of achieving state replication
and first show how to execute a single command only.

7.2 Paxos

Definition 7.11 (ticket). A ticket is a weaker form of a lock, with the following
properties:

• Reissuable: A server can issue a ticket, even if previously issued tickets
have not yet been returned.

• Ticket expiration: If a client sends a message to a server using a previ-
ously acquired ticket t, the server will only accept t, if t is the most recently
issued ticket.

48 CHAPTER 7. FAULT-TOLERANCE & PAXOS

Remarks:

• There is no problem with crashes: If a client crashes while holding
a ticket, the remaining clients are not affected, as servers can simply
issue new tickets.

• Tickets can be implemented with a counter: Each time a ticket is
requested, the counter is increased. When a client tries to use a ticket,
the server can determine if the ticket is expired.

• What can we do with tickets? Can we simply replace the locks in
Algorithm 7.10 with tickets? We need to add at least one additional
phase, as only the client knows if a majority of the tickets have been
valid in Phase 2.

Algorithm 7.12 Näıve Ticket Protocol

Phase 1

1: Client asks all servers for a ticket

Phase 2

2: if a majority of the servers replied then
3: Client sends command together with ticket to each server
4: Server stores command only if ticket is still valid, and replies to client
5: else
6: Client waits, and then starts with Phase 1 again
7: end if

Phase 3

8: if client hears a positive answer from a majority of the servers then
9: Client tells servers to execute the stored command

10: else
11: Client waits, and then starts with Phase 1 again
12: end if

Remarks:

• There are problems with this algorithm: Let u1 be the first client
that successfully stores its command c1 on a majority of the servers.
Assume that u1 becomes very slow just before it can notify the servers
(Line 9), and a client u2 updates the stored command in some servers
to c2. Afterwards, u1 tells the servers to execute the command. Now
some servers will execute c1 and others c2!

• How can this problem be fixed? We know that every client u2 that
updates the stored command after u1 must have used a newer ticket
than u1. As u1’s ticket was accepted in Phase 2, it follows that u2

must have acquired its ticket after u1 already stored its value in the
respective server.

7.2. PAXOS 49

• Idea: What if a server, instead of only handing out tickets in Phase
1, also notifies clients about its currently stored command? Then, u2

learns that u1 already stored c1 and instead of trying to store c2, u2

could support u1 by also storing c1. As both clients try to store and
execute the same command, the order in which they proceed is no
longer a problem.

• But what if not all servers have the same command stored, and u2

learns multiple stored commands in Phase 1. What command should
u2 support?

• Observe that it is always safe to support the most recently stored
command. As long as there is no majority, clients can support any
command. However, once there is a majority, clients need to support
this value.

• So, in order to determine which command was stored most recently,
servers can remember the ticket number that was used to store the
command, and afterwards tell this number to clients in Phase 1.

• If every server uses its own ticket numbers, the newest ticket does not
necessarily have the largest number. This problem can be solved if
clients suggest the ticket numbers themselves!

50 CHAPTER 7. FAULT-TOLERANCE & PAXOS

Algorithm 7.13 Paxos

Client (Proposer)

Initialization .

c / command to execute
t = 0 / ticket number to try

Phase 1 .

1: t = t+ 1
2: Ask all servers for ticket t

Phase 2 .

7: if a majority answers ok then
8: Pick (Tstore, C) with largest Tstore

9: if Tstore > 0 then
10: c = C
11: end if
12: Send propose(t, c) to same

majority
13: end if

Phase 3 .

19: if a majority answers success

then
20: Send execute(c) to every server
21: end if

Server (Acceptor)

Tmax = 0 / largest issued ticket

C = ⊥ / stored command
Tstore = 0 / ticket used to store C

3: if t > Tmax then
4: Tmax = t
5: Answer with ok(Tstore, C)
6: end if

14: if t = Tmax then
15: C = c
16: Tstore = t
17: Answer success
18: end if

Remarks:

• Unlike previously mentioned algorithms, there is no step where a client
explicitly decides to start a new attempt and jumps back to Phase 1.
Note that this is not necessary, as a client can decide to abort the
current attempt and start a new one at any point in the algorithm.
This has the advantage that we do not need to be careful about se-
lecting “good” values for timeouts, as correctness is independent of

7.2. PAXOS 51

the decisions when to start new attempts.

• The performance can be improved by letting the servers send negative
replies in phases 1 and 2 if the ticket expired.

• The contention between different clients can be alleviated by random-
izing the waiting times between consecutive attempts.

Lemma 7.14. We call a message propose(t,c) sent by clients on Line 12 a
proposal for (t,c). A proposal for (t,c) is chosen, if it is stored by a majority
of servers (Line 15). For every issued propose(t′,c′) with t′ > t holds that
c′ = c, if there was a chosen propose(t,c).

Proof. Observe that there can be at most one proposal for every ticket number
τ since clients only send a proposal if they received a majority of the tickets for
τ (Line 7). Hence, every proposal is uniquely identified by its ticket number τ .

Assume that there is at least one propose(t′,c′) with t′ > t and c′ 6= c; of
such proposals, consider the proposal with the smallest ticket number t′. Since
both this proposal and also the propose(t,c) have been sent to a majority of the
servers, we can denote by S the non-empty intersection of servers that have been
involved in both proposals. Recall that since propose(t,c) has been chosen, this
means that that at least one server s ∈ S must have stored command c; thus,
when the command was stored, the ticket number t was still valid. Hence, s
must have received the request for ticket t′ after it already stored propose(t,c),
as the request for ticket t′ invalidates ticket t.

Therefore, the client that sent propose(t′,c′) must have learned from s that
a client already stored propose(t,c). Since a client adapts its proposal to the
command that is stored with the highest ticket number so far (Line 8), the client
must have proposed c as well. There is only one possibility that would lead to
the client not adapting c: If the client received the information from a server
that some client stored propose(t∗,c∗), with c∗ 6= c and t∗ > t. In this case, a
client must have sent propose(t∗,c∗) with t < t∗ < t′, but this contradicts the
assumption that t′ is the smallest ticket number of a proposal issued after t.

Theorem 7.15. If a command c is executed by some servers, all servers (even-
tually) execute c.

Proof. From Lemma 7.14 we know that once a proposal for c is chosen, every
subsequent proposal is for c. As there is exactly one first propose(t,c) that is
chosen, it follows that all successful proposals will be for the command c. Thus,
only proposals for a single command c can be chosen, and since clients only
tell servers to execute a command, when it is chosen (Line 20), each client will
eventually tell every server to execute c.

Remarks:

• If the client with the first successful proposal does not crash, it will
directly tell every server to execute c.

• However, if the client crashes before notifying any of the servers, the
servers will execute the command only once the next client is success-
ful. Once a server received a request to execute c, it can inform every
client that arrives later that there is already a chosen command, so
that the client does not waste time with the proposal process.

52 CHAPTER 7. FAULT-TOLERANCE & PAXOS

• Note that Paxos cannot make progress if half (or more) of the servers
crash, as clients cannot achieve a majority anymore.

• The original description of Paxos uses three roles: Proposers, accep-
tors and learners. Learners have a trivial role: They do nothing, they
just learn from other nodes which command was chosen.

• We assigned every node only one role. In some scenarios, it might
be useful to allow a node to have multiple roles. For example in a
peer-to-peer scenario nodes need to act as both client and server.

• Clients (Proposers) must be trusted to follow the protocol strictly.
However, this is in many scenarios not a reasonable assumption. In
such scenarios, the role of the proposer can be executed by a set of
servers, and clients need to contact proposers, to propose values in
their name.

• So far, we only discussed how a set of nodes can reach decision for a
single command with the help of Paxos. We call such a single decision
an instance of Paxos.

• For state replication as in Definition 7.8, we need to be able to exe-
cute multiple commands, we can extend each instance with an instance
number, that is sent around with every message. Once the 1st com-
mand is chosen, any client can decide to start a new instance and
compete for the 2nd command. If a server did not realize that the 1st

instance already came to a decision, the server can ask other servers
about the decisions to catch up.

Chapter Notes

Two-phase protocols have been around for a long time, and it is unclear if there
is a single source of this idea. One of the earlier descriptions of this concept can
found in the book of Gray [Gra78].

Leslie Lamport introduced Paxos in 1989. But why is it called Paxos? Lam-
port described the algorithm as the solution to a problem of the parliament
of a fictitious Greek society on the island Paxos. He even liked this idea so
much, that he gave some lectures in the persona of an Indiana-Jones-style ar-
chaeologist! When the paper was submitted, many readers were so distracted by
the descriptions of the activities of the legislators, they did not understand the
meaning and purpose of the algorithm. The paper was rejected. But Lamport
refused to rewrite the paper, and he later wrote that he “was quite annoyed at
how humorless everyone working in the field seemed to be”. A few years later,
when the need for a protocol like Paxos arose again, Lamport simply took the
paper out of the drawer and gave it to his colleagues. They liked it. So Lamport
decided to submit the paper (in basically unaltered form!) again, 8 years after
he wrote it – and it got accepted! But as this paper [Lam98] is admittedly hard
to read, he had mercy, and later wrote a simpler description of Paxos [Lam01].

Leslie Lamport is an eminent scholar when it comes to understanding dis-
tributed systems, and we will learn some of his contributions in almost every

BIBLIOGRAPHY 53

chapter. Not suprisingly, Lamport has won the 2013 Turing Award for his funda-
mental contributions to the “theory and practice of distributed and concurrent
systems, notably the invention of concepts such as causality and logical clocks,
safety and liveness, replicated state machines, and sequential consistency” [?].
One can add arbitrarily to this official citation, for instance Lamport’s popular
LaTeX typesetting system [?], based on Donald Knuth’s TeX.

This chapter was written in collaboration with David Stolz.

Bibliography

[Gra78] James N Gray. Notes on data base operating systems. Springer, 1978.

[Lam98] Leslie Lamport. The part-time parliament. ACM Transactions on
Computer Systems (TOCS), 16(2):133–169, 1998.

[Lam01] Leslie Lamport. Paxos made simple. ACM Sigact News, 32(4):18–25,
2001.

Chapter 8

Consensus

8.1 Two Friends

Alice wants to arrange dinner with Bob, and since both of them are very re-
luctant to use the “call” functionality of their phones, she sends a text message
suggesting to meet for dinner at 6pm. However, texting is unreliable, and Alice
cannot be sure that the message arrives at Bob’s phone, hence she will only go
to the meeting point if she receives a confirmation message from Bob. But Bob
cannot be sure that his confirmation message is received; if the confirmation is
lost, Alice cannot determine if Bob did not even receive her suggestion, or if
Bob’s confirmation was lost. Therefore, Bob demands a confirmation message
from Alice, to be sure that she will be there. But as this message can also be
lost. . .

You can see that such a message exchange continues forever, if both Alice
and Bob want to be sure that the other person will come to the meeting point!

Remarks:

• Such a protocol cannot terminate: Assume that there are protocols
which lead to agreement, and P is one of the protocols which require
the least number of messages. As the last confirmation might be lost
and the protocol still needs to guarantee agreement, we can simply
decide to always omit the last message. This gives us a new protocol
P ′ which requires less messages than P , contradicting the assumption
that P required the minimal amount of messages.

• Can Alice and Bob use Paxos?

8.2 Consensus

In Chapter 7 we studied a problem that we vaguely called agreement. We will
now introduce a formally specified variant of this problem, called consensus.

Definition 8.1 (consensus). There are n nodes, of which at most f might crash,
i.e., at least n− f nodes are correct. Node i starts with an input value vi. The
nodes must decide for one of those values, satisfying the following properties:

54

8.3. IMPOSSIBILITY OF CONSENSUS 55

• Agreement All correct nodes decide for the same value.

• Termination All correct nodes terminate in finite time.

• Validity The decision value must be the input value of a node.

Remarks:

• We assume that every node can send messages to every other node,
and that we have reliable links, i.e., a message that is sent will be
received.

• There is no broadcast medium. If a node wants to send a message
to multiple nodes, it needs to send multiple individual messages. If a
node crashes while broadcasting, not all nodes may receive the broad-
casted message. Later we will call this best-effort broadcast.

• Does Paxos satisfy all three criteria? If you study Paxos carefully, you
will notice that Paxos does not guarantee termination. For example,
the system can be stuck forever if two clients continuously request
tickets, and neither of them ever manages to acquire a majority.

8.3 Impossibility of Consensus

Model 8.2 (asynchronous). In the asynchronous model, algorithms are event
based (“upon receiving message . . . , do . . . ”). Nodes do not have access to a
synchronized wall-clock. A message sent from one node to another will arrive
in a finite but unbounded time.

Remarks:

• The asynchronous time model is a widely used formalization of the
variable message delay model (Model 7.6).

Definition 8.3 (asynchronous runtime). For algorithms in the asynchronous
model, the runtime is the number of time units from the start of the execution
to its completion in the worst case (every legal input, every execution scenario),
assuming that each message has a delay of at most one time unit.

Remarks:

• The maximum delay cannot be used in the algorithm design, i.e., the
algorithm must work independent of the actual delay.

• Asynchronous algorithms can be thought of as systems, where local
computation is significantly faster than message delays, and thus can
be done in no time. Nodes are only active once an event occurs (a
message arrives), and then they perform their actions “immediately”.

• We will show now that crash failures in the asynchronous model can
be quite harsh. In particular there is no deterministic fault-tolerant
consensus algorithm in the asynchronous model, not even for binary
input.

56 CHAPTER 8. CONSENSUS

Definition 8.4 (configuration). We say that a system is fully defined (at any
point during the execution) by its configuration C. The configuration includes
the state of every node, and all messages that are in transit (sent but not yet
received).

Definition 8.5 (univalent). We call a configuration C univalent, if the deci-
sion value is determined independently of what happens afterwards.

Remarks:

• We call a configuration that is univalent for value v v-valent.

• Note that a configuration can be univalent, even though no single
node is aware of this. For example, the configuration in which all
nodes start with value 0 is 0-valent (due to the validity requirement).

• As we restricted the input values to be binary, the decision value
of any consensus algorithm will also be binary (due to the validity
requirement).

Definition 8.6 (bivalent). A configuration C is called bivalent if the nodes
might decide for 0 or 1.

Remarks:

• The decision value depends on the order in which messages are re-
ceived or on crash events. I.e., the decision is not yet made.

• We call the initial configuration of an algorithm C0. When nodes are
in C0, all of them executed their initialization code and possibly, based
on their input values, sent some messages. These initial messages are
also included in C0. In other words, in C0 the nodes are now waiting
for the first message to arrive.

Lemma 8.7. There is at least one selection of input values V such that the
according initial configuration C0 is bivalent, if f ≥ 1.

Proof. As explained in the previous remark, C0 only depends on the input values
of the nodes. Let V = [v0, v1, . . . , vn−1] denote the array of input values, where
vi is the input value of node i.

We construct n+1 arrays V0, V1, . . . , Vn, where the index i in Vi denotes the
position in the array up to which all input values are 1. So, V0 = [0, 0, 0, . . . , 0],
V1 = [1, 0, 0, . . . , 0], and so on, up to Vn = [1, 1, 1, . . . , 1].

Note that the configuration corresponding to V0 must be 0-valent so that the
validity requirement is satisfied. Analogously, the configuration corresponding
to Vn must be 1-valent. Assume that all initial configurations with starting
values Vi are univalent. Therefore, there must be at least one index b, such
that the configuration corresponding to Vb−1 is 0-valent, and configuration cor-
responding to Vb is 1-valent. Observe that only the input value of the bth node
differs from Vb−1 to Vb.

Since we assumed that the algorithm can tolerate at least one failure, i.e.,
f ≥ 1, we look at the following execution: All nodes except b start with their
initial value according to Vb−1 respectively Vb. Node b is “extremely slow”;

8.3. IMPOSSIBILITY OF CONSENSUS 57

i.e., all messages sent by b are scheduled in such a way, that all other nodes
must assume that b crashed, in order to satisfy the termination requirement.
Since the nodes cannot determine the value of b, and we assumed that all initial
configurations are univalent, they will decide for a value v independent of the
initial value of b. Since Vb−1 is 0-valent, v must be 0. However we know that
Vb is 1-valent, thus v must be 1. Since v cannot be both 0 and 1, we have a
contradiction.

Definition 8.8 (transition). A transition from configuration C to a following
configuration Cτ is characterized by an event τ = (u,m), i.e., node u receiving
message m.

Remarks:

• Transitions are the formally defined version of the “events” in the
asynchronous model we described before.

• A transition τ = (u,m) is only applicable to C, if m was still in transit
in C.

• Cτ differs from C as follows: m is no longer in transit, u has possibly
a different state (as u can update its state based on m), and there are
(potentially) new messages in transit, sent by u.

Definition 8.9 (configuration tree). The configuration tree is a directed tree
of configurations. Its root is the configuration C0 which is fully characterized by
the input values V . The edges of the tree are the transitions; every configuration
has all applicable transitions as outgoing edges.

Remarks:

• For any algorithm, there is exactly one configuration tree for every
selection of input values.

• Leaves are configurations where the execution of the algorithm termi-
nated. Note that we use termination in the sense that the system as
a whole terminated, i.e., there will not be any transition anymore.

• Every path from the root to a leaf is one possible asynchronous exe-
cution of the algorithm.

• Leaves must be univalent, or the algorithm terminates without agree-
ment.

• If a node u crashes when the system is in C, all transitions (u, ∗) are
removed from C in the configuration tree.

Lemma 8.10. Assume two transitions τ1 = (u1,m1) and τ2 = (u2,m2) for
u1 6= u2 are both applicable to C. Let Cτ1τ2 be the configuration that follows C
by first applying transition τ1 and then τ2, and let Cτ2τ1 be defined analogously.
It holds that Cτ1τ2 = Cτ2τ1 .

58 CHAPTER 8. CONSENSUS

Proof. Observe that τ2 is applicable to Cτ1 , since m2 is still in transit and τ1
cannot change the state of u2. With the same argument τ1 is applicable to Cτ2 ,
and therefore both Cτ1τ2 and Cτ2τ1 are well-defined. Since the two transitions
are completely independent of each other, meaning that they consume the same
messages, lead to the same state transitions and to the same messages being
sent, it follows that Cτ1τ2 = Cτ2τ1 .

Definition 8.11 (critical configuration). We say that a configuration C is crit-
ical, if C is bivalent, but all configurations that are direct children of C in the
configuration tree are univalent.

Remarks:

• Informally, C is critical, if it is the last moment in the execution where
the decision is not yet clear. As soon as the next message is processed
by any node, the decision will be determined.

Lemma 8.12. If a system is in a bivalent configuration, it must reach a critical
configuration within finite time, or it does not always solve consensus.

Proof. Recall that there is at least one bivalent initial configuration (Lemma
8.7). Assuming that this configuration is not critical, there must be at least one
bivalent following configuration; hence, the system may enter this configura-
tion. But if this configuration is not critical as well, the system may afterwards
progress into another bivalent configuration. As long as there is no critical con-
figuration, an unfortunate scheduling (selection of transitions) can always lead
the system into another bivalent configuration. The only way how an algo-
rithm can enforce to arrive in a univalent configuration is by reaching a critical
configuration.

Therefore we can conclude that a system which does not reach a critical
configuration has at least one possible execution where it will terminate in a
bivalent configuration (hence it terminates without agreement), or it will not
terminate at all.

Lemma 8.13. If a configuration tree contains a critical configuration, crashing
a single node can create a bivalent leaf; i.e., a crash prevents the algorithm from
reaching agreement.

Proof. Let C denote critical configuration in a configuration tree, and let T
be the set of transitions applicable to C. Let τ0 = (u0,m0) ∈ T and τ1 =
(u1,m1) ∈ T be two transitions, and let Cτ0 be 0-valent and Cτ1 be 1-valent.
Note that T must contain these transitions, as C is a critical configuration.

Assume that u0 6= u1. Using Lemma 8.10 we know that C has a following
configuration Cτ0τ1 = Cτ1τ0 . Since this configuration follows Cτ0 it must be 0-
valent. However, this configuration also follows Cτ1 and must hence be 1-valent.
This is a contradiction and therefore u0 = u1 must hold.

Therefore we can pick one particular node u for which there is a transition
τ = (u,m) ∈ T which leads to a 0-valent configuration. As shown before, all
transitions in T which lead to a 1-valent configuration must also take place on
u. Since C is critical, there must be at least one such transition. Applying the
same argument again, it follows that all transitions in T that lead to a 0-valent

8.3. IMPOSSIBILITY OF CONSENSUS 59

configuration must take place on u as well, and since C is critical, there is no
transition in T that leads to a bivalent configuration. Therefore all transitions
applicable to C take place on the same node u!

If this node u crashes while the system is in C, all transitions are removed,
and therefore the system is stuck in C, i.e., it terminates in C. But as C is
critical, and therefore bivalent, the algorithm fails to reach an agreement.

Theorem 8.14. There is no deterministic algorithm which always achieves
consensus in the asynchronous model, with f > 0.

Proof. We assume that the input values are binary, as this is the easiest non-
trivial possibility. From Lemma 8.7 we know that there must be at least one
bivalent initial configuration C. Using Lemma 8.12 we know that if an algo-
rithm solves consensus, all executions starting from the bivalent configuration
C must reach a critical configuration. But if the algorithm reaches a critical
configuration, a single crash can prevent agreement (Lemma 8.13).

Remarks:

• If f = 0, then each node can simply send its value to all others, wait
for all values, and choose the minimum.

• But if a single node may crash, there is no deterministic solution to
consensus in the asynchronous model.

• How can the situation be improved? For example by giving each node
access to randomness, i.e., we allow each node to toss a coin.

60 CHAPTER 8. CONSENSUS

8.4 Randomized Consensus

Algorithm 8.15 Randomized Consensus (Ben-Or)

1: vi ∈ {0, 1} / input bit
2: round = 1
3: decided = false

4: Broadcast myValue(vi, round)

5: while true do

Propose

6: Wait until a majority of myValue messages of current round arrived
7: if all messages contain the same value v then
8: Broadcast propose(v, round)
9: else

10: Broadcast propose(⊥, round)
11: end if

12: if decided then
13: Broadcast myValue(vi, round+1)
14: Decide for vi and terminate
15: end if

Vote

16: Wait until a majority of propose messages of current round arrived
17: if all messages propose the same value v then
18: vi = v
19: decided = true
20: else if there is at least one proposal for v then
21: vi = v
22: else
23: Choose vi randomly, with Pr[vi = 0] = Pr[vi = 1] = 1/2
24: end if
25: round = round + 1
26: Broadcast myValue(vi, round)
27: end while

Remarks:

• The idea of Algorithm 8.15 is very simple: Either all nodes start with
the same input bit, which makes consensus easy. Otherwise, nodes
toss a coin until a large number of nodes get – by chance – the same
outcome.

Lemma 8.16. As long as no node sets decided to true, Algorithm 8.15 does
not get stuck, independent of which nodes crash.

Proof. The only two steps in the algorithm when a node waits are in Lines 6
and 16. Since a node only waits for a majority of the nodes to send a message,
and since f < n/2, the node will always receive enough messages to continue,
as long as no correct node set its value decided to true and terminates.

8.4. RANDOMIZED CONSENSUS 61

Lemma 8.17. Algorithm 8.15 satisfies the validity requirement.

Proof. Observe that the validity requirement of consensus, when restricted to
binary input values, corresponds to: If all nodes start with v, then v must be
chosen; otherwise, either 0 or 1 is acceptable, and the validity requirement is
automatically satisfied.

Assume that all nodes start with v. In this case, all nodes propose v in the
first round. As all nodes only hear proposals for v, all nodes decide for v (Line
17) and exit the loop in the following round.

Lemma 8.18. Algorithm 8.15 satisfies the agreement requirement.

Proof. Observe that proposals for both 0 and 1 cannot occur in the same round,
as nodes only send a proposal for v, if they hear a majority for v in Line 8.

Let u be the first node that decides for a value v in round r. Hence, it
received a majority of proposals for v in r (Line 17). Note that once a node
receives a majority of proposals for a value, it will adapt this value and terminate
in the next round. Since there cannot be a proposal for any other value in r, it
follows that no node decides for a different value in r.

In Lemma 8.16 we only showed that nodes do not get stuck as long as no
node decides, thus we need to be careful that no node gets stuck if u terminates.

Any node u′ 6= u can experience one of two scenarios: Either it also receives
a majority for v in round r and decides, or it does not receive a majority. In
the first case, the agreement requirement is directly satisfied, and also the node
cannot get stuck. Let us study the latter case. Since u heard a majority of
proposals for v, it follows that every node hears at least one proposal for v.
Hence, all nodes set their value vi to v in round r. Therefore, all nodes will
broadcast v at the end of round r, and thus all nodes will propose v in round
r + 1. The nodes that already decided in round r will terminate in r + 1 and
send one additional myValue message (Line 13). All other nodes will receive a
majority of proposals for v in r+ 1, and will set decided to true in round r+ 1,
and also send a myValue message in round r + 1. Thus, in round r + 2 some
nodes have already terminated, and others hear enough myValue messages to
continue in Line 6. They send another propose and a myValue message and
terminate in r + 2, deciding for the same value v.

Lemma 8.19. Algorithm 8.15 satisfies the termination requirement, i.e., all
nodes terminate in expected time O(2n).

Proof. We know from the proof of Lemma 8.18 that once a node hears a majority
of proposals for a value, all nodes will terminate at most two rounds later. Hence,
we only need to show that a node receives a majority of proposals for the same
value within expected time O(2n).

Assume that no node receives a majority of proposals for the same value.
In such a round, some nodes may update their value to v based on a proposal
(Line 20). As shown before, all nodes that update the value based on a proposal,
adapt the same value v. The rest of the nodes choses 0 or 1 randomly. The
probability that all nodes choose the same value v in one round is hence at
least 1/2n. Therefore, the expected number of rounds is bounded by O(2n). As
every round consists of two message exchanges, the asymptotic runtime of the
algorithm is equal to the number of rounds.

62 CHAPTER 8. CONSENSUS

Theorem 8.20. Algorithm 8.15 achieves binary consensus with expected run-
time O(2n) if up to f < n/2 nodes crash.

Remarks:

• How good is a fault tolerance of f < n/2?

Theorem 8.21. There is no consensus algorithm for the asynchronous model
that tolerates f ≥ n/2 many failures.

Proof. Assume that there is an algorithm that can handle f = n/2 many fail-
ures. We partition the set of all nodes into two sets N,N ′ both containing n/2
many nodes. Let us look at three different selection of input values: In V0 all
nodes start with 0. In V1 all nodes start with 1. In Vhalf all nodes in N start
with 0, and all nodes in N ′ start with 1.

Assume that nodes start with Vhalf. Since the algorithm must solve consensus
independent of the scheduling of the messages, we study the scenario where
all messages sent from nodes in N to nodes in N ′ (or vice versa) are heavily
delayed. Note that the nodes in N cannot determine if they started with V0 or
Vhalf. Analogously, the nodes in N ′ cannot determine if they started in V1 or
Vhalf. Hence, if the algorithm terminates before any message from the other set
is received, N must decide for 0 and N ′ must decide for 1 (to satisfy the validity
requirement, as they could have started with V0 respectively V1). Therefore,
the algorithm would fail to reach agreement.

The only possibility to overcome this problem is to wait for at least one
message sent from a node of the other set. However, as f = n/2 many nodes
can crash, the entire other set could have crashed before they sent any message.
In that case, the algorithm would wait forever and therefore not satisfy the
termination requirement.

Remarks:

• Algorithm 8.15 solves consensus with optimal fault-tolerance – but it
is awfully slow. The problem is rooted in the individual coin tossing:
If all nodes toss the same coin, they could terminate in a constant
number of rounds.

• Can this problem be fixed by simply always choosing 1 at Line 22?!

• This cannot work: Such a change makes the algorithm deterministic,
and therefore it cannot achieve consensus (Theorem 8.14). Simulating
what happens by always choosing 1, one can see that it might happen
that there is a majority for 0, but a minority with value 1 prevents
the nodes from reaching agreement.

• Nevertheless, the algorithm can be improved by tossing a so-called
shared coin. A shared coin is a random variable that is 0 for all nodes
with constant probability, and 1 with constant probability. Of course,
such a coin is not a magic device, but it is simply an algorithm. To
improve the expected runtime of Algorithm 8.15, we replace Line 22
with a function call to the shared coin algorithm.

8.5. SHARED COIN 63

8.5 Shared Coin

Algorithm 8.22 Shared Coin (code for node u)

1: Choose local coin cu = 0 with probability 1/n, else cu = 1
2: Broadcast myCoin(cu)

3: Wait for n− f coins and store them in the local coin set Cu
4: Broadcast mySet(Cu)

5: Wait for n− f coin sets
6: if at least one coin is 0 among all coins in the coin sets then
7: return 0
8: else
9: return 1

10: end if

Remarks:

• Since at most f nodes crash, all nodes will always receive n− f coins
respectively coin sets in Lines 3 and 5. Therefore, all nodes make
progress and termination is guaranteed.

• We show the correctness of the algorithm for f < n/3. To simplify
the proof we assume that n = 3f + 1, i.e., we assume the worst case.

Lemma 8.23. Let u be a node, and let W be the set of coins that u received in
at least f + 1 different coin sets. It holds that |W | ≥ f + 1.

Proof. Let C be the multiset of coins received by u. Observe that u receives
exactly |C| = (n−f)2 many coins, as u waits for n−f coin sets each containing
n− f coins.

Assume that the lemma does not hold. Then, at most f coins are in all n−f
coin sets, and all other coins (n− f) are in at most f coin sets. In other words,
the total number of coins that u received is bounded by

|C| ≤ f · (n− f) + (n− f) · f = 2f(n− f).

Our assumption was that n > 3f , i.e., n−f > 2f . Therefore |C| ≤ 2f(n−f) <
(n− f)2 = |C|, which is a contradiction.

Lemma 8.24. All coins in W are seen by all correct nodes.

Proof. Let w ∈ W be such a coin. By definition of W we know that w is in at
least f + 1 sets received by u. Since every other node also waits for n− f sets
before terminating, each node will receive at least one of these sets, and hence
w must be seen by every node that terminates.

Theorem 8.25. If f < n/3 nodes crash, Algorithm 8.22 implements a shared
coin.

Proof. Let us first bound the probability that the algorithm returns 1 for all
nodes. With probability (1 − 1/n)n ≈ 1/e ≈ 0.37 all nodes chose their local

64 CHAPTER 8. CONSENSUS

coin equal to 1 (Line 1), and in that case 1 will be decided. This is only a lower
bound on the probability that all nodes return 1, as there are also other scenarios
based on message scheduling and crashes which lead to a global decision for 1.
But a probability of 0.37 is good enough, so we do not need to consider these
scenarios.

With probability 1 − (1 − 1/n)|W | there is at least one 0 in W . Using
Lemma 8.23 we know that |W | ≥ f + 1 ≈ n/3, hence the probability is about
1 − (1 − 1/n)n/3 ≈ 1 − (1/e)1/3 ≈ 0.28. We know that this 0 is seen by all
nodes (Lemma 8.24), and hence everybody will decide 0. Thus Algorithm 8.22
implements a shared coin.

Remarks:

• We only proved the worst case. By choosing f fairly small, it is clear
that f + 1 6≈ n/3. However, Lemma 8.23 can be proved for |W | ≥
n − 2f . To prove this claim you need to substitute the expressions
in the contradictory statement: At most n − 2f − 1 coins can be in
all n− f coin sets, and n− (n− 2f − 1) = 2f + 1 coins can be in at
most f coin sets. The remainder of the proof is analogous, the only
difference is that the math is not as neat. Using the modified Lemma
we know that |W | ≥ n/3, and therefore Theorem 8.25 also holds for
any f < n/3.

• We implicitly assumed that message scheduling was random; if we
need a 0 but the nodes that want to propose 0 are “slow”, nobody is
going to see these 0’s, and we do not have progress. There exist more
complicated protocols that solve this problem.

Theorem 8.26. Plugging Algorithm 8.22 into Algorithm 8.15 we get a ran-
domized consensus algorithm which terminates in a constant expected number
of rounds tolerating up to f < n/3 crash failures.

Chapter Notes

The problem of two friends arranging a meeting was presented and studied under
many different names; nowadays, it is usually referred to as the Two Generals
Problem. The impossibility proof was established in 1975 by Akkoyunlu et
al. [AEH75].

The proof that there is no deterministic algorithm that always solves con-
sensus is based on the proof of Fischer, Lynch and Paterson [FLP85], known
as FLP, which they established in 1985. This result was awarded the 2001
PODC Influential Paper Award (now called Dijkstra Prize). The idea for the
randomized consensus algorithm was originally presented by Ben-Or [Ben83].
The concept of a shared coin was introduced by Bracha [Bra87]. A shared coin
that can withstand worst-case scheduling has been developed by Alistarh et al.
[AAKS14]; this shared coin was inspired by earlier shared coin solutions in the
shared memory model [Cha96].

Apart from randomization, there are other techniques to still get consensus.
One possibility is to drop asynchrony and rely on time more, e.g. by assuming
partial synchrony [DLS88] or timed asynchrony [CF98]. Another possibility is
to add failure detectors [CT96].

BIBLIOGRAPHY 65

This chapter was written in collaboration with David Stolz.

Bibliography

[AAKS14] Dan Alistarh, James Aspnes, Valerie King, and Jared Saia.
Communication-efficient randomized consensus. In 28th Interna-
tional Symposium of Distributed Computing (DISC), Austin, TX,
USA, October 12-15, 2014, pages 61–75, 2014.

[AEH75] EA Akkoyunlu, K Ekanadham, and RV Huber. Some constraints
and tradeoffs in the design of network communications. In ACM
SIGOPS Operating Systems Review, volume 9, pages 67–74. ACM,
1975.

[Ben83] Michael Ben-Or. Another advantage of free choice (extended ab-
stract): Completely asynchronous agreement protocols. In Proceed-
ings of the second annual ACM symposium on Principles of distrib-
uted computing, pages 27–30. ACM, 1983.

[Bra87] Gabriel Bracha. Asynchronous byzantine agreement protocols. In-
formation and Computation, 75(2):130–143, 1987.

[CF98] Flaviu Cristian and Christof Fetzer. The timed asynchronous dis-
tributed system model. In Digest of Papers: FTCS-28, The Twenty-
Eigth Annual International Symposium on Fault-Tolerant Comput-
ing, Munich, Germany, June 23-25, 1998, pages 140–149, 1998.

[Cha96] Tushar Deepak Chandra. Polylog randomized wait-free consensus. In
Proceedings of the Fifteenth Annual ACM Symposium on Principles
of Distributed Computing, Philadelphia, Pennsylvania, USA, pages
166–175, 1996.

[CT96] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors
for reliable distributed systems. J. ACM, 43(2):225–267, 1996.

[DLS88] Cynthia Dwork, Nancy A. Lynch, and Larry J. Stockmeyer. Con-
sensus in the presence of partial synchrony. J. ACM, 35(2):288–323,
1988.

[FLP85] Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossi-
bility of Distributed Consensus with One Faulty Process. J. ACM,
32(2):374–382, 1985.

Chapter 9

CPU scheduling

In general, scheduling is deciding how to allocate a single temporal resource
among multiple clients, in what order and for how long. This is a highly complex
subject, as well as being a problem much older and broader than computer
science. Here we focus on CPU scheduling, but the OS also schedules other
resources (e.g., disk and network IO).

CPU scheduling involves deciding which task to run next on a given CPU,
how long to run it for, and why CPU a given task should run on. “Task” here
is intentionally vague: it might be a process, thread, batch job, dispatcher, etc.

Definition 9.1 (Scheduling). Scheduling is the problem of deciding, at any
point in time, which process or thread on every core (or hardware thread) in a
system is currently executing.

Definition 9.2 (Dispatch). In contrast to scheduling, dispatching refers to the
mechanism for (re)starting a particular process or thread running on a particular
core.

Remarks:

• We distinguish between scheduling and dispatch here so we can focus
on actual scheduling algorithms in this chapter, and ignore dispatch
(which we dealt with earlier in chapters 4 and 5), but it’s a useful
distinction in practice. You will see people use the term “scheduling
a process” to mean actually running it, but we’ll try and avoid that
usage.

To break it down, we start here with very simple scheduling problems and
gradually complicate them; this happens to roughly coincide with the computing
chronology as well.

9.1 Non-preemptive uniprocessor batch-oriented
scheduling

Definition 9.3 (Uniprocessor scheduling). uniprocessor scheduling is the
problem of scheduling tasks on a single processor core (or, more precisely, hard-
ware execution context).

66

9.1. NON-PREEMPTIVE UNIPROCESSOR BATCH-ORIENTED SCHEDULING67

Definition 9.4 (Batch scheduling). A batch workload consists of a set of
batch jobs, each of which runs for a finite length of time and then terminates.
Batch scheduling is the problem of scheduling a (potentially unbounded) set
of batch jobs, which appear according to some arrival process.

Definition 9.5 (Non-preemptive scheduling). A non-preemptive scheduler
always allows a job to run to completion once it has started.

Remarks:

• Batch scheduling is typically performed on mainframes, supercomput-
ers, and large-scale compute clusters such as those used in machine
learning or internet search.

9.1.1 Batch scheduling terminology

See Figure 9.6.

time

job executing

start

time

end

time

arrival

time

execution time

wait time

job

waiting

hold time

job

finished

Figure 9.6: Batch job terms

Definition 9.7 (Arrival time). The arrival time, or request time, or release
time of a job is the point at which it enters the scheduling system (i.e. the time
at which it becomes runnable).

Definition 9.8 (Start time). The start time of a batch job is the point in time
that it starts executing.

Definition 9.9 (End time). The end time or completion time of a job is
the point in time that it terminates.

Definition 9.10 (Execution time). The execution time or run time of a job
is the duration of the job: the number of seconds it takes to complete from its
start time.

Definition 9.11 (Hold time). The hold time of a job is the time taken to start
executing the job from the point where it arrives.

Definition 9.12 (Wait time). The wait time or turnaround time of a job
is the time take to finish the job from the point where it entered the system.

68 CHAPTER 9. CPU SCHEDULING

9.1.2 Batch scheduling metrics

What makes a good scheduler? A scheduler is generally trying to optimize some
metric relative to some workload.

Definition 9.13 (Batch scheduler throughput). The throughput of a batch
scheduler is the number of jobs the scheduler completes per unit time.

Definition 9.14 (Overhead). The overhead of a scheduler is the proportion
of CPU time spend running the scheduler itself, as opposed to a client job.
Overhead consists of the context switch time (strictly speaking, the time to
do two half-context-switches) plus the scheduling cost.

Remarks:

• For run-to-completion (non-preemptive) uniprocessor schedulers, through-
put for a given workload really only the overhead. However, as things
get more complex the throughput starts to depend on the algorithmic
properties of the scheduler as well.

• There are plenty of more interesting scheduler metrics, even in the
simplistic case we are considering here: mean (or median, or maxi-
mum, or . . .) wait time, for example. Other examples are various
definitions of “fairness”, or keeping to some kind of external policy for
sharing resources between paying clients.

• Overhead can be a problem for jobs with short run times.

• You should have already spotted that we’re assuming the CPU runs
at fixed speed. This is not true in reality for power reasons (and cache
effects, etc.). In many batch cases, however, the most efficient way
to use the CPU is to run it flat-out until there are no more runnable
jobs.

Example 9.15. Suppose the scheduling cost plus context switch time is 1ms,
and each job runs for 4ms. The overhead is therefore 1/(4 + 1) = 20%.

Algorithm 9.16 First-come-first-served (FCFS) scheduling

1: Assume each job Pi arrives at time ti

When the scheduler is entered:

2: Dispatch the job Pj with the earliest arrival time tj

Remarks:

• This pretty much the simplest scheduling algorithm possible, though
it is used in some cases.

• It’s low-overhead, but even for simple cases its performance is unpre-
dictable.

9.1. NON-PREEMPTIVE UNIPROCESSOR BATCH-ORIENTED SCHEDULING69

Example 9.17. Three jobs a, b, c arrive in quick succession, with execution
times of 24, 3, and 3 seconds respectively. Dispatching them in this order leads
to a mean wait time of (24 + 27 + 30)/3 = 27s. If the arrival order instead was
c, b, a we would see a mean wait time of (3 + 6 + 24)/3 = 13s.

Definition 9.18 (Convoying). The convoy phenomenon occurs in FIFO
schedulers (among others) when many short processes back up behind long-
running processes, greatly inflating mean wait times.

Remarks:

• This is a well-known (and widely seen!) problem, famously first iden-
tified in databases with disk I/O.

• It is a simple form of self-synchronization, a wider class of generally
undesirable effects in systems.

• Despite this, FIFO is still used, for example in memcached, Facebook’s
front-tier cache.

Algorithm 9.19 Shortest-Job First (SJF) scheduling

1: Assume each job Pi has an execution time of ti seconds

When the scheduler is entered:

2: Dispatch the job Pj with the shortest execution time tj

Theorem 9.20. Shortest-job first is optimal in the sense that it minimizes the
average (mean) waiting time for all jobs in the system, at least for the case when
all jobs have the same release time.

Proof. By contradiction: consider a sequence of n jobs with execution times tk,
for 0 < k ≤ n. Let wk be the waiting time for job k. Then wk = wk−1 + tk,
where w0 = 0, and the average waiting time is W/n where W is the total waiting
time:

W =

n∑
k=1

wk =

n∑
k=1

(n− k)tk

Suppose this sequence minimizes the mean wait time, but is not sorted by
increasing execution time. Then ∃j, 0 < j < n, such that tj > tj+1.

Now consider the alternative sequence obtained by swapping the positions
of jobs j and j + 1. The total wait time for this new sequence is:

W ′ =

j−1∑
k=1

(n− k)tk + (n− j)tj+1 + (n− j − 1)tj +

n∑
k=j+2

(n− k)tk

Subtracting:

W −W ′ = (n− j)tj + (n− j − 1)tj+1 − (n− j)tj+1 − (n− j − 1)tj

= tj − tj+1 > 0

Consequently, W ′ < W and either the original sequence cannot have been opti-
mal, or there was no j (i.e the sequence was sorted).

70 CHAPTER 9. CPU SCHEDULING

Remarks:

• This algorithm is already more complex computationally: it required
a sort. If execution times are discrete (e.g. integer minutes), this re-
quires time linear in the number of jobs. This points to a fundamental
tradeoff in scheduling complexity (which hopefully corresponds to ef-
ficiency of the resulting schedule!) and the scheduling overhead. A
simpler, less theoretically efficient scheduler may be better than an
optimal scheduler that takes too long to schedule.

• In the real world, jobs arrive at any time. SJF can only make a
scheduling decision when a job terminates, which means that newly
arrived job with a short runtime can experience long hold times be-
cause a long job is already running.

• SJF requires knowledge in advance of the job execution times. This
is notoriously hard to estimate in practice, but can be finessed by
having the clients guess it and penalize them if they get it wrong, or
by preempting unexpected long jobs.

9.2 Uniprocessor preemptive batch scheduling

Definition 9.21 (Preemption). A scheduler which can interrupt a running job
and switch to another one is preemptive.

Algorithm 9.22 SJF with preemption

When a new job enters the system or the running job terminates:

1: Preempt and suspend the currently running job (if there is one)
2: Dispatch (start or resume) the job Pj with the shortest execution time

Remarks:

• This requires the OS to have a mechanism for interrupting the current
job, such as a programmable interrupt timer.

• SJF with preemption is still problematic: new, short jobs may preempt
longer jobs already running, extending their wait time unacceptably.

• “Shortest remaining time next” is a variant of preemptive SJF which
mitigates, but does not solve, this problem.

• Preemption means that jobs (and, below, processes) are dispatched
and descheduled without warning. This is the norm in modern oper-
ating systems, and neatly handles other reasons why a job might stop
running (page faults, device interrupts, blocking I/O operations, etc.).

• Despite this, there cases where preventing preemption is a good thing:
hard real-time scheduling, for example, or low-latency communication-
intensive parallel jobs.

9.3. UNIPROCESSOR INTERACTIVE SCHEDULING 71

• Some workloads which are not batch-oriented can nevertheless be ap-
proximated as a sequence of jobs. Some interactive workloads can
be modeled by viewing each CPU burst as a job (and using expo-
nential averages of previous bursts to predict the execution time).
Transaction-based workloads like web page serving can also be viewed
as jobs with (hopefully) predictable run times.

9.3 Uniprocessor interactive scheduling

Definition 9.23 (Interactive scheduling). In contrast to batch-oriented job
scheduling, an interactive workload consists of long-running processes most
of which are blocked waiting for an external event, such as user input.

Remarks:

• Interactive scheduling covers a wide range of workloads: almost any-
thing that runs for a long time (such as online services, databases,
media servers, user interfaces, etc.), and where the CPU demand is
dynamic and unpredictable.

• In addition to cases where the OS preempts the running process, pre-
emptive schedule also captures the case where the process is paused
for other reasons: page faults, I/O requests, etc.

• There have always been interactive, non-preemptive systems. Often
called “cooperative multitasking” systems, they have included Win-
dows up to version 3.1, the Macintosh OS before version 7, and many
embedded systems. Such systems require each process to explicitly
give up the processor to the scheduler by performing an I/O request
or executing a yield() system call every so often.

Definition 9.24 (Response time). The response time of an interactive pro-
gram is the time taken to respond to a request for service.

Remarks:

• Response time is different from wait time: it refers to long-running
processes which handle a sequence of external requests (possibly in
addition to other computation). Examples include a game responding
to user control, a word processor responding to typing, or Facebook
responding to a request for a home page.

• Response time, or some statistical measure of it, is often the key metric
of interest for interactive scheduling.

72 CHAPTER 9. CPU SCHEDULING

Algorithm 9.25 Round-robin (RR) scheduling

1: Let R be a double-ended queue of runnable processes
2: Let q be the scheduling quantum (a fixed time period)

When the scheduler is entered:

3: Push the previously-running job on the tail of R
4: Set an interval timer for an interrupt q seconds in the future
5: Dispatch the job at the head of R

Remarks:

• RR is the simplest interactive scheduling algorithm – in the absence
of I/O or other activity, it runs all runnable tasks for a fixed quantum
in turn. It is the interactive counterpart to FIFO.

• RR is easy to implement, understand, and analyze.

• Unless you’re testing an OS, it’s rarely what you want. For one thing,
it allocates all processes in the system the same share of CPU time.
Moreover, if a process blocks, it implicitly donates the rest of its cur-
rent time quantum to the rest of the system.

• The response time of a process highly unpredictable, since it essen-
tially depends on where the process is in the run queue.

• RR has a fundamental tradeoff between response time and scheduling
overhead, determined by the choice of quantum q. However, it is
exacerbated that RR usually switches the running process more than
is necessary for the system to make progress.

Example 9.26. Suppose we have 50 processes, the process switch time is 10µs,
and the scheduling quantum is 100µs. This leads to a scheduling overhead of
about 9%, but an average response time of 100× 110/2 = 2750µs.

Alternatively, if we increase the quantum to 1000µs, the overhead is reduced
to 0.99%, but average response time increases to 100 × 1010/2 = 50500µs or
50ms.

9.3.1 Priority-based scheduling

Definition 9.27 (Priority). Priority-based scheduling is a broad class of
scheduling algorithms in which each process is assigned a numeric priority, and
the scheduler always dispatches the highest priority runnable task. A strict
priority scheduling algorithm is one where these priorities do not change.

Remarks:

• Processes with the same priority can be scheduled using some other
algorithm, such as RR.

Definition 9.28 (Starvation). Strict priority scheduling can lead to starva-
tion: low-priority processes may be starved by high-priority ones which remain
runnable and do not block. For this reason, strict priority systems are rare, and

9.3. UNIPROCESSOR INTERACTIVE SCHEDULING 73

processes that run at high priority in such systems are carefully written to avoid
hogging the processor. Instead most priority-based schedulers are not strict but
dynamic: the priorities of tasks change over time in response to system event
and application behavior.

Definition 9.29 (Process aging). Aging is one solution to starvation: Tasks
which have waited a long time are gradually increased in priority. Eventually,
any starving task ends up with the highest priority and runs. The original
priorities periodically reset.

Definition 9.30 (Multi-level queues). In practice, priority-based schedulers are
based on multi-level queues: there are a finite number priorities (e.g. 256),
and each has a queue of processes at that priority. Priority levels are grouped
into classes; queues in different classes are scheduled differently. For example,
interactive queues are high priority and scheduled using round-robin, batch and
background tasks are low-priority and scheduled FCFS, etc.

Definition 9.31 (Priority Inversion). Priority inversion occurs when a low-
priority Pl process holding a lock R is preempted by a high-priority process Ph,
which then attempts to acquire R. If when Ph blocks, a runnable medium-priority
process Pm gets to run, this inverts the effect of priority in the schedule.

Remarks:

• In the worst case, the medium-priority process can prevent the high-
priority process from running for an arbitrarily long duration.

• Priority inversion is an old and well-studied problem, but it recurs with
disturbing frequency as in the infamous case of the Mars Pathfinder
rover.

• Classically, there are two approaches to dealing with priority inversion.

Definition 9.32 (Priority inheritance). In a system with priority inheri-
tance, a process holding a lock temporarily acquires the priority of the highest-
priority process waiting for the lock until it releases the lock.

Remarks:

• Priority inheritance mostly solves the priority inversion problem, but
at a cost: the scheduler must now be involved in every lock ac-
quire/release. This increases runtime overhead.

Definition 9.33 (Priority ceiling). In a system with priority ceiling, a process
holding a lock runs at the priority of the highest-priority process which can ever
hold the lock, until it releases the lock.

Remarks:

• Priority ceiling incurs much less runtime overhead than priority inher-
itance, but potentially requires static analysis of the entire system to
work. Its use is therefore restricted to embedded real-time systems.

74 CHAPTER 9. CPU SCHEDULING

• A (rather conservative) approximation to priority ceiling is to disable
interrupts during the lock hold time, but this is only applicable in
limited situations.

Definition 9.34 (Hierarchical scheduling). A hierarchical scheduler is a
further generalization of multi-level queues: queues are instead organized in a
nested hierarchy or tree of scheduling domains. Within each domain (node
in tree), sub-nodes are scheduled according to a potentially different policy.

Definition 9.35 (Multilevel Feedback Queues). A multilevel feedback queue
scheduler is a class of multi-level queue which aims to deliver good response
for interactive jobs plus good throughput for background tasks. The key idea is
to penalize CPU-bound tasks in favor of I/O bound tasks. Processes which do
not block but run continuously during a time interval have their priority reduced
(a form of aging). I/O bound (including interactive) tasks tend to block, and
therefore remain at high priority. CPU-bound tasks are eventually re-promoted.

Remarks:

• MLFQ schedulers are a very general class of algorithm. Almost any
non-real-time scheduling algorithm can be approximated by multi-
level feedback queues.

Example 9.36 (The Linux o(1) scheduler). . This version of the Linux sched-
uler is a 140-level Multilevel Feedback Queue. Levels 0-99 (high priority) are
static, fixed, “real-time” priorities scheduled with FCFS or RR. Levels 100-139
are user tasks scheduling using RR, with priority aging for interactive (I/O
intensive) tasks.

This makes the complexity of scheduling independent of the number of tasks.
The scheduler uses two arrays of queues: “runnable” and “waiting”; when no
tasks remain in the “runnable” array, the two arrays are simply swapped.

Example 9.37 (The Linux “completely fair scheduler”). . In the CFS as
described in the documentation, a task’s priority is determined by how little
progress it has made adjusted by fudge factors over time. The task gets a “bonus”
if it yields or blocks early (this time is distributed evenly). The implementation
uses a Red-Black tree to maintain a sorted list of tasks, meaning that operations
are now O(logn), but still fast.

In fact, this is the very old idea of “fair queuing” from packet networks, also
known as “generalized processor scheduling”. It ensures a guaranteed service rate
for all processes, although CFS does not expose (or maintain) this guarantee.

Remarks:

• Stepping back a bit from the details, the schedulers we have seen in
Unix conflate protection domains with resource principals: priorities
and scheduling decisions are per-process (or threads). In practice,
applications may span multiple processes, and at the same time share
server processes with other applications. This means we may want
to allocate resources across processes, or provide separate resource
allocations within a single process – think of a web server, for instance.

9.4. REAL-TIME SCHEDULING 75

• Scheduling processes can also lead to unfairness between users: If I
run more compiler jobs than you, I get more CPU time.

• The algorithms we have seen do not deal cleanly with in-kernel pro-
cessing, for example interrupts or the overhead of scheduling itself.

• Some (though not all) of these issues are addressed by virtual machines
or containers.

9.4 Real-time scheduling

Definition 9.38 (Hard real-time). An application is hard real-time if its
correctness depends not only on the I/O actions it performs, but also the time
it takes to execute. Hard real-time task correctness is often expressed in terms
of deadlines: each task has a specific point in time by which it must have
completed in order to be correct.

Remarks:

• Hard real-time systems include engine management units (EMUs) for
cars, control systems for critical machinery, avionics, etc.

• In the general case, hard real-time scheduling is impossible: tasks can
appear at any time, with any deadlines. Hard real-time systems in
practice must impose constraints on the set of tasks they are prepared
to schedule so that they can guarantee correctness (including every
task meeting its deadline).

• In hard real-time systems, the execution time of each task is generally
known in advance along with the deadline

• Tasks in a hard real-time system can be periodic (they recur at regular
intervals) or aperiodic.

• If the task set is not know in advance, the system must reject tasks
for which no feasible schedule is possible, a process called admission
control.

• Real-time does not mean fast! Both hard- and soft-real-time schedul-
ing are about predictability, not performance. Hard real-time systems
in particular are often quite slow.

Definition 9.39 (Rate-monotonic scheduling). Rate-monotonic scheduling
(RMS) schedules periodic tasks by always running the task with shortest period
first. This is a static (offline) scheduling algorithm.

Suppose there are m (periodic) tasks, each task i has execution time Ci and
period Pi. Then RMS will find a feasible schedule if:

n∑
i=1

Ci
Pi)
≤ n(21/n − 1)

76 CHAPTER 9. CPU SCHEDULING

Remarks:

• The proof [LL73] is beyond scope of this course, but worth reading.

• This condition puts a limit on the processor utilization (the left-hand
side of the inequality) before deadlines get missed. As the number of
tasks increases, this tends to:

lim
n→∞

n(
n
√

2− 1) = ln 2 ≈ 0.693147 . . .

The implication here is that it’s hard to use more than 69% of the
system under RM.

• RM is one of the two classic hard real-time schedulers: it is extremely
efficient provided that tasks are periodic and the full workload is
known in advance – this is the case in many embedded control ap-
plications,

So what should we do if we need to run online (that is, we don’t know the
job mix in advance)?

Definition 9.40 (Earliest-deadline first). Earliest deadline first [EDF] schedul-
ing sorts tasks by deadline and always runs the earliest deadline first. It is
dynamic and online, and tasks are not necessarily periodic.

EDF is guaranteed to find a a feasible schedule if:

n∑
i=1

Ci
Pi)
≤ 1

I.e. it can use 100% of a processor, if we ignore the overhead of scheduling
and context switching.

Remarks:

• EDF is more complex (scheduling decisions can be o(log n) in the
number of tasks). It is typically implemented by maintaining a priority
queue of jobs sorted by deadline, often represented as a heap.

• It is much more flexible, and admission control can be performed
online.

• If utilization exceeds 100%, however, EDF is unstable: its behavior is
unpredictable.

Definition 9.41 (Soft real-time scheduling). In contrast to hard real-time sys-
tems, a soft real-time task has timing requirements which are non-strict, but
nevertheless affect the quality and utility of the result.

9.5. MULTIPROCESSOR SCHEDULING 77

Remarks:

• A classic example of a soft real-time task is multimedia, like video
playback. In practice, users can tolerate some degradation in the
quality of a video they are watching, but the task is still organized
around displaying a sequence of video frames at the correct time,
and/or playing a set of audio samples with the correct synchronization.

Definition 9.42 (Reservation-based scheduling). In contrast to conventional
priority-based schedulers, a reservation-based scheduling policy guarantees
a minimum number of CPU time units to each job.

Remarks:

• EDF scheduling can be used to provide a long-running task (such as
video playback) with a guaranteed processor rate, by breaking the task
into a set of periods (for example, video frame times) during which the
task is guaranteed a certain number of CPU cycles. This provides a
sequence of jobs to EDF, where the execution time of each one is the
number of cycles required, and the deadline is the end of the period.

• Such a scheduler actually provides a good approximation to weighted
fair queuing, which you may be familiar with from networking.

9.5 Multiprocessor scheduling

So far we’ve considered scheduling a single processor (and its workload) in iso-
lation. As soon as we have more than one processor to manage, things get
much more complicated. Fully general multiprocessor scheduling is NP-hard -
it tends to reduce to 2-dimensional bin-packing. The two-dimensionality comes
from having to decide which core to run a given thread on as well as when to
dispatch it on that core.

In general, multiprocessor scheduling is beyond the scope of this course. We
just present a simplified overview here, starting with some simplifying assump-
tions:

• The system can always preempt a task. This rules out some very small
embedded systems or hard-real-time systems (and early PC and Macs, it
turns out) but otherwise is reasonable.

• The scheduler is work-conserving.

Definition 9.43 (Work conserving). A scheduler is work conserving if no
processor is ever idle when there is a runnable task.

9.5.1 Sequential programs on multiprocessors

Scheduling a collection of sequential programs on multiprocessors is relatively
simple, although more complex than uniprocessor scheduling.

Definition 9.44 (Naive sequential multiprocessor scheduling). The simplest
model for multiprocessor scheduling maintains a single system-wide run queue.
Whenever an individual processor makes a scheduling decision, it picks a thread
from the run queue to remove and dispatch.

78 CHAPTER 9. CPU SCHEDULING

Remarks:

• As described, this scheduler is work-conserving (modulo overhead).

• We haven’t said anything about the per-core scheduling algorithm
used when a core looks at the run queue. It can be almost any
uniprocessor scheme, but note that most of the guarantees vanish.
For example, priority invariants might not be maintained across the
whole system.

• Basic multi-queue models from queuing theory can be applied to an-
alyze a system like this, but one must also take into account the over-
heads of locking and sharing the queue.

• In many situations, the single run queue becomes a significant bottle-
neck due to the need to globally lock it whenever any core needs to
reschedule.

• Threads or tasks in this scheme also end up being allocated arbitrarily
to cores, and so tend to move frequently between cores and, more
critically, between different groups of cores sharing a cache. This
dramatically reduces locality and hence performance.

Definition 9.45 (Affinity-based scheduling). To remove the bottleneck of a
single run queue and improve cache locality of running processes, affinity-based
scheduling tries to keep jobs on one core as much as possible. Each core has its
own run queue, and jobs are periodically re-balanced between all the individual
queues.

Remarks:

• This is much more efficient, but note that it is not work conserving
any more. A processor can end up with an empty run queue when
other queues have jobs which are runnable, but not currently running,

• One way to mitigate this is for a processor which is idle to “steal” a
job from a more heavily loaded processor.

Definition 9.46 (Work-stealing). A work-stealing scheduler allows one core
which would otherwise be idle to “steal” runnable jobs from neighboring cores
so as keep doing useful work.

9.5.2 Parallel programs on multiprocessors

Things get much more complex when we consider jobs not as single threads,
but as collections of parallel threads which coordinate among themselves. For
example, global barriers in parallel applications present a significant challenge:
one slow thread has huge effect on performance.

Multiple threads in many (but not all) applications would benefit from cache
sharing, and different competing applications on the same machine can pollute
each others’ caches. However, in other cases, it’s better to have each thread have
its own cache and thereby maximize use of the cache across the whole machine.

BIBLIOGRAPHY 79

The first case leads to clustering threads of the same process on a single socket,
whereas the second leads to spreading them across a machine.

This topic is huge, and an active area of research (the more so when we
consider that not all cores these days are uniform).

Bibliography

[LL73] C. L. Liu and James W. Layland. Scheduling algorithms for multi-
programming in a hard-real-time environment. J. ACM, 20(1):46–61,
January 1973.

Chapter 10

Input / output

I wouldn’t trust any critical
program created by someone who
has never written an interrupt
service routine.

Chandu Thekkath

Definition 10.1 (I/O subsystem). Every OS has an I/O subsystem, which
handles all interaction between the machine and the outside worlds. The I/O
subsystem abstracts individual hardware devices to present a more or less uni-
form interface, provides a way to name I/O devices, schedules I/O operations
and integrates them with the rest of the system, and contains the low-level code
to interface with individual hardware devices.

Remarks:

• The I/O subsystem usually divides neatly into device drivers and
generic functionality.

• In some OSes, like Linux, the I/O subsystem evolved organically over
time and the boundary between it and the rest of the OS is sometimes
a little blurred. In others, like MacOS, it’s clearly delineated (the I/O
subsystem in MacOS is called DeviceKit).

• Not all the I/O subsystem is necessarily in the kernel. It is possible
to run most of it (including the device drivers) in user space, as in a
microkernel.

We’ll start with recapping the basic concepts of I/O.

Definition 10.2 (Device). To an OS programmer, a device is a piece of hard-
ware visible from software. It typically occupies some location on a bus or I/O
interconnect, and exposes a set of hardware registers which are either memory
mapped or (in the case of x86 machines) in I/O space. A device is also usu-
ally a source of interrupts, and may initiate Direct Memory Access (DMA)
transfers.

80

10.1. DEVICES AND DATA TRANSFER 81

Remarks:

• Hopefully, the above definition should not be new to you (if you have
taken the ETH Systems Programming course).

• This definition doesn’t say a lot about what a device is physically. In
practice this is difficult: in the past, a device really was just that: a
piece of metal with connectors on it. Today, it might be some bundle
of functionality somewhere on a chip. Anything that isn’t a processor,
RAM, or interconnect is often a device.

The software component of the OS that talks to a particular device is called
the driver.

Definition 10.3 (Device driver). The device driver for a particular device is
the software in the OS which is understands the specific register and descriptor
formats, interrupt models, and internal state machines of a given device and
abstracts this to the rest of the OS.

Remarks:

• The driver can be thought of as sitting between hardware and rest of
the OS.

• A given OS has a driver model which defines the kinds of abstractions
a device driver will provide.

• In Unix, drivers run in the kernel for the most part, but there is not
necessary reason for this.

• The concept of a driver long predates object-oriented program. This
can lead to some confusion, since the term can equally refer to the body
of code which is written to manage a particular piece of hardware (or a
group of similar models of hardware device), and the runtime software
object which manages a single device.

In the rest of this chapter, we’re going to talk about “devices” or “the de-
vice” at lot, when we actually mean “the representation inside the OS that
corresponds to a hardware device”. To the OS, what matters is what it thinks
a device is, rather than what the device physically is. Indeed, we’ll see pseudo-
devices which don’t physically exist at all.

10.1 Devices and data transfer

The whole of this section should be familiar to you from the “Systems Program-
ming and Computer Architecture” course.

Definition 10.4 (Device registers). A device register is a physical address
location which is used for communicating with a device using reads and writes.

82 CHAPTER 10. INPUT / OUTPUT

Remarks:

• A hardware register is not memory, but it sits in the physical address
space. There is no guarantee that reading from a device register will
return the same value that was last written to it.

• Reading a device register can return device input data, or status in-
formation about the device.

• Writing a device register can send it data to be output, or configure
the device.

• In addition to the above, however, both read and writing to the register
can trigger actions in the device hardware.

Definition 10.5 (Programmed I/O). Programmed I/O consists of causing
input/output to occur by writing data values to hardware registers from soft-
ware (output), or reading values from hardware registers into CPU registers in
software (input).

Algorithm 10.6 Programmed I/O input

1: inputs
2: l: number of words to read from input
3: d: buffer of size l
4: d ← empty buffer
5: while length(d) < l do
6: repeat
7: s ← read from status register
8: until s indicates data ready
9: w ← read from data register

10: d.append(w)
11: end while
12: return

Remarks:

• You can construct the corresponding output algorithm by symmetry
arguments.

• Programmed I/O is the simplest way for software on a core to com-
municate with a device.

• It is fully synchronous: the CPU has to write to the register to cause
output to happen there and then, and must read from the register for
input. There is no buffering.

• It is also polled: there is no way for a device to signal that it has data
ready, or it is ready to send data.

Definition 10.7 (Interrupt). An interrupt is a signal from a device to a CPU
which causes the latter to take an exception and execute an interrupt service
routine (ISR), also known as an interrupt handler.

10.1. DEVICES AND DATA TRANSFER 83

Algorithm 10.8 Interrupt-driven I/O cycle

1 Initiating (software)

1: Process A performs a blocking I/O operation
2: OS initiates an I/O operation with the device
3: Scheduler blocks Process A, runs another process

2 Processing (hardware)

4: Device performs the I/O operation
5: Raises device interrupt when complete, or an error occurs

3 Termination (software)

6: Currently running process is interrupted
7: Interrupt handler runs, processes any input data
8: Scheduler makes Process A runnable again

4 Resume (software)

9: Process A restarts execution.

Remarks:

• Interrupts solve the polling problem, and so decouple the software and
hardware to some extent.

• The CPU still has to copy output data to the device when it initi-
ates the request, and/or copy input data from the device when the
operation completes.

• To further decouple the two, we need to allow the device to do the
copy itself.

Definition 10.9 (Direct Memory Access). Using Direct Memory Access or
DMA, a device can be given a pointer to buffers in main memory and transfer
data to and from those buffers without further involvement from the CPU.

Remarks:

• DMA in its simple form mean that the processor’s involvement at the
start and end of an I/O operation is minimized, since the data itself
does not need to be copied.

• DMA is typically performed by the device, though in older hardware a
separate DMA engine was provided which essentially performed pro-
grammed I/O on a device while the CPU did something else.

• DMA saves bus bandwidth, since the data doesn’t need to be copied
to through the CPU’s registers.

• Typically only a single interrupt is needed, so signal the end of a
complete DMA copy.

84 CHAPTER 10. INPUT / OUTPUT

• The real value of DMA comes when the device uses it both to transfer
data to and from main memory, but also to read new I/O operations
from a list in memory, and write completion information back to main
memory. This is the concept of “descriptor rings” that you saw last
year, and further decouples CPU and device.

• DMA is, for the most part, physical (not virtual) access to memory
(but see IOMMUs, below). This means that a virtual address in a
user program or the kernel (if the kernel runs in virtual address space,
which is common) must be translated to a physical address before
being handed to the device.

• DMA transfers to and from main memory may or may not be coherent
with processor caches. If not, device drivers must take great care to
flush (clean) and invalidate processor caches before and after DMA
transactions.

10.2 Dealing with asynchrony

Device drivers have to deal with the fundamentally asynchronous nature of I/O:
the system must respond to unexpected I/O events, or to events which it knows
are going to happen, but not when. Input data arrives without warning, and
an input operations takes an unknown period of time. A busy device becomes
capable of accepting more output data at an unspecified time in the future, and
it’s not clear when an output operation is going to complete.

Definition 10.10 (First-level interrupt service routine). The First-level In-
terrupt Service Routine or FLISR is the code that executes immediately as
a result of the interrupt.

Remarks:

• An FLISR runs regardless of what else is happening in the kernel
(unless interrupts are disabled).

• As a result, it can’t change much since the normal kernel invariants
might not hold: it can’t allocate memory from the kernel heap (if the
kernel has one), it can’t acquire or release locks, and it should not
take too long to finish.

Since I/O is for the most part interrupt-driven, but data is transferred to
and from processes which perform explicit operations to send and receive it.
Consequently, data must be buffered between the process and the interrupt
handler, and the two must somehow rendezvous to exchange data.

There are three canonical solutions to this problem: deferred procedure calls,
driver threads, and non-blocking kernels.

Definition 10.11. Deferred procedure calls. A Deferred procedure call,
sometimes known as a 2nd-level interrupt handler, a soft interrupt han-
dler, or a slow interrupt handler, is a program closure created by the 1st-level
interrupt handler. It is run later (hence the name) by any convenient process,
typically just before the kernel is exited.

10.2. DEALING WITH ASYNCHRONY 85

Remarks:

• DPCs are extremely efficient, and a common solution to the ren-
dezvous problem (e.g. in VMS, Windows, BSD Unix, etc.).

• The closure itself is small (a few words), and can be statically allocated
(since you only ever need one outstanding per-device) so doesn’t need
to be dynamically allocated inside the FLISR.

• DPCs do need to be queued up for execution once the interrupt context
has finished, so we need a lock-free queue to hold them.

Definition 10.12 (Driver thread). A driver thread, sometimes called an in-
terrupt handler thread, serves as an intermediary between interrupt service
routines and processes. The thread starts blocked waiting for a signal either from
the user process or the ISR. When an interrupt occurs or a user process issues a
request, the thread is unblocked (this operation can be done inside an ISR) and
it performs whatever I/O processing is necessary before going back to sleep.

Remarks:

• Driver threads are heavyweight: even if they only run in the kernel,
the still require a stack and a (same address space) context switch
to and from them to perform any I/O requests. They therefore take
time (cycles) and space (memory). The latter also translates into time
(more cache misses).

• They are conceptually simple, and can be understood more intuitively
than DPCs. Consequently, if many kernel and/or driver developers are
of intermediate skill and ability (such as with Linux), this may be the
preferred option from an engineering perspective.

The third alternative, used in microkernels and exokernels, is to have the
FLISR convert the interrupt into a message to be sent to the driver process.
This is conceptually similar to a DPC, but is even simpler: it simply directs the
process to look at the device. However, it does require the FLISR to synthesize
an IPC message, which might be expensive. In non-preemptive kernels which
only process exceptions serially, however, this is not a problem, since the kernel
does not need locks.

Definition 10.13 (Bottom-half handler). The part of a device driver code which
executes either in the interrupt context or as a result of the interrupt (like a
DPC) is the bottom half.

Definition 10.14 (Top-half handler). The part of a device driver which is called
“from above”, i.e. from user or OS processes, is the top half.

Remarks:

• Note that the top half can be scheduled, and so the time it uses can
be accounted to some process, whereas the bottom half either isn’t
scheduled (the FLISR) or is run by whatever is handy (the driver
thread or the current process).

86 CHAPTER 10. INPUT / OUTPUT

• Note that this is not the Linux terminology, but it is the one used
by pretty much all other OSes (including other Unix systems, all of
which predate Linux). In Linux, for unknown reasons, the “top half”
is the FLISR, while the DPC or driver thread is the “bottom half”.

10.3 Device models

Definition 10.15 (Device model). The device model of an OS is the set of
key abstractions that define how devices are represented to the rest of the system
by their individual drivers.

Remarks:

• The device model fulfills the role of device abstraction in the system.
It includes the basic API to a device driver, but goes beyond this:
it encompasses how devices are named throughout the system, and
how their interconnections are represented as well. It also specifies
the relationship between physical devices and device drivers.

As a rough example, we’ll discuss the Unix device model here. Unix divides
devices into three classes, character, block, and network devices.

Definition 10.16 (Character devices). A character device in Unix is used
for “unstructured I/O”, and presents a byte-stream interface with no block bound-
aries.

Remarks:

• Character devices are accessed by single byte or short string get/put
operations.

• In practice, buffering implemented by libraries

• Examples include keyboards, serial lines (UARTS), mice, USB-controlled
missile launchers, etc.

Definition 10.17 (Block devices). A block device in Unix is intended for
“structured I/O”, and deals with “blocks” of data at a time - for example, disk
blocks.

Remarks:

• Block devices often resemble files more than simply in being named
by the filing system: storage devices like disks or SSDs are seekable
and mappable like files. Access to them often uses the Unix buffer
cache. We’ll see more of block devices as a basis for file systems in
Chapter 20.

• In practice, the distinction between character and block devices is
somewhat arbitrary.

Definition 10.18 (Network devices). A network device in Unix corresponds
to a (real or virtual) network interface adapter. It is accessed through a rather
different API to character and block devices.

10.3. DEVICE MODELS 87

Remarks:

• Arguably, network interfaces don’t fit nicely into either of these models
(they came along much later in the development of Unix), and indeed
NICs per se in Unix are generally not abstracted as device. Instead,
streams of packets can be send and received through sockets or special
character devices like /dev/tun.

• We’ll look at network devices in more detail later in Chapter ??.

Definition 10.19 (Pseudo-devices). A pseudo-device is a software service
provided by the OS kernel which it is convenient to abstract as a device, even
though it does not correspond a physical piece of hardware.

Example 10.20. Unix systems have a variety of pseudo-devices, such as:

• /dev/mem A character device corresponding to the entire main memory of
the machine

• /dev/random Generates random numbers when read from.

• /dev/null Anything written is discarded, read always returns end-of-file.

• /dev/zero Always reads as zeroes.

• /dev/loop Block device for making a file look like an entire file system.

• /dev/loop Block device for making a file look like an entire file system.

How are devices identified inside the kernel?

Example 10.21 (Traditional Unix device configuration). In older Unix sys-
tems, devices were named inside the kernel by a pair of bytes: the major and
minor device numbers.

The Major device number identified the class of device (e.g., disk, CD-
ROM, keyboard).

The Minor device number identified a specific device within a class.
In addition, a third “bit” determined whether the device was a character or

block device.

As a naming scheme, this was fine when there were very few different devices
and device types, but things have changed a lot since then. Not only are there a
large number of different models of device that might be plugged into a computer
(literally tens of millions), they can also be connected in a variety of different
ways.

Definition 10.22 (Device discovery). Most modern OSes (with the exception of
some small embedded systems) perform device discovery: the process of finding
and enumerating all hardware devices in the system and storing metadata about
them (where and what they are) in some kind of queryable data store.

Example 10.23 (Linux sysfs). . Modern versions of Linux store this infor-
mation in the kernel, but expose it to curious user programs via a “pseudo file
system” (i.e. something that looks like a file system but isn’t) called sysfs.

88 CHAPTER 10. INPUT / OUTPUT

While sysfs is a hierarchical directory structure, devices appear in it multiple
times, organized by type, connection, etc.

sysfs is a very strange way to build a database (which is what it essentially
is), but does fit in the Unix philosophy of “everything is a file”.

When devices are plugged or unplugged, the contents of sysfs change. User
programs can get notification of these changes by listening on a special socket.

Linux device drivers are also more dynamic than in the old days: they are
typically implemented as loadable “kernel modules”, to be loaded on demand
when the kernel discovers a device that needs a particular driver. The initial
list of drivers is given at boot time, but a daemon can load more on demand if
required.

10.4 Device configuration

In addition to simply discovering a device, and finding out how to access it, the
OS often has to configure the device and other devices in order to make it work.

Example 10.24 (USB hotplug). When a USB device (such as a USB thumb
drive) is plugged in, a number of different devices are involved, at the very least:

• The USB drive itself

• The USB host bus adapter or HBA, which interfaces the USB device
network to the rest of the computer.

• The USB hub that the device was plugged into. This can easily not be a
physically separate hub, but one integrated onto the motherboard or built
into another device (such as the HBA).

Broadly speaking, when the device is plugged in, the HBA notifies the OS that
something has been plugged in. The HBA driver then talks to the HBA to enu-
merate the devices attached to it, including the hubs – USB is organized ap-
proximately as a tree of devices where the non-leaf nodes are hubs. The HBA
adapter then has to assign new bus and device identifiers to anything that has
changed and reconfigure the HBA and switches. It also discovers the new device
by finding out what it is – USB devices, like PCI devices, describe themselves
with a 4-byte code.

After this, the OS can start the appropriate driver for the device, and tell it
where in the USB hierarchy the new device is.

Sometimes, more complex resource allocation is required.

Example 10.25 (PCI configuration). Configuration of PCI (or, today, PCI
Express) devices at a high level looks very similar to that of USB, except that
the “PCIe Root Complex” is used instead of the HBA, and “PCIe bridges” are
used instead of USB hubs.

However, unlike in USB, where a driver for something like a USB stick talks
to the physical device by sending it messages via the HBA, in PCIe all devices
are memory mapped. The regions of memory they need to be mapped have to be
allocated by the OS from the physical address space of the machine. This is a
complex process, which continues to cause problems for OS developers.

10.5. NAMING DEVICES 89

Moreover, almost all devices require interrupt routing.

Definition 10.26 (Interrupt routing). Interrupt routing is the process of
configuring interrupt controllers in the system to ensure that when a device
raises an interrupt, it is delivered to the correct vector on the correct core (or
group of cores).

Remarks:

• Interrupt routing is one of the things that is getting much more com-
plex over time. It is not unusual for a modern PC to have 4 or 5
interrupt controllers between a device and the CPUs, and even phones
can have 3 or more.

• This is also a resource allocation problem: vector numbers and inter-
mediate interrupt numbers between interrupt controllers must all be
allocated.

• This problem, like discovery and other kinds of configuration, is a
generic issue: it is not the job of a single device driver, but instead
the function of the common part of the I/O subsystem (though the
PCI bridge drivers, USB HBA drivers, etc. may also play a role).

10.5 Naming devices

Once configured, an OS needs a way to refer to devices (again, driver instances
really) from user space (for both user programs and system daemons). This
is, of course, a naming problem, and it is important to understand what kind
of problem. For example, it’s useful if the same device has the same name on
different computers, rather than giving every device in the world a unique name.

Example 10.27. In older versions of Unix, where every device was identified
by a (major, minor) pair of integers, devices were named using the file system by
creating a special kind of file to represent each device, using the mknod command.

We’ll cover the Unix file system later on in Chapters 19 and 20, but as a
preview, the major and minor device numbers were stored in the inode, meaning
the “device file” took up very little space.

Devices are traditionally grouped in the directory /dev. For example:

• /dev/sda: First SCSI/SATA/SAS disk

• /dev/sda5: Fifth partition on the above

• /dev/cdrom0: First DVD-ROM drive

• /dev/ttyS1: Second UART

In the truly old days, all drivers were compiled into the kernel. Each driver
probed the hardware itself for any supported devices, and the system administra-
tor populated /dev manually using mknod when a new device was connected.

Modern hardware trends have resulted in a huge explosion of devices, and
this approach is unworkable. People simply want to plug a device in and have
it work.

90 CHAPTER 10. INPUT / OUTPUT

Example 10.28. In modern versions of Linux (including Android), /dev still
contains files corresponding to all the devices, but /dev itself is no longer a
“real” file system (i.e. residing on storage). Instead, it is an illusion created by
a device discovery process (called udev) which repeatedly polls sysfs.

10.6 Protection

Another function of the I/O subsystem is to perform protection:

• Ensuring that only authorized processes (such as user-space drivers, or
the kernel) can directly access devices.

• Ensuring that only authorized processes can access the services offered by
the device driver

• Ensuring that a device cannot be configured to do some malicious to the
rest of the system

There are a number of mechanisms for achieving this.
Putting device drivers in the kernel makes it easy to control access to the

hardware, but you have to trust the device drivers to do the right thing since
they are now part of the kernel.

Unix controls access to the drivers themselves by representing them as files,
and thereby leveraging the protection model of the file system.

The last point is more difficult. DMA-capable devices are in principle capa-
ble of writing to physical memory anywhere in the system, and so it is important
to check any addresses passed to them by the device driver. Even if you trust
the driver, it has to make sure that it’s not going to ask the device to DMA
somewhere it shouldn’t.

One approach is to put a memory management unit (MMU) on the path
between the device and main memory, in addition to each core having one. Such
a unit is called an IOMMU, and its main purpose is to provide I/O virtualization
to virtual machines, which we’ll cover in a later chapter.

10.7 More on I/O

There’s a lot more to say about I/O, since it’s one of the most important things
the OS does. However, we’ll see more of this later when we look at virtual
memory 17, paging 18, storage 20, and networking 21.

Chapter 11

Byzantine Agreement

In order to make flying safer, researchers studied possible failures of various
sensors and machines used in airplanes. While trying to model the failures,
they were confronted with the following problem: Failing machines did not just
crash, instead they sometimes showed arbitrary behavior before stopping com-
pletely. With these insights researchers modeled failures as arbitrary failures,
not restricted to any patterns.

Definition 11.1 (Byzantine). A node which can have arbitrary behavior is
called byzantine. This includes “anything imaginable”, e.g., not sending any
messages at all, or sending different and wrong messages to different neighbors,
or lying about the input value.

Remarks:

• Byzantine behavior also includes collusion, i.e., all byzantine nodes
are being controlled by the same adversary.

• We assume that any two nodes communicate directly, and that no
node can forge an incorrect sender address. This is a requirement, such
that a single byzantine node cannot simply impersonate all nodes!

• We call non-byzantine nodes correct nodes.

Definition 11.2 (Byzantine Agreement). Finding consensus as in Definition
8.1 in a system with byzantine nodes is called byzantine agreement. An
algorithm is f -resilient if it still works correctly with f byzantine nodes.

Remarks:

• As for consensus (Definition 8.1) we also need agreement, termination
and validity. Agreement and termination are straight-forward, but
what about validity?

91

92 CHAPTER 11. BYZANTINE AGREEMENT

11.1 Validity

Definition 11.3 (Any-Input Validity). The decision value must be the input
value of any node.

Remarks:

• This is the validity definition we used for consensus, in Definition 8.1.

• Does this definition still make sense in the presence of byzantine
nodes? What if byzantine nodes lie about their inputs?

• We would wish for a validity definition which differentiates between
byzantine and correct inputs.

Definition 11.4 (Correct-Input Validity). The decision value must be the input
value of a correct node.

Remarks:

• Unfortunately, implementing correct-input validity does not seem to
be easy, as a byzantine node following the protocol but lying about
its input value is indistinguishable from a correct node. Here is an
alternative.

Definition 11.5 (All-Same Validity). If all correct nodes start with the same
input v, the decision value must be v.

Remarks:

• If the decision values are binary, then correct-input validity is induced
by all-same validity.

• If the input values are not binary, but for example from sensors that
deliever values in R, all-same validity is in most scenarios not really
useful.

Definition 11.6 (Median Validity). If the input values are orderable, e.g.
v ∈ R, byzantine outliers can be prevented by agreeing on a value close to the
median of the correct input values – how close depends on the number of byzan-
tine nodes f .

Remarks:

• Is byzantine agreement possible? If yes, with what validity condition?

• Let us try to find an algorithm which tolerates 1 single byzantine node,
first restricting to the so-called synchronous model.

Model 11.7 (synchronous). In the synchronous model, nodes operate in
synchronous rounds. In each round, each node may send a message to the
other nodes, receive the messages sent by the other nodes, and do some local
computation.

Definition 11.8 (synchronous runtime). For algorithms in the synchronous
model, the runtime is simply the number of rounds from the start of the ex-
ecution to its completion in the worst case (every legal input, every execution
scenario).

11.2. HOW MANY BYZANTINE NODES? 93

11.2 How Many Byzantine Nodes?

Algorithm 11.9 Byzantine Agreement with f = 1.

1: Code for node u, with input value x:

Round 1

2: Send tuple(u, x) to all other nodes
3: Receive tuple(v, y) from all other nodes v
4: Store all received tuple(v, y) in a set Su

Round 2

5: Send set Su to all other nodes
6: Receive sets Sv from all nodes v
7: T = set of tuple(v, y) seen in at least two sets Sv, including own Su
8: Let tuple(v, y) ∈ T be the tuple with the smallest value y
9: Decide on value y

Remarks:

• Byzantine nodes may not follow the protocol and send syntactically in-
correct messages. Such messages can easily be deteced and discarded.
It is worse if byzantine nodes send syntactically correct messages, but
with a bogus content, e.g., they send different messages to different
nodes.

• Some of these mistakes cannot easily be detected: For example, if a
byzantine node sends different values to different nodes in the first
round; such values will be put into Su. However, some mistakes can
and must be detected: Observe that all nodes only relay information
in Round 2, and do not say anything about their own value. So, if a
byzantine node sends a set Sv which contains a tuple(v, y), this tuple
must be removed by u from Sv upon receiving it (Line 6).

• Recall that we assumed that nodes cannot forge their source address;
thus, if a node receives tuple(v, y) in Round 1, it is guaranteed that
this message was sent by v.

Lemma 11.10. If n ≥ 4, all correct nodes have the same set T .

Proof. With f = 1 and n ≥ 4 we have at least 3 correct nodes. A correct node
will see every correct value at least twice, once directly from another correct
node, and once through the third correct node. So all correct values are in T .
If the byzantine node sends the same value to at least 2 other (correct) nodes,
all correct nodes will see the value twice, so all add it to set T . If the byzantine
node sends all different values to the correct nodes, none of these values will
end up in any set T .

Theorem 11.11. Algorithm 11.9 reaches byzantine agreement if n ≥ 4.

Proof. We need to show agreement, any-input validity and termination. With
Lemma 11.10 we know that all correct nodes have the same set T , and therefore

94 CHAPTER 11. BYZANTINE AGREEMENT

agree on the same minimum value. The nodes agree on a value proposed by any
node, so any-input validity holds. Moreover, the algorithm terminates after two
rounds.

Remarks:

• If n > 4 the byzantine node can put multiple values into T .

• Algorithm 11.9 only provides any-input agreement, which is question-
able in the byzantine context. One can achieve all-same validity by
choosing the smallest value that occurs at least twice, if a value ap-
pears at least twice.

• The idea of this algorithm can be generalized for any f and n >
3f . In the generalization, every node sends in every of f + 1 rounds
all information it learned so far to all other nodes. In other words,
message size increases exponentially with f .

• Does Algorithm 11.9 also work with n = 3?

Theorem 11.12. Three nodes cannot reach byzantine agreement with all-same
validity if one node among them is byzantine.

Proof. We will assume that the three nodes satisfy all-same validity and show
that they will violate the agreement condition under this assumption.

In order to achieve all-same validity, nodes have to deterministically decide
for a value x if it is the input value of every correct node. Recall that a Byzantine
node which follows the protocol is indistinguishable from a correct node. Assume
a correct node sees that n−f nodes including itself have an input value x. Then,
by all-same validity, this correct node must deterministically decide for x.

In the case of three nodes (n − f = 2) a node has to decide on its own
input value if another node has the same input value. Let us call the three
nodes u, v and w. If correct node u has input 0 and correct node v has input
1, the byzantine node w can fool them by telling u that its value is 0 and
simultaneously telling v that its value is 1. By all-same validity, this leads to u
and v deciding on two different values, which violates the agreement condition.
Even if u talks to v, and they figure out that they have different assumptions
about w’s value, u cannot distinguish whether w or v is byzantine.

Theorem 11.13. A network with n nodes cannot reach byzantine agreement
with f ≥ n/3 byzantine nodes.

Proof. Assume (for the sake of contradiction) that there exists an algorithm
A that reaches byzantine agreement for n nodes with f ≥ dn/3e byzantine
nodes. We will show that A cannot satisfy all-same validity and agreement
simultaneously.

Let us divide the n nodes into three groups of size n/3 (either bn/3c or
dn/3e, if n is not divisible by 3). Assume that one group of size dn/3e ≥ n/3
contains only Byzantine and the other two groups only correct nodes. Let one
group of correct nodes start with input value 0 and the other with input value
1. As in Lemma 11.12, the group of Byzantine nodes supports the input value
of each of the node, so each correct node observes at least n − f nodes who
support its own input value. Because of all-same validity, every correct node

11.3. THE KING ALGORITHM 95

has to deterministically decide on its own input value. Since the two groups
of correct nodes had different input values, the nodes will decide on different
values respectively, thus violating the agreement property.

11.3 The King Algorithm

Algorithm 11.14 King Algorithm (for f < n/3)

1: x = my input value
2: for phase = 1 to f + 1 do

Round 1

3: Broadcast value(x)

Round 2

4: if some value(y) received at least n− f times then
5: Broadcast propose(y)
6: end if
7: if some propose(z) received more than f times then
8: x = z
9: end if

Round 3

10: Let node vi be the predefined king of this phase i
11: The king vi broadcasts its current value w
12: if received strictly less than n− f propose(y) then
13: x = w
14: end if
15: end for

Lemma 11.15. Algorithm 11.14 fulfills the all-same validity.

Proof. If all correct nodes start with the same value, all correct nodes propose
it in Round 2. All correct nodes will receive at least n − f proposals, i.e., all
correct nodes will stick with this value, and never change it to the king’s value.
This holds for all phases.

Lemma 11.16. If a correct node proposes x, no other correct node proposes y,
with y 6= x, if n > 3f .

Proof. Assume (for the sake of contradiction) that a correct node proposes value
x and another correct node proposes value y. Since a good node only proposes
a value if it heard at least n−f value messages, we know that both nodes must
have received their value from at least n− 2f distinct correct nodes (as at most
f nodes can behave byzantine and send x to one node and y to the other one).
Hence, there must be a total of at least 2(n − 2f) + f = 2n − 3f nodes in the
system. Using 3f < n, we have 2n− 3f > n nodes, a contradiction.

Lemma 11.17. There is at least one phase with a correct king.

96 CHAPTER 11. BYZANTINE AGREEMENT

Proof. There are f + 1 phases, each with a different king. As there are only f
byzantine nodes, one king must be correct.

Lemma 11.18. After a round with a correct king, the correct nodes will not
change their values v anymore, if n > 3f .

Proof. If all correct nodes change their values to the king’s value, all correct
nodes have the same value. If some correct node does not change its value to
the king’s value, it received a proposal at least n − f times, therefore at least
n−2f correct nodes broadcasted this proposal. Thus, all correct nodes received
it at least n − 2f > f times (using n > 3f), therefore all correct nodes set
their value to the proposed value, including the correct king. Note that only
one value can be proposed more than f times, which follows from Lemma 11.16.
With Lemma 11.15, no node will change its value after this round.

Theorem 11.19. Algorithm 11.14 solves byzantine agreement.

Proof. The king algorithm reaches agreement as either all correct nodes start
with the same value, or they agree on the same value latest after the phase
where a correct node was king according to Lemmas 11.17 and 11.18. Because
of Lemma 11.15 we know that they will stick with this value. Termination is
guaranteed after 3(f + 1) rounds, and all-same validity is proved in Lemma
11.15.

Remarks:

• Algorithm 11.14 requires f + 1 predefined kings. We assume that the
kings (and their order) are given. Finding the kings indeed would be
a byzantine agreement task by itself, so this must be done before the
execution of the King algorithm.

• Do algorithms exist which do not need predefined kings? Yes, see
Section 11.5.

• Can we solve byzantine agreement (or at least consensus) in less than
f + 1 rounds?

11.4 Lower Bound on Number of Rounds

Theorem 11.20. A synchronous algorithm solving consensus in the presence
of f crashing nodes needs at least f+1 rounds, if nodes decide for the minimum
seen value.

Proof. Let us assume (for the sake of contradiction) that some algorithm A
solves consensus in f rounds. Some node u1 has the smallest input value x, but
in the first round u1 can send its information (including information about its
value x) to only some other node u2 before u1 crashes. Unfortunately, in the
second round, the only witness u2 of x also sends x to exactly one other node u3

before u2 crashes. This will be repeated, so in round f only node uf+1 knows
about the smallest value x. As the algorithm terminates in round f , node uf+1

will decide on value x, all other surviving (correct) nodes will decide on values
larger than x.

11.5. ASYNCHRONOUS BYZANTINE AGREEMENT 97

Remarks:

• A general proof without the restriction to decide for the minimum
value exists as well.

• Since byzantine nodes can also just crash, this lower bound also holds
for byzantine agreement, so Algorithm 11.14 has an asymptotically
optimal runtime.

• So far all our byzantine agreement algorithms assume the synchronous
model. Can byzantine agreement be solved in the asynchronous model?

11.5 Asynchronous Byzantine Agreement

Algorithm 11.21 Asynchronous Byzantine Agreement (Ben-Or, for f < n/10)

1: xu ∈ {0, 1} / input bit
2: r = 1 / round
3: decided = false
4: Broadcast propose(xu,r)
5: repeat
6: Wait until n− f propose messages of current round r arrived
7: if at least n/2 + 3f + 1 propose messages contain same value x then
8: xu = x, decided = true
9: else if at least n/2+f +1 propose messages contain same value x then

10: xu = x
11: else
12: choose xu randomly, with Pr[xu = 0] = Pr[xu = 1] = 1/2
13: end if
14: r = r + 1
15: Broadcast propose(xu,r)
16: until decided (see Line 8)
17: decision = xu

Lemma 11.22. Let a correct node choose value x in Line 10, then no other
correct node chooses value y 6= x in Line 10.

Proof. For the sake of contradiction, assume that both 0 and 1 are chosen
in Line 10. This means that both 0 and 1 had been proposed by at least
n/2 + 1 out of n− f correct nodes. In other words, we have a total of at least
2 · n/2 + 2 = n+ 2 > n− f correct nodes. Contradiction!

Theorem 11.23. Algorithm 11.21 solves binary byzantine agreement as in Def-
inition 11.2 for up to f < n/10 byzantine nodes.

Proof. First note that it is not a problem to wait for n− f propose messages in
Line 6, since at most f nodes are byzantine. If all correct nodes have the same
input value x, then all (except the f byzantine nodes) will propose the same
value x. Thus, every node receives at least n− 2f propose messages containing
x. Observe that for f < n/10, we get n − 2f > n/2 + 3f and the nodes will

98 CHAPTER 11. BYZANTINE AGREEMENT

decide on x in the first round already. We have established all-same validity!
If the correct nodes have different (binary) input values, the validity condition
becomes trivial as any result is fine.

What about agreement? Let u be the first node to decide on value x (in
Line 8). Due to asynchrony another node v received messages from a different
subset of the nodes, however, at most f senders may be different. Taking
into account that byzantine nodes may lie (send different propose messages to
different nodes), f additional propose messages received by v may differ from
those received by u. Since node u had at least n/2 + 3f + 1 propose messages
with value x, node v has at least n/2 + f + 1 propose messages with value x.
Hence every correct node will propose x in the next round, and then decide on
x.

So we only need to worry about termination: We have already seen that
as soon as one correct node terminates (Line 8) everybody terminates in the
next round. So what are the chances that some node u terminates in Line 8?
Well, we can hope that all correct nodes randomly propose the same value (in
Line 12). Maybe there are some nodes not choosing randomly (entering Line 10
instead of 12), but according to Lemma 11.22 they will all propose the same.

Thus, at worst all n−f correct nodes need to randomly choose the same bit,
which happens with probability 2−(n−f)+1. If so, all correct nodes will send the
same propose message, and the algorithm terminates. So the expected running
time is exponential in the number of nodes n in the worst case.

Remarks:

• This Algorithm is a proof of concept that asynchronous byzantine
agreement can be achieved. Unfortunately this algorithm is not useful
in practice, because of its runtime.

• Note that for f ∈ O(
√
n), the probability for some node to terminate

in Line 8 is greater than some positive constant. Thus, the Ben-Or
algorithm terminates within expected constant number of rounds for
small values of f .

Chapter Notes

The project which started the study of byzantine failures was called SIFT and
was founded by NASA [WLG+78], and the research regarding byzantine agree-
ment started to get significant attention with the results by Pease, Shostak, and
Lamport [PSL80, LSP82]. In [PSL80] they presented the generalized version
of Algorithm 11.9 and also showed that byzantine agreement is unsolvable for
n ≤ 3f . The algorithm presented in that paper is nowadays called Exponential
Information Gathering (EIG), due to the exponential size of the messages.

There are many algorithms for the byzantine agreement problem. For ex-
ample the Queen Algorithm [BG89] which has a better runtime than the King
algorithm [BGP89], but tolerates less failures. That byzantine agreement re-
quires at least f + 1 many rounds was shown by Dolev and Strong [DS83],
based on a more complicated proof from Fischer and Lynch [FL82].

While many algorithms for the synchronous model have been around for a
long time, the asynchronous model is a lot harder. The only results were by

BIBLIOGRAPHY 99

Ben-Or and Bracha. Ben-Or [Ben83] was able to tolerate f < n/5. Bracha
[BT85] improved this tolerance to f < n/3.

Nearly all developed algorithms only satisfy all-same validity. There are a
few exceptions, e.g., correct-input validity [FG03], available if the initial values
are from a finite domain, median validity [SW15, MW18, DGM+11] if the input
values are orderable, or values inside the convex hull of all correct input values
[VG13, MH13, MHVG15] if the input is multidimensional.

Before the term byzantine was coined, the terms Albanian Generals or Chi-
nese Generals were used in order to describe malicious behavior. When the
involved researchers met people from these countries they moved – for obvious
reasons – to the historic term byzantine [LSP82].

Hat tip to Peter Robinson for noting how to improve Algorithm 11.9 to all-
same validity. This chapter was written in collaboration with Barbara Keller.

Bibliography

[Ben83] Michael Ben-Or. Another advantage of free choice (extended ab-
stract): Completely asynchronous agreement protocols. In Proceed-
ings of the second annual ACM symposium on Principles of distrib-
uted computing, pages 27–30. ACM, 1983.

[BG89] Piotr Berman and Juan A Garay. Asymptotically optimal distributed
consensus. Springer, 1989.

[BGP89] Piotr Berman, Juan A. Garay, and Kenneth J. Perry. Towards
optimal distributed consensus (extended abstract). In 30th Annual
Symposium on Foundations of Computer Science, Research Triangle
Park, North Carolina, USA, 30 October - 1 November 1989, pages
410–415, 1989.

[BT85] Gabriel Bracha and Sam Toueg. Asynchronous consensus and
broadcast protocols. Journal of the ACM (JACM), 32(4):824–840,
1985.

[DGM+11] Benjamin Doerr, Leslie Ann Goldberg, Lorenz Minder, Thomas
Sauerwald, and Christian Scheideler. Stabilizing Consensus with the
Power of Two Choices. In Proceedings of the Twenty-third Annual
ACM Symposium on Parallelism in Algorithms and Architectures,
SPAA, June 2011.

[DS83] Danny Dolev and H. Raymond Strong. Authenticated algorithms for
byzantine agreement. SIAM Journal on Computing, 12(4):656–666,
1983.

[FG03] Matthias Fitzi and Juan A Garay. Efficient player-optimal protocols
for strong and differential consensus. In Proceedings of the twenty-
second annual symposium on Principles of distributed computing,
pages 211–220. ACM, 2003.

[FL82] Michael J. Fischer and Nancy A. Lynch. A lower bound for the time
to assure interactive consistency. 14(4):183–186, June 1982.

100 CHAPTER 11. BYZANTINE AGREEMENT

[LSP82] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The
byzantine generals problem. ACM Trans. Program. Lang. Syst.,
4(3):382–401, 1982.

[MH13] Hammurabi Mendes and Maurice Herlihy. Multidimensional Ap-
proximate Agreement in Byzantine Asynchronous Systems. In Pro-
ceedings of the Forty-fifth Annual ACM Symposium on Theory of
Computing, STOC, June 2013.

[MHVG15] Hammurabi Mendes, Maurice Herlihy, Nitin Vaidya, and Vijay K.
Garg. Multidimensional agreement in Byzantine systems. Distrib-
uted Computing, 28(6):423–441, January 2015.

[MW18] Darya Melnyk and Roger Wattenhofer. Byzantine Agreement with
Interval Validity. In 37th Annual IEEE International Symposium
on Reliable Distributed Systems (SRDS), Salvador, Bahia, Brazil,
October 2018.

[PSL80] Marshall C. Pease, Robert E. Shostak, and Leslie Lamport. Reach-
ing agreement in the presence of faults. J. ACM, 27(2):228–234,
1980.

[SW15] David Stolz and Roger Wattenhofer. Byzantine Agreement with
Median Validity. In 19th International Conference on Priniciples of
Distributed Systems (OPODIS), Rennes, France, 2015.

[VG13] Nitin H. Vaidya and Vijay K. Garg. Byzantine Vector Consensus in
Complete Graphs. In Proceedings of the 2013 ACM Symposium on
Principles of Distributed Computing, PODC, July 2013.

[WLG+78] John H. Wensley, Leslie Lamport, Jack Goldberg, Milton W. Green,
Karl N. Levitt, P. M. Melliar-Smith, Robert E. Shostak, and
Charles B. Weinstock. Sift: Design and analysis of a fault-tolerant
computer for aircraft control. In Proceedings of the IEEE, pages
1240–1255, 1978.

Chapter 12

Broadcast & Shared Coins

In Chapter 11 we have developed a fast solution for synchronous byzantine
agreement (Algorithm 11.14), yet our asynchronous byzantine agreement so-
lution (Algorithm 11.21) is still awfully slow. Is there a fast asynchronous
algorithm, possibly based on some advanced communication methods?

12.1 Random Oracle and Bitstring

Definition 12.1 (Random Oracle). A random oracle is a trusted (non-byzantine)
random source which can generate random values.

Algorithm 12.2 Shared Coin with Magic Random Oracle

1: return ci, where ci is ith random bit by oracle

Remarks:

• Algorithm 12.2 as well as the following shared coin algorithms will for
instance be called in Line 12 of Algorithm 11.21. So instead of every
node throwing a local coin (and hoping that they all show the same),
the nodes throw a shared coin. In other words, the value xu in Line
12 of Algorithm 11.21 will be set to the return value of the shared coin
subroutine.

• We have already seen a shared coin in Algorithm 8.22. This concept
deserves a proper definition.

Definition 12.3 (Shared Coin). A shared coin is a binary random variable
shared among all nodes. It is 0 for all nodes with constant probability, and 1 for
all nodes with constant probability. The shared coin is allowed to fail (be 0 for
some nodes and 1 for other nodes) with constant probability.

Theorem 12.4. Algorithm 12.2 plugged into Algorithm 11.21 solves asynchro-
nous byzantine agreement in expected constant number of rounds.

101

102 CHAPTER 12. BROADCAST & SHARED COINS

Proof. If there is a large majority for one of the input values in the system, all
nodes will decide within two rounds since Algorithm 11.21 satisfies all-same-
validity; the shared coin is not even used.

If there is no significant majority for any of the input values at the beginning
of algorithm 11.21, all correct nodes will run Algorithm 12.2. Therefore, they
will set their new value to the bit given by the random oracle and terminate in
the following round.

If neither of the above cases holds, some of the nodes see an n/2 + f + 1
majority for one of the input values, while other nodes rely on the oracle. With
probability 1/2, the value of the oracle will coincide with the deterministic ma-
jority value of the other nodes. Therefore, with probability 1/2, the nodes will
terminate in the following round. The expected number of rounds for termina-
tion in this case is 3.

Remarks:

• Unfortunately, random oracles are a bit like pink fluffy unicorns: they
do not really exist in the real world. Can we fix that?

Definition 12.5 (Random Bitstring). A random bitstring is a string of ran-
dom binary values, known to all participating nodes when starting a protocol.

Algorithm 12.6 Naive Shared Coin with Random Bitstring

1: return bi, where bi is ith bit in common random bitstring

Remarks:

• But is such a precomputed bitstring really random enough? We should
be worried because of Theorem 8.14.

Theorem 12.7. If the scheduling is worst-case, Algorithm 12.6 plugged into
Algorithm 11.21 does not terminate.

Proof. We start Algorithm 12.6 with the following input: n/2 + f + 1 nodes
have input value 1, and n/2− f − 1 nodes have input value 0. Assume w.l.o.g.
that the first bit of the random bitstring is 0.

If the second random bit in the bitstring is also 0, then a worst-case scheduler
will let n/2 + f + 1 nodes see all n/2 + f + 1 values 1, these will therefore
deterministically choose the value 1 as their new value. Because of scheduling
(or byzantine nodes), the remaining n/2− f − 1 nodes receive strictly less than
n/2 + f + 1 values 1 and therefore have to rely on the value of the shared coin,
which is 0. The nodes will not come to a decision in this round. Moreover, we
have created the very same distribution of values for the next round (which has
also random bit 0).

If the second random bit in the bitstring is 1, then a worst-case scheduler can
let n/2−f −1 nodes see all n/2+f +1 values 1, and therefore deterministically
choose the value 1 as their new value. Because of scheduling (or byzantine
nodes), the remaining n/2 + f + 1 nodes receive strictly less than n/2 + f + 1
values 1 and therefore have to rely on the value of the shared coin, which is 0.

12.2. SHARED COIN ON A BLACKBOARD 103

The nodes will not decide in this round. And we have created the symmetric
situation for input value 1 that is coming in the next round.

So if the current and the next random bit are known, worst-case scheduling
will keep the system in one of two symmetric states that never decide.

Remarks:

• Theorem 12.7 shows that a worst-case scheduler cannot be allowed to
know the random bits of the future.

• Note that in the proof of Theorem 12.7 we did not even use any byzan-
tine nodes. Just bad scheduling was enough to prevent termination.

• Worst-case scheduling is an issue that we have not considered so far, in
particular in Chapter 8 we implicitly assumed that message scheduling
was random. What if scheduling is worst-case in Algorithm 8.22?

Lemma 12.8. Algorithm 8.22 has exponential expected running time under
worst-case scheduling.

Proof. In Algorithm 8.22, worst-case scheduling may hide up to f rare zero coin-
flips. In order to receive a zero as the outcome of the shared coin, the nodes need
to generate at least f + 1 zeros. The probability for this to happen is (1/n)f+1,
which is exponentially small for f ∈ Ω(n). In other words, with worst-case
scheduling, with probability 1− (1/n)f+1 the shared coin will be 1. The worst-
case scheduler must make sure that some nodes will always deterministically go
for 0, and the algorithm needs nf+1 rounds until it terminates.

Remarks:

• With worst-case asynchrony, some of our previous results do not hold
anymore. Can we at least solve asynchronous (assuming worst-case
scheduling) consensus if we have crash failures?

• This is indeed possible, but we need to sharpen our tools first.

12.2 Shared Coin on a Blackboard

Definition 12.9 (Blackboard Model). The blackboard is a trusted authority
which supports two operations. A node can write its message to the blackboard
and a node can read all the values that have been written to the blackboard so
far.

Remarks:

• We assume that the nodes cannot reconstruct the order in which the
messages are written to the blackboard, since the system is asynchro-
nous.

104 CHAPTER 12. BROADCAST & SHARED COINS

Algorithm 12.10 Crash-Resilient Shared Coin with Blackboard (for node u)

1: while true do
2: Choose new local coin cu = +1 with probability 1/2, else cu = −1
3: Write cu to the blackboard
4: Set C = Read all coinflips on the blackboard
5: if |C| ≥ n2 then
6: return sign(sum(C))
7: end if
8: end while

Remarks:

• In Algorithm 12.10 the outcome of a coinflip is −1 or +1 instead of 0
or 1 because it simplifies the analysis, i.e., “−1 ≈ 0”.

• The sign function is used for the decision values. The sign function
returns +1 if the sum of all coinflips in C is positive, and −1 if it is
negative.

• The algorithm is unusual compared to other asynchronous algorithms
we have dealt with so far. So far we often waited for n − f mes-
sages from other nodes. In Algorithm 12.10, a single node can single-
handedly generate all n2 coinflips, without waiting.

• If a node does not need to wait for other nodes, we call the algorithm
wait-free.

• Many similar definitions beyond wait-free exist: lock-free, deadlock-
free, starvation-free, and generally non-blocking algorithms.

Theorem 12.11 (Central Limit Theorem). Let {X1, X2, . . . , XN} be a sequence
of independent random variables with Pr[Xi = −1] = Pr[Xi = 1] = 1/2 for all
i = 1, . . . , N . Then for every real number z,

lim
N→∞

Pr

[
N∑
i=1

Xi ≤ z
√
N

]
= Φ(z) <

1√
2π
e−z

2/2,

where Φ(z) is the cumulative distribution function of the standard normal dis-
tribution evaluated at z.

Theorem 12.12. Algorithm 12.10 implements a polynomial shared coin.

Proof. Each node in the algorithm terminates once at least n2 coinflips are
written to the blackboard. Before terminating, nodes may write one additional
coinflip. Therefore, every node decides after reading at least n2 and at most
n2 + n coinflips. The power of the adversary lies in the fact that it can prevent
n − 1 nodes from writing their coinflips to the blackboard by delaying their
writes. Here, we will consider an even stronger adversary that can hide up to n
coinflips which were written on the blackboard.

We need to show that both outcomes for the shared coin (+1 or −1 in Line
6) will occur with constant probability, as in Definition 12.3. Let X be the sum
of all coinflips that are visible to every node. Since some of the nodes might read

12.3. BROADCAST ABSTRACTIONS 105

n more values from the blackboard than others, the nodes cannot be prevented
from deciding if |X| > n. By applying Theorem 12.11 with N = n2 and z = 1,
we get:

Pr(X < −n) = Pr(X > n) = 1− Pr(X ≤ n) = 1− Φ(1) > 0.15.

Lemma 12.13. Algorithm 12.10 uses n2 coinflips, which is optimal in this
model.

Proof. The proof for showing quadratic lower bound makes use of configurations
that are indistinguishable to all nodes, similar to Theorem 8.14. It requires
involved stochastic methods and we therefore will only sketch the idea of where
the n2 comes from.

The basic idea follows from Theorem 12.11. The standard deviation of the
sum of n2 coinflips is n. The central limit theorem tells us that with constant
probability the sum of the coinflips will be only a constant factor away from
the standard deviation. As we showed in Theorem 12.12, this is large enough
to disarm a worst-case scheduler. However, with much less than n2 coinflips, a
worst-case scheduler is still too powerful. If it sees a positive sum forming on
the blackboard, it delays messages trying to write +1 in order to turn the sum
temporarily negative, so the nodes finishing first see a negative sum, and the
delayed nodes see a positive sum.

Remarks:

• Algorithm 12.10 cannot tolerate even one byzantine failure: assume
the byzantine node generates all the n2 coinflips in every round due to
worst-case scheduling. Then this byzantine node can make sure that
its coinflips always sum up to a value larger than n, thus making the
outcome −1 impossible.

• In Algorithm 12.10, we assume that the blackboard is a trusted cen-
tral authority. Like the random oracle of Definition 12.1, assuming a
blackboard does not seem practical. However, fortunately, we can use
advanced broadcast methods in order to implement something like a
blackboard with just messages.

12.3 Broadcast Abstractions

Definition 12.14 (Accept). A message received by a node v is called accepted
if node v can consider this message for its computation.

Definition 12.15 (Best-Effort Broadcast). Best-effort broadcast ensures
that a message that is sent from a correct node u to another correct node v
will eventually be received and accepted by v.

106 CHAPTER 12. BROADCAST & SHARED COINS

Remarks:

• Note that best-effort broadcast is equivalent to the simple broadcast
primitive that we have used so far.

• Reliable broadcast is a stronger paradigm which implies that byzantine
nodes cannot send different values to different nodes. Such behavior
will be detected.

Definition 12.16 (Reliable Broadcast). Reliable broadcast ensures that the
nodes eventually agree on all accepted messages. That is, if a correct node v
considers message m as accepted, then every other node will eventually consider
message m as accepted.

Algorithm 12.17 Asynchronous Reliable Broadcast (code for node u)

1: Broadcast own message msg(u)
2: if received msg(v) from node v then
3: Broadcast echo(u,msg(v))
4: end if
5: if received echo(w,msg(v)) from n− 2f nodes w but not msg(v) then
6: Broadcast echo(u,msg(v))
7: end if
8: if received echo(w,msg(v)) from n− f nodes w then
9: Accept(msg(v))

10: end if

Theorem 12.18. Algorithm 12.17 satisfies the following properties:

1. If a correct node broadcasts a message reliably, it will eventually be accepted
by every other correct node.

2. If a correct node has not broadcast a message, it will not be accepted by
any other correct node.

3. If a correct node accepts a message, it will be eventually accepted by every
correct node

Proof. We start with the first property. Assume a correct node broadcasts a
message msg(v), then every correct node will receive msg(v) eventually. In Line
3, every correct node (including the originator of the message) will echo the
message and, eventually, every correct node will receive at least n − f echoes,
thus accepting msg(v).

The second property follows from byzantine nodes being unable to forge an
incorrect sender address, see Definition 11.1.

The third property deals with a byzantine originator b. If a correct node
accepted message msg(b), this node must have received at least n− f echoes for
this message in Line 8. Since at most f nodes are byzantine, at least n − 2f
correct nodes have broadcast an echo message for msg(b). Therefore, every
correct node will receive these n − 2f echoes eventually and will broadcast an
echo itself. Thus, all n− f correct nodes will have broadcast an echo for msg(b)
and every correct node will accept msg(b).

12.3. BROADCAST ABSTRACTIONS 107

Remarks:

• Algorithm 12.17 does not terminate. Only eventually, all messages by
correct nodes will be accepted.

• The algorithm has a linear message overhead, since every node again
broadcasts every message.

• Note that byzantine nodes can issue arbitrarily many messages. This
may be a problem for protocols where each node is only allowed to
send one message (per round). Can we fix this, for instance with
sequence numbers?

Definition 12.19 (FIFO Reliable Broadcast). The FIFO (reliable) broad-
cast defines an order in which the messages are accepted in the system. If a
node u broadcasts message m1 before m2, then any node v will accept message
m1 before m2.

Algorithm 12.20 FIFO Reliable Broadcast (code for node u)

1: Broadcast own round r message msg(u, r)
2: if received first message msg(v, r) from node v for round r then
3: Broadcast echo(u,msg(v, r))
4: end if
5: if not echoed any msg’(v, r) before then
6: if received echo(w,msg(v, r)) from f +1 nodes w but not msg(v, r) then
7: Broadcast echo(u,msg(v, r))
8: end if
9: end if

10: if received echo(w,msg(v, r)) from n− f nodes w then
11: if accepted msg(v, r − 1) then
12: Accept(msg(v, r))
13: end if
14: end if

Theorem 12.21. Algorithm 12.20 satisfies the properties of Theorem 12.18.
Additionally, Algorithm 12.20 makes sure that no two messages msg(v, r) and
msg’(v, r) are accepted from the same node. It can tolerate f < n/3 Byzantine
nodes or f < n/2 crash failures.

Proof. Just as reliable broadcast, Algorithm 12.20 satisfies the first two prop-
erties of Theorem 12.18 by simply following the flow of messages of a correct
node.

For the third property, assume again that some message originated from a
byzantine node b. If a correct node accepted message msg(b), this node must
have received at least n− f echoes for this message in Line 10.

• Byzantine case: If at most f nodes are byzantine, at least n− 2f > f + 1
correct nodes have broadcast an echo message for msg(b).

• Crash-failure case: If at most f nodes can crash, at least n − f > f + 1
nodes have broadcast an echo message for msg(b).

108 CHAPTER 12. BROADCAST & SHARED COINS

In both cases, every correct node will receive these f + 1 echoes eventually and
will broadcast an echo. Thus, all n − f correct nodes will have broadcast an
echo for msg(b) and every correct node will accept msg(b).

It remains to show that at most one message will be accepted from some
node v in a round r.

• Byzantine case: Assume that some correct node u has accepted msg(v, r) in
Line 12. Then, u has received n−f echoes for this message, n−2f of which
were the first echoes of the correct nodes. Assume for contradiction that
another correct node accepts msg’(v, r). This node must have collected
n−f messages echo(w, msg’(v, r)). Since at least n−2f of these messages
must be the first echo messages sent by correct nodes, we have n − 2f +
n− 2f = 2n− 4f > n− f (for f < n/3) echo messages sent by the correct
nodes as their first echo. This is a contradiction.

• Crash-failure case: At least n − 2f not crashed nodes must have echoed
msg(v, r), while n−f nodes have echoed msg’(v, r). In total 2n−3f > n−f
(for f < n/2) correct nodes must have echoed either of the messages, which
is a contradiction.

Definition 12.22 (Atomic Broadcast). Atomic broadcast makes sure that
all messages are received in the same order by every node. That is, for any pair
of nodes u, v, and for any two messages m1 and m2, node u receives m1 before
m2 if and only if node v receives m1 before m2.

Remarks:

• Definition 12.22 is equivalent to Definition 7.8, i.e., atomic broadcast
= state replication.

• Now we have all the tools to finally solve asynchronous consensus.

12.4 Blackboard with Message Passing

Algorithm 12.23 Crash-Resilient Shared Coin (code for node u)

1: while true do
2: Choose local coin cu = +1 with probability 1/2, else cu = −1
3: FIFO-broadcast coin(cu, r) to all nodes
4: Save all received coins coin(cv, r) in a set Cu
5: Wait until accepted own coin(cu)
6: Request Cv from n− f nodes v, and add newly seen coins to Cu
7: if |Cu| ≥ n2 then
8: return sign(sum(Cu))
9: end if

10: end while

Theorem 12.24. Algorithm 12.23 solves asynchronous binary agreement for
f < n/2 crash failures.

12.5. USING CRYPTOGRAPHY 109

Proof. The upper bound for the number of crash failures results from the upper
bound in 12.21. The idea of this algorithm is to simulate the read and write
operations from Algorithm 12.10.

Line 3 simulates a read operation: by accepting the own coinflip, a node
verifies that n−f correct nodes have received its most recent generated coinflip
coin(cu, r). At least n − 2f > 1 of these nodes will never crash and the value
therefore can be considered as stored on the blackboard. While a value is
not accepted and therefore not stored, node u will not generate new coinflips.
Therefore, at any point of the algorithm, there is at most n additional generated
coinflips next to the accepted coins.

Line 6 of the algorithm corresponds to a read operation. A node reads a
value by requesting Cv from at least n− f nodes v. Assume that for a coinflip
coin(cu, r), f nodes that participated in the FIFO broadcast of this message
have crashed. When requesting n − f sets of coinflips, there will be at least
(n − 2f) + (n − f) − (n − f) = n − 2f > 1 sets among the requested ones
containing coin(cu, r). Therefore, a node will always read all values that were
accepted so far.

This shows that the read and write operations are equivalent to the same
operations in Algorithm 12.10. Assume now that some correct node has ter-
minated after reading n2 coinflips. Since each node reads the stored coinflips
before generating a new one in the next round, there will be at most n ad-
ditional coins accepted by any other node before termination. This setting is
equivalent to Theorem 12.12 and the rest of the analysis is therefore analogous
to the analysis in that theorem.

Remarks:

• So finally we can deal with worst-case crash failures and worst-case
scheduling.

• But what about byzantine agreement? We need even more powerful
methods!

12.5 Using Cryptography

Definition 12.25 (Threshold Secret Sharing). Let t, n ∈ N with 1 ≤ t ≤ n.
An algorithm that distributes a secret among n participants such that t partici-
pants need to collaborate to recover the secret is called a (t, n)-threshold secret
sharing scheme.

Definition 12.26 (Signature). Every node can sign its messages in a way
that no other node can forge, thus nodes can reliably determine which node a
signed message originated from. We denote a message x signed by node u with
msg(x)u.

110 CHAPTER 12. BROADCAST & SHARED COINS

Algorithm 12.27 (t, n)-Threshold Secret Sharing

1: Input: A secret s, represented as a real number.

Secret distribution by dealer d

2: Generate t− 1 random numbers a1, . . . , at−1 ∈ R
3: Obtain a polynomial p of degree t− 1 with p(x) = s+ a1x+ · · ·+ at−1x

t−1

4: Generate n distinct x1, . . . , xn ∈ R \ {0}
5: Distribute share msg(x1, p(x1))d to node v1, . . . , msg(xn, p(xn))d to node vn

Secret recovery

6: Collect t shares msg(xu, p(xu))d from at least t nodes
7: Use Lagrange’s interpolation formula to obtain p(0) = s

Remarks:

• Algorithm 12.27 relies on a trusted dealer, who broadcasts the secret
shares to the nodes.

• Using an (f + 1, n)-threshold secret sharing scheme, we can encrypt
messages in such a way that byzantine nodes alone cannot decrypt
them.

Algorithm 12.28 Preprocessing Step for Algorithm 12.29 (code for dealer d)

1: According to Algorithm 12.27, choose polynomial p of degree f
2: for i = 1, . . . , n do
3: Choose coinflip ci, where ci = 0 with probability 1/2, else ci = 1
4: Using Algorithm 12.27, generate n shares (xi1, p(x

i
1)), . . . , (xin, p(x

i
n)) for

ci
5: end for
6: Send shares msg(x1

u, p(x
1
u))d, . . . , msg(xnu, p(x

n
u))d to node u

Algorithm 12.29 Shared Coin using Secret Sharing (ith iteration)

1: Request shares from at least f + 1 nodes
2: Using Algorithm 12.27, let ci be the value reconstructed from the shares
3: return ci

Theorem 12.30. Algorithm 11.21 together with Algorithm 12.28 and Algo-
rithm 12.29 solves asynchronous byzantine agreement for f < n/3 in expected 3
number of rounds.

Proof. In Line 1 of Algorithm 12.29, the nodes collect shares from f + 1 nodes.
Since a byzantine node cannot forge the signature of the dealer, it is restricted
to either send its own share or decide to not send it at all. Therefore, each
correct node will eventually be able to reconstruct secret ci of round i correctly
in Line 2 of the algorithm. The running time analysis follows then from the
analysis of Theorem 12.4.

12.5. USING CRYPTOGRAPHY 111

Remarks:

• In Algorithm 12.28 we assume that the dealer generates the random
bitstring. This assumption is not necessary in general.

• We showed that cryptographic assumptions can speed up asynchro-
nous byzantine agreement.

• Algorithm 11.21 can also be implemented in the synchronous setting.

• A randomized version of a synchronous byzantine agreement algorithm
can improve on the lower bound of t+ 1 rounds for the deterministic
algorithms.

Definition 12.31 (Cryptographic Hash Function). A hash function hash :
U → S is called cryptographic, if for a given z ∈ S it is computationally hard
to find an element x ∈ U with hash(x) = z.

Remarks:

• Popular hash functions used in cryptography include the Secure Hash
Algorithm (SHA) and the Message-Digest Algorithm (MD).

Algorithm 12.32 Simple Synchronous Byzantine Shared Coin (for node u)

1: Each node has a public key that is known to all nodes.
2: Let r be the current round of Algorithm 11.21
3: Broadcast msg(r)u, i.e., round number r signed by node u
4: Compute hv = hash(msg(r)v) for all received messages msg(r)v
5: Let hmin = minv hv
6: return least significant bit of hmin

Remarks:

• In Algorithm 12.32, Line 3 each node can verify the correctness of the
signed message using the public key.

• Just as in Algorithm 11.9, the decision value is the minimum of all
received values. While the minimum value is received by all nodes
after 2 rounds there, we can only guarantee to receive the minimum
with constant probability in this algorithm.

• Hashing helps to restrict byzantine power, since a byzantine node
cannot compute the smallest hash.

Theorem 12.33. Algorithm 12.32 plugged into Algorithm 11.21 solves syn-
chronous byzantine agreement in expected 5 rounds for up to f < n/10 byzantine
failures.

Proof. With probability 1/3 the minimum hash value is generated by a byzan-
tine node. In such a case, we can assume that not all correct nodes will receive
the byzantine value and thus, different nodes might compute different values for
the shared coin.

112 CHAPTER 12. BROADCAST & SHARED COINS

With probability 2/3, the shared coin will be from a correct node, and with
probability 1/2 the value of the shared coin will correspond to the value which
was deterministically chosen by some of the correct nodes. Therefore, with
probability 1/3 the nodes will reach consensus in the next iteration of Algorithm
11.21. The expected number of rounds is:

1 +

∞∑
i=0

2 ·
(

2

3

)i
= 5

Chapter Notes

Asynchronous byzantine agreement is usually considered in one out of two com-
munication models – shared memory or message passing. The first polynomial
algorithm for the shared memory model that uses a shared coin was proposed by
Aspnes and Herlihy [AH90] and required exchanging O(n4) messages in total.
Algorithm 12.10 is also an implementation of the shared coin in the shared mem-
ory model and it requires exchanging O(n3) messages. This variant is due to
Saks, Shavit and Woll [SSW91]. Bracha and Rachman [BR92] later reduced the
number of messages exchanged to O(n2 log n). The tight lower bound of Ω(n2)
on the number of coinflips was proposed by Attiya and Censor [AC08] and
improved the first non-trivial lower bound of Ω(n2/ log2 n) by Aspnes [Asp98].

In the message passing model, the shared coin is usually implemented using
reliable broadcast. Reliable broadcast was first proposed by Srikanth and Toueg
[ST87] as a method to simulate authenticated broadcast. There is also another
implementation which was proposed by Bracha [Bra87]. Today, a lot of variants
of reliable broadcast exist, including FIFO broadcast [AAD05], which was con-
sidered in this chapter. A good overview over the broadcast routines is given
by Cachin et al. [CGR14]. A possible way to reduce message complexity is
by simulating the read and write commands [ABND95] as in Algorithm 12.23.
The message complexity of this method is O(n3). Alistarh et al. [AAKS14]
improved the number of exchanged messages to O(n2 log2 n) using a binary tree
that restricts the number of communicating nodes according to the depth of the
tree.

It remains an open question whether asynchronous byzantine agreement can
be solved in the message passing model without cryptographic assumptions.
If cryptographic assumptions are however used, byzantine agreement can be
solved in expected constant number of rounds. Algorithm 12.28 presents the
first implementation due to Rabin [Rab83] using threshold secret sharing. This
algorithm relies on the fact that the dealer provides the random bitstring. Chor
et al. [CGMA85] proposed the first algorithm where the nodes use verifiable
secret sharing in order to generate random bits. Later work focuses on improving
resilience [CR93] and practicability [CKS00]. Algorithm 12.32 by Micali [Mic18]
shows that cryptographic assumptions can also help to improve the running time
in the synchronous model.

This chapter was written in collaboration with Darya Melnyk.

BIBLIOGRAPHY 113

Bibliography

[AAD05] Ittai Abraham, Yonatan Amit, and Danny Dolev. Optimal re-
silience asynchronous approximate agreement. In Proceedings of the
8th International Conference on Principles of Distributed Systems,
OPODIS’04, pages 229–239, Berlin, Heidelberg, 2005. Springer-
Verlag.

[AAKS14] Dan Alistarh, James Aspnes, Valerie King, and Jared Saia.
Communication-efficient randomized consensus. In Fabian Kuhn,
editor, Distributed Computing, pages 61–75, Berlin, Heidelberg,
2014. Springer Berlin Heidelberg.

[ABND95] Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing mem-
ory robustly in message-passing systems. J. ACM, 42(1):124–142,
January 1995.

[AC08] Hagit Attiya and Keren Censor. Tight bounds for asynchronous
randomized consensus. J. ACM, 55(5):20:1–20:26, November 2008.

[AH90] James Aspnes and Maurice Herlihy. Fast randomized consensus
using shared memory. Journal of Algorithms, 11(3):441 – 461, 1990.

[Asp98] James Aspnes. Lower bounds for distributed coin-flipping and ran-
domized consensus. J. ACM, 45(3):415–450, May 1998.

[BR92] Gabriel Bracha and Ophir Rachman. Randomized consensus in ex-
pected o(n2logn) operations. In Proceedings of the 5th International
Workshop on Distributed Algorithms, WDAG ’91, pages 143–150,
Berlin, Heidelberg, 1992. Springer-Verlag.

[Bra87] Gabriel Bracha. Asynchronous byzantine agreement protocols. In-
formation and Computation, 75(2):130 – 143, 1987.

[CGMA85] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch. Verifiable
secret sharing and achieving simultaneity in the presence of faults.
In 26th Annual Symposium on Foundations of Computer Science
(sfcs 1985), pages 383–395, Oct 1985.

[CGR14] Christian Cachin, Rachid Guerraoui, and Lus Rodrigues. Intro-
duction to Reliable and Secure Distributed Programming. Springer
Publishing Company, Incorporated, 2nd edition, 2014.

[CKS00] Christian Cachin, Klaus Kursawe, and Victor Shoup. Random ora-
cles in constantinople: Practical asynchronous byzantine agreement
using cryptography. Journal of Cryptology, 18:219–246, 2000.

[CR93] Ran Canetti and Tal Rabin. Fast asynchronous byzantine agreement
with optimal resilience. In Proceedings of the Twenty-fifth Annual
ACM Symposium on Theory of Computing, STOC ’93, pages 42–51,
New York, NY, USA, 1993. ACM.

[Mic18] Silvio Micali. Byzantine agreement , made trivial. 2018.

114 CHAPTER 12. BROADCAST & SHARED COINS

[Rab83] M. O. Rabin. Randomized byzantine generals. In 24th Annual
Symposium on Foundations of Computer Science (sfcs 1983), pages
403–409, Nov 1983.

[SSW91] Michael Saks, Nir Shavit, and Heather Woll. Optimal time ran-
domized consensus – making resilient algorithms fast in practice.
In Proceedings of the Second Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’91, pages 351–362, Philadelphia, PA,
USA, 1991. Society for Industrial and Applied Mathematics.

[ST87] T. K. Srikanth and S. Toueg. Optimal Clock Synchronization. Jour-
nal of the ACM, 34:626–645, 1987.

Chapter 13

Consistency & Logical Time

You submit a comment on your favorite social media platform using your phone.
The comment is immediately visible on the phone, but not on your laptop. Is
this level of consistency acceptable?

13.1 Consistency Models

Definition 13.1 (Object). An object is a variable or a data structure storing
information.

Remarks:

• Object is a general term for any entity that can be modified, like a
queue, stack, memory slot, file system, etc.

Definition 13.2 (Operation). An operation f accesses or manipulates an
object. The operation f starts at wall-clock time f∗ and ends at wall-clock time
f†.

Remarks:

• An operation can be as simple as extracting an element from a data
structure, but an operation may also be more complex, like fetching
an element, modifying it and storing it again.

• If f† < g∗, we simply write f < g.

Definition 13.3 (Execution). An execution E is a set of operations on one
or multiple objects that are executed by a set of nodes.

Definition 13.4 (Sequential Execution). An execution restricted to a single
node is a sequential execution. All operations are executed sequentially, which
means that no two operations f and g are concurrent, i.e., we have f < g or
g < f .

Definition 13.5 (Semantic Equivalence). Two executions are semantically
equivalent if they contain exactly the same operations. Moreover, each pair of
corresponding operations has the same effect in both executions.

115

116 CHAPTER 13. CONSISTENCY & LOGICAL TIME

Remarks:

• For example, when dealing with a stack object, corresponding pop

operations in two different semantically equivalent executions must
yield the same element of the stack.

• In general, the notion of semantic equivalence is non-trivial and de-
pendent on the type of the object.

Definition 13.6 (Linearizability). An execution E is called linearizable (or
atomically consistent), if there is a sequence of operations (sequential execution)
S such that:

• S is correct and semantically equivalent to E.

• Whenever f < g for two operations f, g in E, then also f < g in S.

Definition 13.7. A linearization point of operation f is some f• ∈ [f∗, f†].

Lemma 13.8. An execution E is linearizable if and only if there exist lin-
earization points such that the sequential execution S that results in ordering
the operations according to those linearization points is semantically equivalent
to E.

Proof. Let f and g be two operations in E with f† < g∗. Then by definition of
linearization points we also have f• < g• and therefore f < g in S.

Definition 13.9 (Sequential Consistency). An execution E is called sequen-
tially consistent, if there is a sequence of operations S such that:

• S is correct and semantically equivalent to E.

• Whenever f < g for two operations f, g on the same node in E, then
also f < g in S.

Lemma 13.10. Every linearizable execution is also sequentially consistent, i.e.,
linearizability =⇒ sequential consistency.

Proof. Since linearizability (order of operations on any nodes must be respected)
is stricter than sequential consistency (only order of operations on the same node
must be respected), the lemma follows immediately.

Definition 13.11 (Quiescent Consistency). An execution E is called quies-
cently consistent, if there is a sequence of operations S such that:

• S is correct and semantically equivalent to E.

• Let t be some quiescent point, i.e., for all operations f we have f† < t or
f∗ > t. Then for every t and every pair of operations g, h with g† < t and
h∗ > t we also have g < h in S.

Lemma 13.12. Every linearizable execution is also quiescently consistent, i.e.,
linearizability =⇒ quiescent consistency.

Proof. Let E be the original execution and S be the semantically equivalent
sequential execution. Let t be a quiescent point and consider two operations
g, h with g† < t < h∗. Then we have g < h in S. This is also guaranteed by
linearizability since g† < t < h∗ implies g < h.

13.1. CONSISTENCY MODELS 117

Lemma 13.13. Sequentially consistent and quiescent consistency do not imply
one another.

Proof. There are executions that are sequentially consistent but not quiescently
consistent. An object initially has value 2. We apply two operations to this
object: inc (increment the object by 1) and double (multiply the object by 2).
Assume that inc < double, but inc and double are executed on different nodes.
Then a result of 5 (first double, then inc) is sequentially consistent but not
quiescently consistent.

There are executions that are quiescently consistent but not sequentially
consistent. An object initially has value 2. Assume to have three operations on
two nodes u and v. Node u calls first inc then double, node v calls inc once
with incv∗ < incu† < doubleu∗ < incv† . Since there is no quiescent point, quiescent
consistency is okay with a sequential execution that doubles first, resulting in
((2 · 2) + 1) + 1 = 6. The sequential execution demands that incu < doubleu,
hence the result should be strictly larger than 6 (either 7 or 8).

Definition 13.14. A system or an implementation is called linearizable if it
ensures that every possible execution is linearizable. Analogous definitions exist
for sequential and quiescent consistency.

Remarks:

• In the introductory social media example, a linearizable implementa-
tion would have to make sure that the comment is immediately visible
on any device, as the read operation starts after the write operation
finishes. If the system is only sequentially consistent, the comment
does not need to be immediately visible on every device.

Definition 13.15 (restricted execution). Let E be an execution involving oper-
ations on multiple objects. For some object o we let the restricted execution
E|o be the execution E filtered to only contain operations involving object o.

Definition 13.16. A consistency model is called composable if the following
holds: If for every object o the restricted execution E|o is consistent, then also
E is consistent.

Remarks:

• Composability enables to implement, verify and execute multiple con-
current objects independently.

Lemma 13.17. Sequential consistency is not composable.

Proof. We consider an execution E with two nodes u and v, which operate on
two objects x and y initially set to 0. The operations are as follows: u1 reads
x = 1, u2 writes y := 1, v1 reads y = 1, v2 writes x := 1 with u1 < u2 on node
u and v1 < v2 on node v. It is clear that E|x as well as E|y are sequentially
consistent as the write operations may be before the respective read operations.
In contrast, execution E is not sequentially consistent: Neither u1 nor v1 can
possibly be the initial operation in any correct semantically equivalent sequential
execution S, as that would imply reading 1 when the variable is still 0.

118 CHAPTER 13. CONSISTENCY & LOGICAL TIME

Theorem 13.18. Linearizability is composable.

Proof. Let E be an execution composed of multiple restricted executions E|x.
For any object x there is a sequential execution S|x that is semantically con-
sistent to E|x and in which the operations are ordered according to wall-clock-
linearization points. Let S be the sequential execution ordered according to all
linearization points of all executions E|x. S is semantically equivalent to E as
S|x is semantically equivalent to E|x for all objects x and two object-disjoint
executions cannot interfere. Furthermore, if f† < g∗ in E, then also f• < g• in
E and therefore also f < g in S.

13.2 Logical Clocks

To capture dependencies between nodes in an implementation, we can use logical
clocks. These are supposed to respect the so-called happened-before relation.

Definition 13.19. Let Su be a sequence of operations on some node u and
define “→” to be the happened-before relation on E := S1 ∪ · · · ∪ Sn that
satisfies the following three conditions:

1. If a local operation f occurs before operation g on the same node (f < g),
then f → g.

2. If f is a send operation of one node, and g is the corresponding receive
operation of another node, then f → g.

3. If f, g, h are operations such that f → g and g → h then also f → h.

Remarks:

• If for two distinct operations f, g neither f → g nor g → f , then
we also say f and g are independent and write f ∼ g. Sequential
computations are characterized by→ being a total order, whereas the
computation is entirely concurrent if no operations f, g with f → g
exist.

Definition 13.20 (Happened-before consistency). An execution E is called
happened-before consistent, if there is a sequence of operations S such that:

• S is correct and semantically equivalent to E.

• Whenever f → g for two operations f, g in E, then also f < g in S.

Lemma 13.21. Happened-before consistency = sequential consistency.

Proof. Both consistency models execute all operations of a single node in the se-
quential order. In addition, happened-before consistency also respects messages
between nodes. However, messages are also ordered by sequential consistency
because of semantic equivalence (a receive cannot be before the corresponding
send). Finally, even though transitivity is defined more formally in happened-
before consistency, also sequential consistency respects transitivity.

In addition, sequential consistency orders two operations ou, ov on two dif-
ferent nodes u, v if ov can see a state change caused by ou. Such a state change
does not happen out of the blue, in practice some messages between u and v
(maybe via “shared blackboard” or some other form of communication) will be
involved to communicate the state change.

13.2. LOGICAL CLOCKS 119

Definition 13.22 (Logical clock). A logical clock is a family of functions cu
that map every operation f ∈ E on node u to some logical time cu(f) such that
the happened-before relation → is respected, i.e., for two operations g on node
u and h on node v

g → h =⇒ cu(g) < cv(h).

Definition 13.23. If it additionally holds that cu(g) < cv(h) =⇒ g → h, then
the clock is called a strong logical clock.

Remarks:

• In algorithms we write cu for the current logical time of node u.

• The simplest logical clock is the Lamport clock, given in Algorithm 13.24.
Every message includes a timestamp, such that the receiving node may
update its current logical time.

Algorithm 13.24 Lamport clock

1: (Code for node u)
2: Initialize cu := 0.
3: Upon local operation: Increment current local time cu := cu + 1.
4: Upon send operation: Increment cu := cu+1 and include cu as T in message.

5: Upon receive operation: Extract T from message and update cu :=
max(cu, T) + 1.

Theorem 13.25. Lamport clocks are logical clocks.

Proof. If for two operations f, g it holds that f → g, then according to the
definition three cases are possible.

1. If f < g on the same node u, then cu(f) < cu(g).

2. Let g be a receive operation on node v corresponding to some send oper-
ation f on another node u. We have cv(g) ≥ T + 1 = cu(f) + 1 > cu(f).

3. Transitivity follows with f → g and g → h ⇒ g → h, and the first two
cases.

Remarks:

• Lamport logical clocks are not strong logical clocks, which means we
cannot completely reconstruct → from the family of clocks cu.

• To achieve a strong logical clock, nodes also have to gather informa-
tion about other clocks in the system, i.e., node u needs to have a
idea of node v’s clock, for every u, v. This is what vector clocks in
Algorithm 13.26 do: Each node u stores its knowledge about other
node’s logical clocks in an n-dimensional vector cu.

120 CHAPTER 13. CONSISTENCY & LOGICAL TIME

Algorithm 13.26 Vector clocks

1: (Code for node u)
2: Initialize cu[v] := 0 for all other nodes v.
3: Upon local operation: Increment current local time cu[u] := cu[u] + 1.
4: Upon send operation: Increment cu[u] := cu[u] + 1 and include the whole

vector cu as d in message.
5: Upon receive operation: Extract vector d from message and update cu[v] :=

max(d[v], cu[v]) for all entries v. Increment cu[u] := cu[u] + 1.

Theorem 13.27. Define cu < cv if and only if cu[w] ≤ cv[w] for all entries
w, and cu[x] < cv[x] for at least one entry x. Then the vector clocks are strong
logical clocks.

Proof. We are given two operations f, g, with operation f on node u, and op-
eration g on node v, possibly v = u.

If we have f → g, then there must be a happened-before-path of operations
and messages from f to g. According to Algorithm 13.26, cv(g) must include
at least the values of the vector cu(f), and the value cv(g)[v] > cu(f)[v].

If we do not have f → g, then cv(g)[u] cannot know about cu(f)[u], and
hence cv(g)[u] < cu(f)[u], since cu(f)[u] was incremented when executing f on
node u.

Remarks:

• Usually the number of interacting nodes is small compared to the over-
all number of nodes. Therefore we do not need to send the full length
clock vector, but only a vector containing the entries of the nodes
that are actually communicating. This optimization is the called the
differential technique.

13.3 Consistent Snapshots

Definition 13.28 (cut). A cut is some prefix of a distributed execution. More
precisely, if a cut contains an operation f on some node u, then it also contains
all the preceding operations of u. The set of last operations on every node
included in the cut is called the frontier of the cut.

Definition 13.29 (consistent snapshot). A cut C is a consistent snapshot,
if for every operation g in C with f → g, C also contains f .

Remarks:

• In a consistent snapshot it is forbidden to see an effect without its
cause.

• The number of possible consistent snapshots gives also information
about the degree of concurrency of the system.

13.3. CONSISTENT SNAPSHOTS 121

• One extreme is a sequential computation, where stopping one node
halts the whole system. Let qu be the number of operations on node
u ∈ {1, . . . , n}. Then the number of consistent snapshots (including
the empty cut) in the sequential case is µs := 1 + q1 + q2 + · · ·+ qn.

• One the other hand, in an entirely concurrent computation the nodes
are not dependent on one another and therefore stopping one node
does not impact others. The number of consistent snapshots in this
case is µc := (1 + q1) · (1 + q2) · · · (1 + qn).

Definition 13.30 (measure of concurrency). The concurrency measure of an
execution E = (S1, . . . , Sn) is defined as the ratio

m(E) :=
µ− µs
µc − µs

,

where µ denotes the number of consistent snapshot of E.

Remarks:

• This measure of concurrency is normalized to [0, 1]. F

• In order to evaluate the extent to which a computation is concurrent,
we need to compute the number of consistent snapshots µ. This can
be done via vector clocks.

• Imagine a bank having lots of accounts with transactions all over the
world. The bank wants to make sure that at no point in time money
gets created or destroyed. This is where consistent snapshots come in:
They are supposed to capture the state of the system. Theoretically,
we have already used snapshots when we discussed configurations in
Definition 8.4:

Definition 13.31 (configuration). We say that a system is fully defined (at any
point during the execution) by its configuration. The configuration includes
the state of every node, and all messages that are in transit (sent but not yet
received).

Remarks:

• One application of consistent snapshots is to check if certain invariants
hold in a distributed setting. Other applications include distributed
debugging or determining global states of a distributed system.

• In Algorithm 13.32 we assume that a node can record only its internal
state and the messages it sends and receives. There is no common
clock so it is not possible to just let each node record all information
at precisely the same time.

Theorem 13.33. Algorithm 13.32 collects a consistent snapshot.

122 CHAPTER 13. CONSISTENCY & LOGICAL TIME

Algorithm 13.32 Distributed Snapshot Algorithm

1: Initiator: Save local state, send a snap message to all other nodes and collect
incoming states and messages of all other nodes.

2: All other nodes:
3: Upon receiving a snap message for the first time: send own state (before

message) to the initiator and propagate snap by adding snap tag to future
messages.

4: If afterwards receiving a message m without snap tag: Forward m to the
initiator.

Proof. Let C be the cut induced by the frontier of all states and messages
forwarded to the initiator. For every node u, let tu be the time when u gets
the first snap message m (either by the initiator, or as a message tag). Then C
contains all of u’s operations before tu, and none after tu (also not the message
m which arrives together with the tag at tu).

Assume for the sake of contradiction we have operations f, g on nodes u, v
respectively, with f → g, f /∈ C and g ∈ C, hence tu ≤ f and g < tv. If
u = v we have tu ≤ f < g < tv = tu, which is a contradiction. On the other
hand, if u 6= v: Since tu ≤ f we know that all following send operations must
have included the snap tag. Because of f → g we know there is a path of
messages between f and g, all including the snap tag. So the snap tag must
have been received by node v before or with operation g, hence tv ≤ g, which is
a contradiction to tv > g.

Remarks:

• It may of course happen that a node u sends a message m before
receiving the first snap message at time tu (hence not containing the
snap tag), and this message m is only received by node v after tv.
Such a message m will be reported by v, and is as such included in
the consistent snapshot (as a message that was in transit during the
snapshot).

13.4 Distributed Tracing

Definition 13.34 (Microservice Architecture). A microservice architecture
refers to a system composed of loosely coupled services. These services commu-
nicate by various protocols and are either decentrally coordinated (also known
as “choreography”) or centrally (“orchestration”).

Remarks:

• There is no exact definition for microservices. A rule of thumb is that
you should be able to program a microservice from scratch within two
weeks.

• Microservices are the architecture of choice to implement a cloud based
distributed system, as they allow for different technology stacks, often
also simplifying scalability issues.

13.4. DISTRIBUTED TRACING 123

• In contrast to a monolithic architecture, debugging and optimizing get
trickier as it is difficult to detect which component exactly is causing
problems.

• Due to the often heterogeneous technology, a uniform debugging frame-
work is not feasible.

• Tracing enables tracking the set of services which participate in some
task, and their interactions.

Definition 13.35 (Span). A span s is a named and timed operation represent-
ing a contiguous sequence of operations on one node. A span s has a start time
s∗ and finish time s†.

Remarks:

• Spans represent tasks, like a client submitting a request or a server
processing this request. Spans often trigger several child spans or
forwards the work to another service.

Definition 13.36 (Span Reference). A span may causally depend on other
spans. The two possible relations are ChildOf and FollowsFrom references.
In a ChildOf reference, the parent span depends on the result of the child (the
parents asks the child and the child answers), and therefore parent and child
span must overlap. In FollowsFrom references parent spans do not depend in
any way on the result of their child spans (the parent just invokes the child).

Definition 13.37 (Trace). A trace is a series-parallel directed acyclic graph
representing the hierarchy of spans that are executed to serve some request.
Edges are annotated by the type of the reference, either ChildOf or Follows-
From.

Remarks:

• The advantage of using an open source definition like opentracing
is that it is easy to replace a specific tracing by another one. This
mitigates the lock-in effect that is often experienced when using some
specific technology.

• Algorithm 13.38 shows what is needed if you want to trace requests
to your system.

Algorithm 13.38 Inter-Service Tracing

1: Upon requesting another service: Inject information of current trace and
span (IDs or timing information) into the request header.

2: Upon receiving request from another service: Extract trace and span infor-
mation from the request header and create new span as child span.

124 CHAPTER 13. CONSISTENCY & LOGICAL TIME

Remarks:

• All tracing information is collected and has to be sent to some tracing
backend which stores the traces and usually provides a frontend to
understand what is going on.

• Opentracing implementations are available for the most commonly
used programming frameworks and can therefore be used for hetero-
geneous collections of microservices.

13.5 Mutual Exclusion

When multiple nodes compete for exclusive access to a shared resource, we need
a protocol which coordinates the order in which the resource gets assigned to the
nodes. The most obvious algorithm is letting a leader node organize everything:

Algorithm 13.39 Centralized Mutual Exclusion Algorithm

1: To access shared resource: Send request message to leader and wait for
permission.

2: To release shared resource: Send release message to leader.

Remarks:

• An advantage of Algorithm 13.39 is its simplicity and low message
overhead with 3 messages per access.

• An obvious disadvantage is that the leader is single point of failure
and performance bottleneck. Assuming an asynchronous system, this
protocol also does not achieve first come first serve fairness.

• To eliminate the single bottleneck we pass an access token from node to
node. This token contains the time t of the earliest known outstanding
request.

• We assume a ring of nodes, i.e., there is an order of the nodes given
such that every node knows its successor and predecessor.

Algorithm 13.40 Token-Based Mutual Exclusion Algorithm

1: To access shared resource at time TR: Wait for token containing time t of
earliest known outstanding request.

2: Upon receiving token:
3: if TR = t then
4: Hold token and access shared resource.
5: else if TR > t then
6: Pass on token to next node.
7: else if t = null or TR < t then
8: Set t = TR and pass on token.
9: end if

10: To release access: Set t = null and pass on token.

13.5. MUTUAL EXCLUSION 125

Remarks:

• Algorithm 13.40 achieves in-order fairness if all nodes stick to the
rules.

• One issue is the breakdown if one node does not manage to pass on
the token. In this case some new token has to be created and assigned
to one of the remaining nodes.

• We can get rid of the token, if access to the token gets decided on a
first come first serve basis with respect to logical clocks. This leads to
Algorithm 13.41.

Algorithm 13.41 Distributed Mutual Exclusion Algorithm

1: To access shared resource: Send message to all nodes containing the node
ID and the current timestamp.

2: Upon received request message: If access to the same resource is needed
and the own timestamp is lower than timestamp in received message, defer
response. Otherwise send back a response.

3: Upon responses from all nodes received: enter critical section. Afterwards
send deferred responses.

Remarks:

• The algorithm guarantees mutual exclusion without deadlocks or star-
vation of a requesting process.

• The number of messages per entry is 2(n− 1), where n is the number
of nodes in the system: (n− 1) requests and (n− 1) responses.

• There is no single point of failure. Yet, whenever a node crashes, it
will not reply with a response and the requesting node waits forever.
Eeven worse, the requesting process cannot determine if the silence
is due to the other process currently accessing the shared resource or
crashing. Can we fix this? Indeed: Change step 2 in Algorithm 13.41
such that upon receiving request there will always be an answer, either
Denied or OK. This way crashes will be detected.

Chapter Notes

In his seminal work, Leslie Lamport came up with the happened-before relation
and gave the first logical clock algorithm [Lam78]. This paper also laid the
foundation for the theory of logical clocks. Fidge came some time later up with
vector clocks [JF88]. An obvious drawback of vector clocks is the overhead
caused by including the whole vector. Can we do better? In general, we cannot
if we need strong logical clocks [CB91].

Lamport also introduced the algorithm for distributed snapshots, together
with Chandy [CL85]. Besides this very basic algorithm, there exist several other
algorithms, e.g., [LY87], [SK86].

126 CHAPTER 13. CONSISTENCY & LOGICAL TIME

Throughout the literature the definitions for, e.g., consistency or atomicity
slightly differ. These concepts are studied in different communities, e.g., lin-
earizability hails from the distributed systems community whereas the notion
of serializability was first treated by the database community. As the two areas
converged, the terminology got overloaded.

Our definitions for distributed tracing follow the OpenTracing API 1. The
opentracing API only gives high-level definitions of how a tracing system is sup-
posed to work. Only the implementation specifies how it works internally.There
are several systems that implement these generic definitions, like Uber’s open
source tracer called Jaeger, or Zipkin, which was first developed by Twitter.
This technology is relevant for the growing number of companies that embrace
a microservice architecture. Netflix for example has a growing number of over
1,000 microservices.

This chapter was written in collaboration with Julian Steger.

Bibliography

[CB91] Bernadette Charron-Bost. Concerning the size of logical clocks in dis-
tributed systems. Inf. Process. Lett., 39(1):11–16, July 1991.

[CL85] K Chandy and Leslie Lamport. Distributed snapshots: Determining
global states of distributed systems. 3:63–75, 02 1985.

[JF88] Colin J. Fidge. Timestamps in message-passing systems that preserve
partial ordering. 10:56–66, 02 1988.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a distrib-
uted system. Commun. ACM, 21(7):558–565, jul 1978.

[LY87] Ten H. Lai and Tao H. Yang. On distributed snapshots. Information
Processing Letters, 25(3):153 – 158, 1987.

[SK86] Madalene Spezialetti and Phil Kearns. Efficient distributed snapshots.
In ICDCS, pages 382–388. IEEE Computer Society, 1986.

1http://opentracing.io/documentation/

Chapter 14

Time, Clocks & GPS

“A man with a clock knows what time it is – a man with two is
never sure.” (Segal’s Law)

14.1 Time & Clocks

Definition 14.1 (Second). A second is the time that passes during 9,192,631,770
oscillation cycles of a caesium-133 atom.

Remarks:

• This definition is a bit simplified. The official definition is given by
the Bureau International des Poids et Mesures.

• Historically, a second was defined as one in 86,400 parts of a day,
dividing the day into 24 hours, 60 minutes and 60 seconds.

• Since the duration of a day depends on the unsteady rotation cycle
of the Earth, the novel oscillation-based definition has been adopted.
Leap seconds are used to keep time synchronized to Earth’s rotation.

Definition 14.2 (Wall-Clock Time). The wall-clock time t∗ is the true time
(a perfectly accurate clock would show).

Definition 14.3 (Clock). A clock is a device which tracks and indicates time.

Remarks:

• A clock’s time t is a function of the wall-clock time t∗, i.e., t = f(t∗).
Ideally, t = t∗, but in reality there are often errors.

Definition 14.4 (Clock Error). The clock error or clock skew is the difference
between two clocks, e.g., t−t∗ or t−t′. In practice the clock error is often modeled
as t = (1 + δ)t∗ + ξ(t∗).

127

128 CHAPTER 14. TIME, CLOCKS & GPS

Figure 14.8: Drift (left) and Jitter (right). On top is a square wave, the wall-
clock time t∗.

Remarks:

• The importance of accurate timekeeping and clock synchronization
is reflected in the following statement by physicist Steven Jefferts:
“We’ve learned that every time we build a better clock, somebody
comes up with a use for it that you couldn’t have foreseen.”

Definition 14.5 (Drift). The drift δ is the predictable clock error.

Remarks:

• Drift is relatively constant over time, but may change with supply
voltage, temperature and age of an oscillator.

• Stable clock sources, which offer a low drift, are generally preferred,
but also more expensive, larger and more power hungry, which is why
many consumer products feature inaccurate clocks.

Definition 14.6 (ppm). Clock drift is indicated in parts-per-million (ppm).
One ppm corresponds to a time error growth of one microsecond per second.

Remarks:

• In PCs, the so-called real-time clock normally is a crystal oscillator
with a maximum drift between 5 and 100 ppm.

• Applications in signal processing, for instance GPS, need more accu-
rate clocks. Common drift values are 0.5 to 2 ppm.

Definition 14.7 (Jitter). The jitter ξ is the unpredictable, random noise of
the clock error.

Remarks:

• In other words, jitter is the irregularity of the clock. Unlike drift,
jitter can vary fast.

• Jitter captures all the errors that are not explained by drift. Fig-
ure 14.8 visualizes the concepts.

14.2. CLOCK SYNCHRONIZATION 129

14.2 Clock Synchronization

Definition 14.9 (Clock Synchronization). Clock synchronization is the pro-
cess of matching multiple clocks (nodes) to have a common time.

Remarks:

• A trade-off exists between synchronization accuracy, convergence time,
and cost.

• Different clock synchronization variants may tolerate crashing, erro-
neous or byzantine nodes.

Algorithm 14.10 Network Time Protocol NTP

1: Two nodes, client u and server v

2: while true do
3: Node u sends request to v at time tu
4: Node v receives request at time tv
5: Node v processes the request and replies at time t′v
6: Node u receives the response at time t′u

7: Propagation delay δ =
(t′u−tu)−(t′v−tv)

2 (assumption: symmetric)

8: Clock skew θ =
(tv−(tu+δ))−(t′u−(t′v+δ))

2 =
(tv−tu)+(t′v−t

′
u)

2
9: Node u adjusts clock by +θ

10: Sleep before next synchronization
11: end while

Remarks:

• Many NTP servers are public, answering to UDP packets.

• The most accurate NTP servers derive their time from atomic clocks,
synchronized to UTC. To reduce those server’s load, a hierarchy of
NTP servers is available in a forest (multiple trees) structure.

• The regular synchronization of NTP limits the maximum error despite
unpredictable clock errors. Synchronizing clocks just once is only suf-
ficient for a short time period.

Definition 14.11 (PTP). The Precision Time Protocol (PTP) is a clock
synchronization protocol similar to NTP, but which uses medium access con-
trol (MAC) layer timestamps.

Remarks:

• MAC layer timestamping removes the unknown time delay incurred
through messages passing through the software stack.

• PTP can achieve sub-microsecond accuracy in local networks.

Definition 14.12 (Global Synchronization). Global synchronization estab-
lishes a common time between any two nodes in the system.

130 CHAPTER 14. TIME, CLOCKS & GPS

Remarks:

• For example, email needs global timestamps. Also, event detection
for power grid control and earthquake localization need global times-
tamps.

• Earthquake localization does not need real-time synchronization; it is
sufficient if a common time can be reconstructed when needed, also
known as “post factum” synchronization.

• NTP and PTP are both examples of clock synchronization algorithms
that optimize for global synchronization.

• However, two nodes that constantly communicate may receive their
timestamps through different paths of the NTP forest, and hence they
may accumulate different errors. Because of the clock skew, a message
sent by node u might arrive at node v with a timestamp in the future.

Algorithm 14.13 Local Time Synchronization

1: while true do
2: Exchange current time with neighbors
3: Adapt time to neighbors, e.g., to average or median
4: Sleep before next synchronization
5: end while

Definition 14.14 (Local Synchronization). Local synchronization establishes
a common time between close-by (neighbor) nodes.

Remarks:

• Local synchronization is the method of choice to establish time-division
multiple access (TDMA) and coordination of wake-up and sleeping
times in wireless networks. Only close-by nodes matter as far-away
nodes will not interfere with their transmissions.

• Local synchronization is also relevant for precise event localization.
For instance, using the speed of sound, measured sound arrival times
from co-located sensors can be used to localize a shooter.

• While global synchronization algorithm such as NTP usually synchro-
nize to an external time standard, local algorithms often just synchro-
nize among themselves, i.e., the notion of time does not reflect any
time standards.

• In wireless networks, one can simplify and improve synchronization.

14.3. TIME STANDARDS 131

Algorithm 14.15 Wireless Clock Synchronization with Known Delays

1: Given: transmitter s, receivers u, v, with known transmission delays du, dv
from transmitter s, respectively.

2: s sends signal at time ts
3: u receives signal at time tu
4: v receives signal at time tv

5: ∆u = tu − (ts + du)
6: ∆v = tv − (ts + dv)

7: Clock skew between u and v: θ = ∆v −∆u = tv − dv + du − tu

14.3 Time Standards

Definition 14.16 (TAI). The International Atomic Time (TAI) is a time
standard derived from over 400 atomic clocks distributed worldwide.

Remarks:

• Using a weighted average of all involved clocks, TAI is an order of
magnitude more stable than the best clock.

• The involved clocks are synchronized using simultaneous observations
of GPS or geostationary satellite transmissions using Algorithm 14.15.

• While a single satellite measurement has a time uncertainty on the
order of nanoseconds, averaging over a month improves the accuracy
by several orders of magnitude.

Definition 14.17 (Leap Second). A leap second is an extra second added to a
minute to make it irregularly 61 instead of 60 seconds long.

Remarks:

• Time standards use leap seconds to compensate for the slowing of the
Earth’s rotation. In theory, also negative leap seconds can be used to
make some minutes only 59 seconds long. But so far, this was never
necessary.

• For easy implementation, not all time standards use leap seconds, for
instance TAI and GPS time do not.

Definition 14.18 (UTC). The Coordinated Universal Time (UTC) is a
time standard based on TAI with leap seconds added at irregular intervals to
keep it close to mean solar time at 0◦ longitude.

132 CHAPTER 14. TIME, CLOCKS & GPS

Remarks:

• The global time standard Greenwich Mean Time (GMT) was already
established in 1884. With the invention of caesium atomic clocks and
the subsequent redefinition of the SI second, UTC replaced GMT in
1967.

• Before time standards existed, each city set their own time according
to the local mean solar time, which is difficult to measure exactly.
This was changed by the upcoming rail and communication networks.

• Different notations for time and date are in use. A standardized format
for timestamps, mostly used for processing by computers, is the ISO
8601 standard. According to this standard, a UTC timestamp looks
like this: 1712-02-30T07:39:52Z. T separates the date and time parts
while Z indicates the time zone with zero offset from UTC.

• Why UTC and not “CUT”? Because France insisted. Same for other
abbreviations in this domain, e.g. TAI.

Definition 14.19 (Time Zone). A time zone is a geographical region in which
the same time offset from UTC is officially used.

Remarks:

• Time zones serve to roughly synchronize noon with the sun reaching
the day’s highest apparent elevation angle.

• Some time zones’ offset is not a whole number of hours, e.g. India.

14.4 Clock Sources

Definition 14.20 (Atomic Clock). An atomic clock is a clock which keeps
time by counting oscillations of atoms.

Remarks:

• Atomic clocks are the most accurate clocks known. They can have a
drift of only about one second in 150 million years, about 2e-10 ppm!

• Many atomic clocks are based on caesium atoms, which led to the
current definition of a second. Others use hydrogen-1 or rubidium-87.

• In the future, atoms with higher frequency oscillations could yield
even more accurate clocks.

• Atomic clocks are getting smaller and more energy efficient. Chip-
scale atomic clocks (CSAC) are currently being produced for space
applications and may eventually find their way into consumer elec-
tronics.

• Atomic clocks can serve as a fallback for GPS time in data centers.

Definition 14.21 (System Clock). The system clock in a computer is an
oscillator used to synchronize all components on the motherboard.

14.4. CLOCK SOURCES 133

Remarks:

• Usually, a quartz crystal oscillator with a frequency of some tens to
hundreds MHz is used.

• Therefore, the system clock can achieve a precision of some ns!

• The CPU clock is usually a multiple of the system clock, generated
from the system clock through a clock multiplier.

• To guarantee nominal operation of the computer, the system clock
must have low jitter. Otherwise, some components might not get
enough time to complete their operation before the next (early) clock
pulse arrives.

• Drift however is not critical for system stability.

• Applications of the system clock include thread scheduling and ensur-
ing smooth media playback.

• If a computer is shut down, the system clock is not running; it is
reinitialized when starting the computer.

Definition 14.22 (RTC). The real-time clock (RTC) in a computer is a
battery backed oscillator which is running even if the computer is shut down or
unplugged.

Remarks:

• The RTC is read at system startup to initialize the system clock.

• This keeps the computer’s time close to UTC even when the time
cannot be synchronized over a network.

• RTCs are relatively inaccurate, with a common maximum drift of 5,
20 or even 100 ppm, depending on quality and temperature.

• In many cases, the RTC frequency is 32.768 kHz, which allows for
simple timekeeping based on binary counter circuits because the fre-
quency is exactly 215 Hz.

Definition 14.23 (Radio Time Signal). A Radio Time Signal is a time code
transmitted via radio waves by a time signal station, referring to a time in a
given standard such as UTC.

Remarks:

• Time signal stations use atomic clocks to send as accurate time codes
as possible.

• Radio-controlled clocks are an example application of radio signal time
synchronization.

• In Europe, most radio-controlled clocks use the signal transmitted by
the DCF77 station near Frankfurt, Germany.

134 CHAPTER 14. TIME, CLOCKS & GPS

• Radio time signals can be received much farther than the horizon of
the transmitter due to signal reflections at the ionosphere. DCF77 for
instance has an official range of 2,000 km.

• The time synchronization accuracy when using radio time signals is
limited by the propagation delay of the signal. For instance the delay
Frankfurt-Zurich is about 1 ms.

Definition 14.24 (Power Line Clock). A power line clock measures the os-
cillations from electric AC power lines, e.g. 50 Hz.

Remarks:

• Clocks in kitchen ovens are usually driven by power line oscillations.

• AC power line oscillations drift about 10 ppm, which is remarkably
stable.

• The magnetic field radiating from power lines is strong enough that
power line clocks can work wirelessly.

• Power line clocks can be synchronized by matching the observed noisy
power line oscillation patterns.

• Power line clocks operate with as little as a few ten µW.

Definition 14.25 (Sunlight Time Synchronization). Sunlight time synchro-
nization is a method of reconstructing global timestamps by correlating annual
solar patterns from light sensors’ length of day measurements.

Remarks:

• Sunlight time synchronization is relatively inaccurate.

• Due to low data rates from length of day measurements, sunlight time
synchronization is well-suited for long-time measurements with data
storage and post-processing, requiring no communication at the time
of measurement.

• Historically, sun and lunar observations were the first measurements
used for time determination. Some clock towers still feature sun dials.

• . . . but today, the most popular source of time is probably GPS!

14.5 GPS

Definition 14.26 (Global Positioning System). The Global Positioning Sys-
tem (GPS) is a Global Navigation Satellite System (GNSS), consisting
of at least 24 satellites orbiting around the Earth, each continuously transmitting
its position and time code.

14.5. GPS 135

Remarks:

• Positioning is done in space and time!

• GPS provides position and time information to receivers anywhere on
Earth where at least four satellite signals can be received.

• Line of sight (LOS) between satellite and receiver is advantageous.
GPS works poorly indoors, or with reflections.

• Besides the US GPS, three other GNSS exist: the European Galileo,
the Russian GLONASS and the Chinese BeiDou.

• GPS satellites orbit around Earth approximately 20,000 km above the
surface, circling Earth twice a day. The signals take between 64 and
89 ms to reach Earth.

• The orbits are precisely determined by ground control stations, op-
timized for a high number of satellites being concurrently above the
horizon at any place on Earth.

Algorithm 14.27 GPS Satellite

1: Given: Each satellite has a unique 1023 bit (±1, see below) PRN sequence,
plus some current navigation data D (also ±1).

2: The code below is a bit simplified, concentrating on the digital aspects,
ignoring that the data is sent on a carrier frequency of 1575.42 MHz.

3: while true do
4: for all bits Di ∈ D do
5: for j = 0 . . . 19 do
6: for k = 0 . . . 1022 do {this loop takes exactly 1 ms}
7: Send bit PRNk ·Di

8: end for
9: end for

10: end for
11: end while

Definition 14.28 (PRN). Pseudo-Random Noise (PRN) sequences are
pseudo-random bit strings. Each GPS satellite uses a unique PRN sequence
with a length of 1023 bits for its signal transmissions.

Remarks:

• The GPS PRN sequences are so-called Gold codes, which have low
cross-correlation with each other.

• To simplify our math (abstract from modulation), each PRN bit is
either 1 or −1.

Definition 14.29 (Navigation Data). Navigation Data is the data transmit-
ted from satellites, which includes orbit parameters to determine satellite po-
sitions, timestamps of signal transmission, atmospheric delay estimations and
status information of the satellites and GPS as a whole, such as the accuracy
and validity of the data.

136 CHAPTER 14. TIME, CLOCKS & GPS

Remarks:

• As seen in Algorithm 14.27 each bit is repeated 20 times for better
robustness. Thus, the navigation data rate is only 50 bit/s.

• Due to this limited data rate, timestamps are sent every 6 seconds,
satellite orbit parameters (function of the satellite position over time)
only every 30 seconds. As a result, the latency of a first position
estimate after turning on a receiver, which is called time-to-first-fix
(TTFF), can be high.

Definition 14.30 (Circular Cross-Correlation). The circular cross-correlation
is a similarity measure between two vectors of length N , circularly shifted by
a given displacement d:

cxcorr(a, b, d) =

N−1∑
i=0

ai · bi+d mod N

Remarks:

• The two vectors are most similar at the displacement d where the sum
(cross-correlation value) is maximum.

• The vector of cross-correlation values with all N displacements can ef-
ficiently be computed using a fast Fourier transform (FFT) inO(N logN)
instead of O(N2) time.

Algorithm 14.31 Acquisition

1: Received 1 ms signal s with sampling rate r · 1, 023 kHz
2: Possible Doppler shifts F , e.g. {-10 kHz, -9.8 kHz, . . . , +10 kHz}
3: Tensor A = 0: Satellite × carrier frequency × time

4: for all satellites i do
5: PRN ′i = PRNi stretched with ratio r
6: for all Doppler shifts f ∈ F do
7: Build modulated PRN ′′i with PRN ′i and Doppler frequency f
8: for all delays d ∈ {0, 1, . . . , 1, 023 · r − 1} do
9: Ai(f, d) = |cxcorr(s,PRN ′′

i , d)|
10: end for
11: end for
12: Select d∗ that maximizes maxd maxf Ai(f, d)
13: Signal arrival time ri = d∗/(r · 1, 023 kHz)
14: end for

Remarks:

• Multiple milliseconds of acquisition can be summed up to average out
noise and therefore improve the arrival time detection probability.

Definition 14.32 (Acquisition). Acquisition is the process in a GPS receiver
that finds the visible satellite signals and detects the delays of the PRN sequences
and the Doppler shifts of the signals.

14.5. GPS 137

Remarks:

• The relative speed between satellite and receiver introduces a signif-
icant Doppler shift to the carrier frequency. In order to decode the
signal, a frequency search for the Doppler shift is necessary.

• The nested loops make acquisition the computationally most intensive
part of a GPS receiver.

Algorithm 14.33 Classic GPS Receiver

1: h: Unknown receiver handset position
2: θ: Unknown handset time offset to GPS system time
3: ri: measured signal arrival time in handset time system
4: c: signal propagation speed (GPS: speed of light)

5: Perform Acquisition (Algorithm 14.31)
6: Track signals and decode navigation data
7: for all satellites i do
8: Using navigation data, determine signal transmit time si and position pi
9: Measured satellite transmission delay di = ri − si

10: end for
11: Solve the following system of equations for h and θ:
12: ||pi − h||/c = di − θ, for all i

Remarks:

• GPS satellites carry precise atomic clocks, but the receiver is not syn-
chronized with the satellites. The arrival times of the signals at the
receiver are determined in the receiver’s local time. Therefore, even
though the satellite signals include transmit timestamps, the exact
distance between satellites and receiver is unknown.

• In total, the positioning problem contains four unknown variables,
three for the handset’s spatial position and one for its time offset from
the system time. Therefore, signals from at least four transmitters are
needed to find the correct solution.

• Since the equations are quadratic (distance), with as many observa-
tions as variables, the system of equations has two solutions in princi-
ple. For GPS however, in practice one of the solutions is far from the
Earth surface, so the correct solution can always be identified without
a fifth satellite.

• More received signals help reducing the measurement noise and thus
improving the accuracy.

• Since the positioning solution, which is also called position fix, in-
cludes the handset’s time offset ∆, this establishes a global time for
all handsets. Thus, GPS is useful for global time synchronization.

138 CHAPTER 14. TIME, CLOCKS & GPS

• For a handset with unknown position, GPS timing is more accurate
than time synchronization with a single transmitter, like a time signal
station (cf. Definition 14.23). With the latter, the unknown signal
propagation delays cannot be accounted for.

Definition 14.34 (A-GPS). An Assisted GPS (A-GPS) receiver fetches
the satellite orbit parameters and other navigation data from the Internet, for
instance via a cellular network.

Remarks:

• A-GPS reduces the data transmission time, and thus the TTFF, from
a maximum of 30 seconds per satellite to a maximum of 6 seconds.

• Smartphones regularly use A-GPS. However, coarse positioning is usu-
ally done based on nearby Wi-Fi base stations only, which saves energy
compared to GPS.

• Another GPS improvement is Differential GPS (DGPS): A receiver
with a fixed location within a few kilometers of a mobile receiver
compares the observed and actual satellite distances. This error is
then subtracted at the mobile receiver. DGPS achieves accuracies in
the order of 10 cm.

Definition 14.35 (Snapshot GPS Receiver). A snapshot receiver is a GPS
receiver that captures one or a few milliseconds of raw GPS signal for a position
fix.

Remarks:

• Snapshot receivers aim at the remaining latency that results from the
transmission of timestamps from the satellites every six seconds.

• Since time changes continuously, timestamps cannot be fetched to-
gether with the satellite orbit parameters that are valid for two hours.

• Snapshot receiver can determine the ranges to the satellites modulo 1
ms, which corresponds to 300 km. An approximate time and location
of the receiver is used to resolve these ambiguities without a timestamp
from the satellite signals themselves.

Definition 14.36 (CTN). Coarse Time Navigation (CTN) is a snapshot
receiver positioning technique measuring sub-millisecond satellite ranges from
correlation peaks, like conventional GPS receivers.

Remarks:

• A CTN receiver determines the signal transmit times and satellite
positions from its own approximate location by subtracting the signal
propagation delay from the receive time. The receiver location and
time is not exactly known, but since signals are transmitted exactly
whole milliseconds, rounding to the nearest whole millisecond gives
the signal transmit time.

14.6. LOWER BOUNDS 139

• With only a few milliseconds of signal, noise cannot be averaged out
well and may lead to wrong signal arrival time estimates. Such wrong
measurements usually render the system of equations unsolvable, mak-
ing positioning infeasible.

Algorithm 14.37 Collective Detection Receiver

1: Given: A raw 1 ms GPS sample s, a set H of location/time hypotheses
2: In addition, the receiver learned all navigation and atmospheric data

3: for all hypotheses h ∈ H do
4: Vector r = 0
5: Set V = satellites that should be visible with hypothesis h
6: for all satellites i in V do
7: r = r + ri, where ri is expected signal of satellite i. The data of vec-

tor ri incorporates all available information: distance and atmospheric
delay between satellite and receiver, frequency shift because of Doppler
shift due to satellite movement, current navigation data bit of satellite,
etc.

8: end for
9: Probability Ph = cxcorr(s, r, 0)

10: end for
11: Solution: hypothesis h ∈ H maximizing Ph

Definition 14.38 (Collective Detection). Collective Detection (CD) is a
maximum likelihood snapshot receiver localization method, which does not de-
termine an arrival time for each satellite, but rather combine all the available
information and take a decision only at the end of the computation.

Remarks:

• CD can tolerate a few low quality satellite signals and is thus more
robust than CTN.

• In essence, CD tests how well position hypotheses match the received
signal. For large position and time uncertainties, the high number of
hypotheses require a lot of computation power.

• CD can be sped up by a branch and bound approach, which reduces
the computation per position fix to the order of one second even for
uncertainties of 100 km and a minute.

14.6 Lower Bounds

In the clock synchronization problem, we are given a network (graph) with n
nodes. The goal for each node is to have a (logical) clock such that the clock
values are well synchronized, and close to real time. Each node is equipped
with a hardware (system) clock, that ticks more or less in real time, i.e., the
time between two pulses is arbitrary between [1− ε, 1 + ε], for a constant ε� 1.
We assume that messages sent over the edges of the graph have a delivery time

140 CHAPTER 14. TIME, CLOCKS & GPS

between [0, 1]. In other words, we have a bounded but variable drift on the
hardware clocks and an arbitrary jitter in the delivery times. The goal is to
design a message-passing algorithm that ensures that the logical clock skew of
adjacent nodes is as small as possible at all times.

Definition 14.39 (Local and Global Clock Skew). In a network of nodes, the
local clock skew is the skew between neighboring nodes, while the global clock
skew is the maximum skew between any two nodes.

Remarks:

• Of interest is also the average global clock skew, that is the average
skew between any pair of nodes.

Theorem 14.40. The global clock skew (Definition 14.12) is Ω(D), where D
is the diameter of the network graph.

Proof. For a node u, let tu be the logical time of u and let (u → v) denote a
message sent from u to a node v. Let t(m) be the time delay of a message m
and let u and v be neighboring nodes. First consider a case where the message
delays between u and v are 1/2. Then, all the messages sent by u and v at time
t according to the clock of the sender arrive at time t + 1/2 according to the
clock of the receiver.

Then consider the following cases

• tu = tv + 1/2, t(u→ v) = 1, t(v → u) = 0

• tu = tv − 1/2, t(u→ v) = 0, t(v → u) = 1,

where the message delivery time is always fast for one node and slow for the
other and the logical clocks are off by 1/2. In both scenarios, the messages sent
at time i according to the clock of the sender arrive at time i + 1/2 according
to the logical clock of the receiver. Therefore, for nodes u and v, both cases
with clock drift seem the same as the case with perfectly synchronized clocks.
Furthermore, in a linked list of D nodes, the left- and rightmost nodes l, r cannot
distinguish tl = tr +D/2 from tl = tr −D/2.

Remarks:

• From Theorem 14.40, it directly follows that any reasonable clock
synchronization algorithm must have a global skew of Ω(D).

• Many natural algorithms manage to achieve a global clock skew of
O(D).

• As both message jitter and hardware clock drift are bounded by con-
stants, it feels like we should be able to get a constant drift at least
between neighboring nodes.

• Let us look at the following algorithm:

Lemma 14.42. The clock synchronization protocol of Algorithm 14.41 has a
local skew of Ω(n).

14.6. LOWER BOUNDS 141

Algorithm 14.41 Local Clock Synchronization (at node v)

1: repeat
2: send logical time tv to all neighbors
3: if Receive logical time tu, where tu > tv, from any neighbor u then
4: tv = tu
5: end if
6: until done

Proof. Let the graph be a linked list of D nodes. We denote the nodes by
v1, v2, . . . , vD from left to right and the logical clock of node vi by ti. Apart
from the left-most node v1 all hardware clocks run with speed 1 (real time).
Node v1 runs at maximum speed, i.e. the time between two pulses is not 1 but
1− ε. Assume that initially all message delays are 1. After some time, node v1

will start to speed up v2, and after some more time v2 will speed up v3, and
so on. At some point of time, we will have a clock skew of 1 between any two
neighbors. In particular t1 = tD +D − 1.

Now we start playing around with the message delays. Let t1 = T . First we
set the delay between the v1 and v2 to 0. Now node v2 immediately adjusts its
logical clock to T . After this event (which is instantaneous in our model) we set
the delay between v2 and v3 to 0, which results in v3 setting its logical clock to T
as well. We perform this successively to all pairs of nodes until vD−2 and vD−1.
Now node vD−1 sets its logical clock to T , which indicates that the difference
between the logical clocks of vD−1 and vD is T − (T − (D − 1)) = D − 1.

Remarks:

• The introduced examples may seem cooked-up, but examples like this
exist in all networks, and for all algorithms. Indeed, it was shown
that any natural clock synchronization algorithm must have a bad
local skew. In particular, a protocol that averages between all neigh-
bors (like Algorithm 14.13) is even worse than Algorithm 14.41. An
averaging algorithm has a clock skew of Ω(D2) in the linked list, at
all times.

• It was shown that the local clock skew is Θ(logD), i.e., there is a pro-
tocol that achieves this bound, and there is a proof that no algorithm
can be better than this bound!

• Note that these are worst-case bounds. In practice, clock drift and
message delays may not be the worst possible, typically the speed of
hardware clocks changes at a comparatively slow pace and the mes-
sage transmission times follow a benign probability distribution. If we
assume this, better protocols do exist, in theory as well as in practice.

Chapter Notes

Atomic clocks can be used as a GPS fallback for data center synchroniza-
tion [CDE+13].

142 CHAPTER 14. TIME, CLOCKS & GPS

GPS has been such a technological breakthrough that even though it dates
back to the 1970s, the new GNSS still use essentially the same techniques. Sev-
eral people worked on snapshot GPS receivers, but the technique has not pene-
trated into commercial receivers yet. Liu et al. [LPH+12] presented a practical
CTN receiver and reduced the solution space by eliminating solutions not lying
on the ground. CD receivers are studied since at least 2011 [ABD+11] and have
recently been made practically feasible through branch and bound [BEW17]

It has been known for a long time that the global clock skew is Θ(D) [LL84,
ST87]. The problem of synchronizing the clocks of nearby nodes was intro-
duced by Fan and Lynch in [LF04]; they proved a surprising lower bound of
Ω(logD/ log logD) for the local skew. The first algorithm providing a non-
trivial local skew of O(

√
D) was given in [LW06]. Later, matching upper and

lower bounds of Θ(logD) were given in [LLW10]. The problem has also been
studied in a dynamic setting [KLO09, KLLO10] or when a fraction of nodes ex-
perience byzantine faults and the other nodes have to recover from faulty initial
state (i.e., self-stabilizing) [DD06, DW04]. The self-stabilizing byzantine case
has been solved with asymptotically optimal skew [KL18].

Clock synchronization is a well-studied problem in practice, for instance
regarding the global clock skew in sensor networks, e.g. [EGE02, GKS03,
MKSL04, PSJ04]. One more recent line of work is focussing on the problem
of minimizing the local clock skew [BvRW07, SW09, LSW09, FW10, FZTS11].

This chapter was written in collaboration with Manuel Eichelberger.

Bibliography

[ABD+11] Penina Axelrad, Ben K Bradley, James Donna, Megan Mitchell, and
Shan Mohiuddin. Collective Detection and Direct Positioning Using
Multiple GNSS Satellites. Navigation, 58(4):305–321, 2011.

[BEW17] Pascal Bissig, Manuel Eichelberger, and Roger Wattenhofer. Fast
and Robust GPS Fix Using One Millisecond of Data. In Informa-
tion Processing in Sensor Networks (IPSN), 2017 16th ACM/IEEE
International Conference on, pages 223–234. IEEE, 2017.

[BvRW07] Nicolas Burri, Pascal von Rickenbach, and Roger Wattenhofer.
Dozer: Ultra-Low Power Data Gathering in Sensor Networks. In
International Conference on Information Processing in Sensor Net-
works (IPSN), Cambridge, Massachusetts, USA, April 2007.

[CDE+13] James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes,
Christopher Frost, Jeffrey John Furman, Sanjay Ghemawat, An-
drey Gubarev, Christopher Heiser, Peter Hochschild, et al. Span-
ner: Google’s globally distributed database. ACM Transactions on
Computer Systems (TOCS), 31(3):8, 2013.

[DD06] Ariel Daliot and Danny Dolev. Self-Stabilizing Byzantine Pulse Syn-
chronization. Computing Research Repository, 2006.

[DW04] Shlomi Dolev and Jennifer L. Welch. Self-stabilizing clock synchro-
nization in the presence of Byzantine faults. September 2004.

BIBLIOGRAPHY 143

[EGE02] Jeremy Elson, Lewis Girod, and Deborah Estrin. Fine-grained
Network Time Synchronization Using Reference Broadcasts. ACM
SIGOPS Operating Systems Review, 36:147–163, 2002.

[FW10] Roland Flury and Roger Wattenhofer. Slotted Programming for
Sensor Networks. In International Conference on Information Pro-
cessing in Sensor Networks (IPSN), Stockholm, Sweden, April 2010.

[FZTS11] Federico Ferrari, Marco Zimmerling, Lothar Thiele, and Olga Saukh.
Efficient Network Flooding and Time Synchronization with Glossy.
In Proceedings of the 10th International Conference on Information
Processing in Sensor Networks (IPSN), pages 73–84, 2011.

[GKS03] Saurabh Ganeriwal, Ram Kumar, and Mani B. Srivastava. Timing-
sync Protocol for Sensor Networks. In Proceedings of the 1st interna-
tional conference on Embedded Networked Sensor Systems (SenSys),
2003.

[KL18] Pankaj Khanchandani and Christoph Lenzen. Self-Stabilizing
Byzantine Clock Synchronization with Optimal Precision. January
2018.

[KLLO10] Fabian Kuhn, Christoph Lenzen, Thomas Locher, and Rotem Osh-
man. Optimal Gradient Clock Synchronization in Dynamic Net-
works. In 29th Symposium on Principles of Distributed Computing
(PODC), Zurich, Switzerland, July 2010.

[KLO09] Fabian Kuhn, Thomas Locher, and Rotem Oshman. Gradient Clock
Synchronization in Dynamic Networks. In 21st ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA), Calgary,
Canada, August 2009.

[LF04] Nancy Lynch and Rui Fan. Gradient Clock Synchronization. In
Proceedings of the 23rd Annual ACM Symposium on Principles of
Distributed Computing (PODC), 2004.

[LL84] Jennifer Lundelius and Nancy Lynch. An Upper and Lower Bound
for Clock Synchronization. Information and Control, 62:190–204,
1984.

[LLW10] Christoph Lenzen, Thomas Locher, and Roger Wattenhofer. Tight
Bounds for Clock Synchronization. In Journal of the ACM, Volume
57, Number 2, January 2010.

[LPH+12] Jie Liu, Bodhi Priyantha, Ted Hart, Heitor Ramos, Antonio A.F.
Loureiro, and Qiang Wang. Energy Efficient GPS Sensing with
Cloud Offloading. In 10th ACM Conference on Embedded Networked
Sensor Systems (SenSys 2012). ACM, November 2012.

[LSW09] Christoph Lenzen, Philipp Sommer, and Roger Wattenhofer. Op-
timal Clock Synchronization in Networks. In 7th ACM Conference
on Embedded Networked Sensor Systems (SenSys), Berkeley, Cali-
fornia, USA, November 2009.

144 CHAPTER 14. TIME, CLOCKS & GPS

[LW06] Thomas Locher and Roger Wattenhofer. Oblivious Gradient Clock
Synchronization. In 20th International Symposium on Distributed
Computing (DISC), Stockholm, Sweden, September 2006.

[MKSL04] Miklós Maróti, Branislav Kusy, Gyula Simon, and Ákos Lédeczi. The
Flooding Time Synchronization Protocol. In Proceedings of the 2nd
international Conference on Embedded Networked Sensor Systems,
SenSys ’04, 2004.

[PSJ04] Santashil PalChaudhuri, Amit Kumar Saha, and David B. Johnson.
Adaptive Clock Synchronization in Sensor Networks. In Proceedings
of the 3rd International Symposium on Information Processing in
Sensor Networks, IPSN ’04, 2004.

[ST87] T. K. Srikanth and S. Toueg. Optimal Clock Synchronization. Jour-
nal of the ACM, 34:626–645, 1987.

[SW09] Philipp Sommer and Roger Wattenhofer. Gradient Clock Synchro-
nization in Wireless Sensor Networks. In 8th ACM/IEEE Inter-
national Conference on Information Processing in Sensor Networks
(IPSN), San Francisco, USA, April 2009.

Chapter 15

Quorum Systems

What happens if a single server is no longer powerful enough to service all your
customers? The obvious choice is to add more servers and to use the majority
approach (e.g. Paxos, Chapter 7) to guarantee consistency. However, even if
you buy one million servers, a client still has to access more than half of them per
request! While you gain fault-tolerance, your efficiency can at most be doubled.
Do we have to give up on consistency?

Let us take a step back: We used majorities because majority sets always
overlap. But are majority sets the only sets that guarantee overlap? In this
chapter we study the theory behind overlapping sets, known as quorum systems.

Definition 15.1 (quorum, quorum system). Let V = {v1, . . . , vn} be a set of
nodes. A quorum Q ⊆ V is a subset of these nodes. A quorum system
S ⊂ 2V is a set of quorums s.t. every two quorums intersect, i.e., Q1 ∩Q2 6= ∅
for all Q1, Q2 ∈ S.

Remarks:

• When a quorum system is being used, a client selects a quorum, ac-
quires a lock (or ticket) on all nodes of the quorum, and when done
releases all locks again. The idea is that no matter which quorum is
chosen, its nodes will intersect with the nodes of every other quorum.

• What can happen if two quorums try to lock their nodes at the same
time?

• A quorum system S is called minimal if ∀Q1, Q2 ∈ S : Q1 6⊂ Q2.

• The simplest quorum system imaginable consists of just one quorum,
which in turn just consists of one server. It is known as Singleton.

• In the Majority quorum system, every quorum has bn2 c+ 1 nodes.

• Can you think of other simple quorum systems?

145

146 CHAPTER 15. QUORUM SYSTEMS

15.1 Load and Work

Definition 15.2 (access strategy). An access strategy Z defines the proba-
bility PZ(Q) of accessing a quorum Q ∈ S s.t.

∑
Q∈S PZ(Q) = 1.

Definition 15.3 (load).

• The load of access strategy Z on a node vi is LZ(vi) =
∑
Q∈S;vi∈Q PZ(Q).

• The load induced by access strategy Z on a quorum system S is the max-
imal load induced by Z on any node in S, i.e., LZ(S) = maxvi∈S LZ(vi).

• The load of a quorum system S is L(S) = minZ LZ(S).

Definition 15.4 (work).

• The work of a quorum Q ∈ S is the number of nodes in Q, W (Q) = |Q|.

• The work induced by access strategy Z on a quorum system S is the
expected number of nodes accessed, i.e., WZ(S) =

∑
Q∈S PZ(Q) ·W (Q).

• The work of a quorum system S is W (S) = minZWZ(S).

Remarks:

• Note that you cannot choose different access strategies Z for work and
load, you have to pick a single Z for both.

• We illustrate the above concepts with a small example. Let V =
{v1, v2, v3, v4, v5} and S = {Q1, Q2, Q3, Q4}, with Q1 = {v1, v2},
Q2 = {v1, v3, v4}, Q3 = {v2, v3, v5}, Q4 = {v2, v4, v5}. If we choose
the access strategy Z s.t. PZ(Q1) = 1/2 and PZ(Q2) = PZ(Q3) =
PZ(Q4) = 1/6, then the node with the highest load is v2 with LZ(v2)
= 1/2 + 1/6 + 1/6 = 5/6, i.e., LZ(S) = 5/6. Regarding work, we have
WZ(S) = 1/2 · 2 + 1/6 · 3 + 1/6 · 3 + 1/6 · 3 = 15/6.

• Can you come up with a better access strategy for S?

• If every quorum Q in a quorum system S has the same number of
elements, S is called uniform.

• What is the minimum load a quorum system can have?

Primary Copy vs. Majority Singleton Majority

How many nodes need to be accessed? (Work) 1 > n/2
What is the load of the busiest node? (Load) 1 > 1/2

Table 15.5: First comparison of the Singleton and Majority quorum systems.
Note that the Singleton quorum system can be a good choice when the failure
probability of every single node is > 1/2.

15.2. GRID QUORUM SYSTEMS 147

Theorem 15.6. Let S be a quorum system. Then L(S) ≥ 1/
√
n holds.

Proof. Let Q = {v1, . . . , vq} be a quorum of minimal size in S, with |Q| = q.
Let Z be an access strategy for S. Every other quorum in S intersects in at
least one element with this quorum Q. Each time a quorum is accessed, at least
one node in Q is accessed as well, yielding a lower bound of LZ(vi) ≥ 1/q for
some vi ∈ Q.

Furthermore, as Q is minimal, at least q nodes need to be accessed, yielding
W (S) ≥ q. Thus, LZ(vi) ≥ q/n for some vi ∈ Q, as each time q nodes are
accessed, the load of the most accessed node is at least q/n.

Combining both ideas leads to LZ(S) ≥ max (1/q, q/n) ⇒ LZ(S) ≥ 1/
√
n.

Thus, L(S) ≥ 1/
√
n, as Z can be any access strategy.

Remarks:

• Can we achieve this load?

15.2 Grid Quorum Systems
Definition 15.7 (Basic Grid quorum system). Assume

√
n ∈ N, and arrange

the n nodes in a square matrix with side length of
√
n, i.e., in a grid. The basic

Grid quorum system consists of
√
n quorums, with each containing the full row

i and the full column i, for 1 ≤ i ≤
√
n.

Figure 15.8: The basic version of the Grid quorum system, where each quorum
Qi with 1 ≤ i ≤

√
n uses row i and column i. The size of each quorum is

2
√
n− 1 and two quorums overlap in exactly two nodes. Thus, when the access

strategy Z is uniform (i.e., the probability of each quorum is 1/
√
n), the work

is 2
√
n− 1, and the load of every node is in Θ(1/

√
n).

Remarks:

• Consider the right picture in Figure 15.8: The two quorums intersect
in two nodes. If both quorums were to be accessed at the same time,
it is not guaranteed that at least one quorum will lock all of its nodes,
as they could enter a deadlock!

• In the case of just two quorums, one could solve this by letting the
quorums just intersect in one node, see Figure 15.9. However, already
with three quorums the same situation could occur again, progress is
not guaranteed!

• However, by deviating from the “access all at once” strategy, we can
guarantee progress if the nodes are totally ordered!

148 CHAPTER 15. QUORUM SYSTEMS

Figure 15.9: There are other ways to choose quorums in the grid s.t. pairwise
different quorums only intersect in one node. The size of each quorum is between√
n and 2

√
n − 1, i.e., the work is in Θ(

√
n). When the access strategy Z is

uniform, the load of every node is in Θ(1/
√
n).

Algorithm 15.10 Sequential Locking Strategy for a Quorum Q

1: Attempt to lock the nodes one by one, ordered by their identifiers
2: Should a node be already locked, release all locks and start over

Theorem 15.11. If each quorum is accessed by Algorithm 15.10, at least one
quorum will obtain a lock for all of its nodes.

Proof. We prove the theorem by contradiction. Assume no quorum can make
progress, i.e., for every quorum we have: At least one of its nodes is locked by
another quorum. Let v be the node with the highest identifier that is locked by
some quorum Q. Observe that Q already locked all of its nodes with a smaller
identifier than v, otherwise Q would have restarted. As all nodes with a higher
identifier than v are not locked, Q either has locked all of its nodes or can
make progress – a contradiction. As the set of nodes is finite, one quorum will
eventually be able to lock all of its nodes.

Remarks:

• But now we are back to sequential accesses in a distributed system?
Let’s do it concurrently with the same idea, i.e., resolving conflicts by
the ordering of the nodes. Then, a quorum that locked the highest
identifier so far can always make progress!

Theorem 15.13. If the nodes and quorums use Algorithm 15.12, at least one
quorum will obtain a lock for all of its nodes.

15.3. FAULT TOLERANCE 149

Algorithm 15.12 Concurrent Locking Strategy for a Quorum Q

Invariant: Let vQ ∈ Q be the highest identifier of a node locked by Q s.t. all
nodes vi ∈ Q with vi < vQ are locked by Q as well. Should Q not have any lock,
then vQ is set to 0.

1: repeat
2: Attempt to lock all nodes of the quorum Q
3: for each node v ∈ Q that was not able to be locked by Q do
4: exchange vQ and vQ′ with the quorum Q′ that locked v
5: if vQ > vQ′ then
6: Q′ releases lock on v and Q acquires lock on v
7: end if
8: end for
9: until all nodes of the quorum Q are locked

Proof. The proof is analogous to the proof of Theorem 15.11: Assume for con-
tradiction that no quorum can make progress. However, at least the quorum
with the highest vQ can always make progress – a contradiction! As the set of
nodes is finite, at least one quorum will eventually be able to acquire a lock on
all of its nodes.

Remarks:

• What if a quorum locks all of its nodes and then crashes? Is the
quorum system dead now? This issue can be prevented by, e.g., using
leases instead of locks: leases have a timeout, i.e., a lock is released
eventually.

15.3 Fault Tolerance

Definition 15.14 (resilience). If any f nodes from a quorum system S can fail
s.t. there is still a quorum Q ∈ S without failed nodes, then S is f -resilient.
The largest such f is the resilience R(S).

Theorem 15.15. Let S be a Grid quorum system where each of the n quorums
consists of a full row and a full column. S has a resilience of

√
n− 1.

Proof. If all
√
n nodes on the diagonal of the grid fail, then every quorum will

have at least one failed node. Should less than
√
n nodes fail, then there is a

row and a column without failed nodes.

Remarks:

• The Grid quorum system in Theorem 15.15 is different from the Basic
Grid quorum system described in Definition 15.7. In each quorum in
the Basic Grid quorum system the row and column index are identical,
while in the Grid quorum system of Theorem 15.15 this is not the case.

Definition 15.16 (failure probability). Assume that every node works with a
fixed probability p (in the following we assume concrete values, e.g. p > 1/2).
The failure probability Fp(S) of a quorum system S is the probability that at
least one node of every quorum fails.

150 CHAPTER 15. QUORUM SYSTEMS

Remarks:

• The asymptotic failure probability is Fp(S) for n→∞.

Facts 15.17. A version of a Chernoff bound states the following:
Let x1, . . . , xn be independent Bernoulli-distributed random variables with
Pr[xi = 1] = pi and Pr[xi = 0] = 1 − pi = qi, then for X :=

∑n
i=1 xi and

µ := E[X] =
∑n
i=1 pi the following holds:

for all 0 < δ < 1: Pr[X ≤ (1− δ)µ] ≤ e−µδ
2/2 .

Theorem 15.18. The asymptotic failure probability of the Majority quorum
system is 0.

Proof. In a Majority quorum system each quorum contains exactly bn2 c + 1
nodes and each subset of nodes with cardinality bn2 c+ 1 forms a quorum. The
Majority quorum system fails, if only bn2 c nodes work. Otherwise there is at
least one quorum available. In order to calculate the failure probability we
define the following random variables:

xi =

{
1, if node i works, happens with probability p

0, if node i fails, happens with probability q = 1− p
and X :=

∑n
i=1 xi, with µ = np,

whereas X corresponds to the number of working nodes. To estimate the
probability that the number of working nodes is less than bn2 c+ 1 we will make
use of the Chernoff inequality from above. By setting δ = 1 − 1

2p we obtain

FP (S) = Pr[X ≤ bn2 c] ≤ Pr[X ≤
n
2] = Pr[X ≤ (1− δ)µ].

With δ = 1− 1
2p we have 0 < δ ≤ 1/2 due to 1/2 < p ≤ 1. Thus, we can use

the Chernoff bound and get FP (S) ≤ e−µδ2/2 ∈ e−Ω(n).

Theorem 15.19. The asymptotic failure probability of the Grid quorum system
is 1.

Proof. Consider the n = d · d nodes to be arranged in a d × d grid. A quorum
always contains one full row. In this estimation we will make use of the Bernoulli
inequality which states that for all n ∈ N, x ≥ −1 : (1 + x)n ≥ 1 + nx.

The system fails, if in each row at least one node fails (which happens with
probability 1 − pd for a particular row, as all nodes work with probability pd).
Therefore we can bound the failure probability from below with:

Fp(S) ≥ Pr[at least one failure per row] = (1− pd)d ≥ 1− dpd −→
n→∞

1.

Remarks:

• Now we have a quorum system with optimal load (the Grid) and one
with fault-tolerance (Majority), but what if we want both?

Definition 15.20 (B-Grid quorum system). Consider n = dhr nodes, arranged
in a rectangular grid with h · r rows and d columns. Each group of r rows is a
band, and r elements in a column restricted to a band are called a mini-column.
A quorum consists of one mini-column in every band and one element from
each mini-column of one band; thus every quorum has d+hr− 1 elements. The
B-Grid quorum system consists of all such quorums.

15.4. BYZANTINE QUORUM SYSTEMS 151

Figure 15.21: A B-Grid quorum system with n = 100 nodes, d = 10 columns,
h ·r = 10 rows, h = 5 bands, and r = 2. The depicted quorum has a d+hr−1 =
10 + 5 · 2 − 1 = 19 nodes. If the access strategy Z is chosen uniformly, then
we have a work of d + hr − 1 and a load of d+hr−1

n . By setting d =
√
n and

r = log n, we obtain a work of Θ (
√
n) and a load of Θ (1/

√
n).

Theorem 15.22. The asymptotic failure probability of the B-Grid quorum sys-
tem is 0.

Proof. Suppose n = dhr and the elements are arranged in a grid with d columns
and h · r rows. The B-Grid quorum system does fail if in each band a complete
mini-column fails, because then it is not possible to choose a band where in each
mini-column an element is still working. It also fails if in a band an element in
each mini-column fails. Those events may not be independent of each other, but
with the help of the union bound, we can upper bound the failure probability
with the following equation:

Fp(S) ≤ Pr[in every band a complete mini-column fails]

+ Pr[in a band at least one element of every m.-col. fails]

≤ (d(1− p)r)h + h(1− pr)d

We use d =
√
n, r = ln d, and 0 ≤ (1−p) ≤ 1/3. Using nln x = xlnn, we have

d(1− p)r ≤ d · dln 1/3 ≈ d−0.1, and hence for large enough d the whole first term
is bounded from above by d−0.1h � 1/d2 = 1/n.

Regarding the second term, we have p ≥ 2/3, and h = d/ ln d < d. Hence
we can bound the term from above by d(1 − dln 2/3)d ≈ d(1 − d−0.4)d. Using
(1 + t/n)n ≤ et, we get (again, for large enough d) an upper bound of d(1 −
d−0.4)d = d(1− d0.6/d)d ≤ d · e−d0.6 = d(−d0.6/ ln d)+1 � d−2 = 1/n. In total, we
have Fp(S) ∈ O(1/n).

15.4 Byzantine Quorum Systems

While failed nodes are bad, they are still easy to deal with: just access another
quorum where all nodes can respond! Byzantine nodes make life more difficult
however, as they can pretend to be a regular node, i.e., one needs more sophis-
ticated methods to deal with them. We need to ensure that the intersection
of two quorums always contains a non-byzantine (correct) node and further-
more, the byzantine nodes should not be allowed to infiltrate every quorum. In

152 CHAPTER 15. QUORUM SYSTEMS

Singleton Majority Grid B-Grid∗

Work 1 > n/2 Θ (
√
n) Θ (

√
n)

Load 1 > 1/2 Θ
(
1/
√

n
)

Θ
(
1/
√

n
)

Resilience 0 < n/2 Θ (
√
n) Θ (

√
n)

F. Prob.∗∗ 1− p → 0 → 1 → 0

Table 15.23: Overview of the different quorum systems regarding resilience,
work, load, and their asymptotic failure probability. The best entries in each
row are set in bold.
∗ Setting d =

√
n and r = logn

∗∗Assuming prob. q = (1− p) is constant but significantly less than 1/2

this section we study three counter-measures of increasing strength, and their
implications on the load of quorum systems.

Definition 15.24 (f -disseminating). A quorum system S is f -disseminating
if (1) the intersection of two different quorums always contains f + 1 nodes,
and (2) for any set of f byzantine nodes, there is at least one quorum without
byzantine nodes.

Remarks:

• Thanks to (2), even with f byzantine nodes, the byzantine nodes
cannot stop all quorums by just pretending to have crashed. At least
one quorum will survive. We will also keep this assumption for the
upcoming more advanced byzantine quorum systems.

• Byzantine nodes can also do something worse than crashing - they
could falsify data! Nonetheless, due to (1), there is at least one
non-byzantine node in every quorum intersection. If the data is self-
verifying by, e.g., authentication, then this one node is enough.

• If the data is not self-verifying, then we need another mechanism.

Definition 15.25 (f -masking). A quorum system S is f -masking if (1) the
intersection of two different quorums always contains 2f + 1 nodes, and (2) for
any set of f byzantine nodes, there is at least one quorum without byzantine
nodes.

Remarks:

• Note that except for the second condition, an f -masking quorum sys-
tem is the same as a 2f -disseminating system. The idea is that the
non-byzantine nodes (at least f + 1 can outvote the byzantine ones
(at most f), but only if all non-byzantine nodes are up-to-date!

• This raises an issue not covered yet in this chapter. If we access some
quorum and update its values, this change still has to be disseminated
to the other nodes in the byzantine quorum system. Opaque quorum
systems deal with this issue, which are discussed at the end of this
section.

15.4. BYZANTINE QUORUM SYSTEMS 153

• f -disseminating quorum systems need more than 3f nodes and f -
masking quorum systems need more than 4f nodes. Essentially, the
quorums may not contain too many nodes, and the different intersec-
tion properties lead to the different bounds.

Theorem 15.26. Let S be a f -disseminating quorum system. Then L(S) ≥√
(f + 1)/n holds.

Theorem 15.27. Let S be a f -masking quorum system. Then L(S) ≥
√

(2f + 1)/n
holds.

Proofs of Theorems 15.26 and 15.27. The proofs follow the proof of Theorem
15.6, by observing that now not just one element is accessed from a minimal
quorum, but f + 1 or 2f + 1, respectively.

Definition 15.28 (f -masking Grid quorum system). A f-masking Grid quo-
rum system is constructed as the grid quorum system, but each quorum contains
one full column and f + 1 rows of nodes, with 2f + 1 ≤

√
n.

Figure 15.29: An example how to choose a quorum in the f -masking Grid with
f = 2, i.e., 2 + 1 = 3 rows. The load is in Θ(f/

√
n) when the access strategy is

chosen to be uniform. Two quorums overlap by their columns intersecting each
other’s rows, i.e., they overlap in at least 2f + 2 nodes.

154 CHAPTER 15. QUORUM SYSTEMS

Remarks:

• The f -masking Grid nearly hits the lower bound for the load of f -
masking quorum systems, but not quite. A small change and we will
be optimal asymptotically.

Definition 15.30 (M -Grid quorum system). The M-Grid quorum system is
constructed as the grid quorum as well, but each quorum contains

√
f + 1 rows

and
√
f + 1 columns of nodes, with f ≤

√
n−1
2 .

Figure 15.31: An example how to choose a quorum in the M -Grid with f = 3,
i.e., 2 rows and 2 columns. The load is in Θ(

√
f/n) when the access strategy

is chosen to be uniform. Two quorums overlap with each row intersecting each

other’s column, i.e., 2
√
f + 1

2
= 2f + 2 nodes.

Corollary 15.32. The f -masking Grid quorum system and the M -Grid quorum
system are f -masking quorum systems.

Remarks:

• We achieved nearly the same load as without byzantine nodes! How-
ever, as mentioned earlier, what happens if we access a quorum that is
not up-to-date, except for the intersection with an up-to-date quorum?
Surely we can fix that as well without too much loss?

• This property will be handled in the last part of this chapter by opaque
quorum systems. It will ensure that the number of correct up-to-date
nodes accessed will be larger than the number of out-of-date nodes
combined with the byzantine nodes in the quorum (cf. (15.33.1)).

Definition 15.33 (f -opaque quorum system). A quorum system S is f -opaque
if the following two properties hold for any set of f byzantine nodes F and any
two different quorums Q1, Q2:

|(Q1 ∩Q2) \ F | > |(Q2 ∩ F) ∪ (Q2 \Q1)| (15.33.1)

(F ∩Q) = ∅ for some Q ∈ S (15.33.2)

Theorem 15.35. Let S be a f -opaque quorum system. Then, n > 5f .

Proof. Due to (15.33.2), there exists a quorum Q1 with size at most n−f . With
(15.33.1), |Q1| > f holds. Let F1 be a set of f (byzantine) nodes F1 ⊂ Q1, and
with (15.33.2), there exists a Q2 ⊂ V \ F1. Thus, |Q1 ∩ Q2| ≤ n − 2f . With
(15.33.1), |Q1 ∩ Q2| > f holds. Thus, one could choose f (byzantine) nodes
F2 with F2 ⊂ (Q1 ∩ Q2). Using (15.33.1) one can bound n − 3f from below:
n− 3f > |(Q2 ∩Q1)| − |F2| ≥ |(Q2 ∩Q1) ∪ (Q1 ∩ F2)| ≥ |F1|+ |F2| = 2f.

15.4. BYZANTINE QUORUM SYSTEMS 155

Figure 15.34: Intersection properties of an opaque quorum system. Equation
(15.33.1) ensures that the set of non-byzantine nodes in the intersection of
Q1, Q2 is larger than the set of out of date nodes, even if the byzantine nodes
“team up” with those nodes. Thus, the correct up to date value can always be
recognized by a majority voting.

Remarks:

• One can extend the Majority quorum system to be f -opaque by setting
the size of each quorum to contain d(2n+ 2f)/3e nodes. Then its load
is 1/n d(2n+ 2f)/3e ≈ 2/3 + 2f/3n ≥ 2/3.

• Can we do much better? Sadly, no...

Theorem 15.36. Let S be a f -opaque quorum system. Then L(S) ≥ 1/2 holds.

Proof. Equation (15.33.1) implies that for Q1, Q2 ∈ S, the intersection of both
Q1, Q2 is at least half their size, i.e., |(Q1 ∩ Q2)| ≥ |Q1|/2. Let S consist of
quorums Q1, Q2, The load induced by an access strategy Z on Q1 is:∑
v∈Q1

∑
v∈Qi

LZ(Qi) =
∑
Qi

∑
v∈(Q1∩Qi)

LZ(Qi) ≥
∑
Qi

(|Q1|/2) LZ(Qi) = |Q1|/2 .

Using the pigeonhole principle, there must be at least one node in Q1 with load
of at least 1/2.

Chapter Notes

Historically, a quorum is the minimum number of members of a deliberative
body necessary to conduct the business of that group. Their use has inspired the
introduction of quorum systems in computer science since the late 1970s/early
1980s. Early work focused on Majority quorum systems [Lam78, Gif79, Tho79],
with the notion of minimality introduced shortly after [GB85]. The Grid quo-
rum system was first considered in [Mae85], with the B-Grid being introduced
in [NW94]. The latter article and [PW95] also initiated the study of load and
resilience.

156 CHAPTER 15. QUORUM SYSTEMS

The f -masking Grid quorum system and opaque quorum systems are from
[MR98], and the M -Grid quorum system was introduced in [MRW97]. Both
papers also mark the start of the formal study of Byzantine quorum systems.
The f -masking and the M -Grid have asymptotic failure probabilities of 1, more
complex systems with better values can be found in these papers as well.

Quorum systems have also been extended to cope with nodes dynamically
leaving and joining, see, e.g., the dynamic paths quorum system in [NW05].

For a further overview on quorum systems, we refer to the book by Vukolić
[Vuk12] and the article by Merideth and Reiter [MR10].

This chapter was written in collaboration with Klaus-Tycho Förster.

Bibliography

[GB85] Hector Garcia-Molina and Daniel Barbará. How to assign votes in a
distributed system. J. ACM, 32(4):841–860, 1985.

[Gif79] David K. Gifford. Weighted voting for replicated data. In Michael D.
Schroeder and Anita K. Jones, editors, Proceedings of the Seventh
Symposium on Operating System Principles, SOSP 1979, Asilomar
Conference Grounds, Pacific Grove, California, USA, 10-12, Decem-
ber 1979, pages 150–162. ACM, 1979.

[Lam78] Leslie Lamport. The implementation of reliable distributed multipro-
cess systems. Computer Networks, 2:95–114, 1978.

[Mae85] Mamoru Maekawa. A square root N algorithm for mutual exclusion
in decentralized systems. ACM Trans. Comput. Syst., 3(2):145–159,
1985.

[MR98] Dahlia Malkhi and Michael K. Reiter. Byzantine quorum systems.
Distributed Computing, 11(4):203–213, 1998.

[MR10] Michael G. Merideth and Michael K. Reiter. Selected results from the
latest decade of quorum systems research. In Bernadette Charron-
Bost, Fernando Pedone, and André Schiper, editors, Replication:
Theory and Practice, volume 5959 of Lecture Notes in Computer Sci-
ence, pages 185–206. Springer, 2010.

[MRW97] Dahlia Malkhi, Michael K. Reiter, and Avishai Wool. The load and
availability of byzantine quorum systems. In James E. Burns and
Hagit Attiya, editors, Proceedings of the Sixteenth Annual ACM Sym-
posium on Principles of Distributed Computing, Santa Barbara, Cal-
ifornia, USA, August 21-24, 1997, pages 249–257. ACM, 1997.

[NW94] Moni Naor and Avishai Wool. The load, capacity and availability
of quorum systems. In 35th Annual Symposium on Foundations of
Computer Science, Santa Fe, New Mexico, USA, 20-22 November
1994, pages 214–225. IEEE Computer Society, 1994.

[NW05] Moni Naor and Udi Wieder. Scalable and dynamic quorum systems.
Distributed Computing, 17(4):311–322, 2005.

BIBLIOGRAPHY 157

[PW95] David Peleg and Avishai Wool. The availability of quorum systems.
Inf. Comput., 123(2):210–223, 1995.

[Tho79] Robert H. Thomas. A majority consensus approach to concurrency
control for multiple copy databases. ACM Trans. Database Syst.,
4(2):180–209, 1979.

[Vuk12] Marko Vukolic. Quorum Systems: With Applications to Storage and
Consensus. Synthesis Lectures on Distributed Computing Theory.
Morgan & Claypool Publishers, 2012.

Chapter 16

Eventual Consistency &
Bitcoin

How would you implement an ATM? Does the following implementation work
satisfactorily?

Algorithm 16.1 Näıve ATM

1: ATM makes withdrawal request to bank
2: ATM waits for response from bank
3: if balance of customer sufficient then
4: ATM dispenses cash
5: else
6: ATM displays error
7: end if

Remarks:

• A connection problem between the bank and the ATM may block
Algorithm 16.1 in Line 2.

• A network partition is a failure where a network splits into at least
two parts that cannot communicate with each other. Intuitively any
non-trivial distributed system cannot proceed during a partition and
maintain consistency. In the following we introduce the tradeoff be-
tween consistency, availability and partition tolerance.

• There are numerous causes for partitions to occur, e.g., physical dis-
connections, software errors, or incompatible protocol versions. From
the point of view of a node in the system, a partition is similar to a
period of sustained message loss.

16.1 Consistency, Availability and Partitions

Definition 16.2 (Consistency). All nodes in the system agree on the current
state of the system.

158

16.1. CONSISTENCY, AVAILABILITY AND PARTITIONS 159

Definition 16.3 (Availability). The system is operational and instantly pro-
cessing incoming requests.

Definition 16.4 (Partition Tolerance). Partition tolerance is the ability of a
distributed system to continue operating correctly even in the presence of a net-
work partition.

Theorem 16.5 (CAP Theorem). It is impossible for a distributed system to
simultaneously provide Consistency, Availability and Partition Tolerance. A
distributed system can satisfy any two of these but not all three.

Proof. Assume two nodes, sharing some state. The nodes are in different par-
titions, i.e., they cannot communicate. Assume a request wants to update the
state and contacts a node. The node may either: 1) update its local state,
resulting in inconsistent states, or 2) not update its local state, i.e., the system
is no longer available for updates.

Algorithm 16.6 Partition tolerant and available ATM

1: if bank reachable then
2: Synchronize local view of balances between ATM and bank
3: if balance of customer insufficient then
4: ATM displays error and aborts user interaction
5: end if
6: end if
7: ATM dispenses cash
8: ATM logs withdrawal for synchronization

Remarks:

• Algorithm 16.6 is partition tolerant and available since it continues to
process requests even when the bank is not reachable.

• The ATM’s local view of the balances may diverge from the balances
as seen by the bank, therefore consistency is no longer guaranteed.

• The algorithm will synchronize any changes it made to the local bal-
ances back to the bank once connectivity is re-established. This is
known as eventual consistency.

Definition 16.7 (Eventual Consistency). If no new updates to the shared state
are issued, then eventually the system is in a quiescent state, i.e., no more
messages need to be exchanged between nodes, and the shared state is consistent.

Remarks:

• Eventual consistency is a form of weak consistency.

• Eventual consistency guarantees that the state is eventually agreed
upon, but the nodes may disagree temporarily.

• During a partition, different updates may semantically conflict with
each other. A conflict resolution mechanism is required to resolve the
conflicts and allow the nodes to eventually agree on a common state.

160 CHAPTER 16. EVENTUAL CONSISTENCY & BITCOIN

• One example of eventual consistency is the Bitcoin cryptocurrency
system.

16.2 Bitcoin

Definition 16.8 (Bitcoin Network). The Bitcoin network is a randomly con-
nected overlay network of a few thousand nodes, controlled by a variety of own-
ers. All nodes perform the same operations, i.e., it is a homogenous network
and without central control.

Remarks:

• The lack of structure is intentional: it ensures that an attacker cannot
strategically position itself in the network and manipulate the infor-
mation exchange. Information is exchanged via a simple broadcasting
protocol.

Definition 16.9 (Address). Users may generate any number of private keys,
from which a public key is then derived. An address is derived from a public key
and may be used to identify the recipient of funds in Bitcoin. The private/public
key pair is used to uniquely identify the owner of funds of an address.

Remarks:

• The terms public key and address are often used interchangeably, since
both are public information. The advantage of using an address is that
its representation is shorter than the public key.

• It is hard to link addresses to the user that controls them, hence
Bitcoin is often referred to as being pseudonymous.

• Not every user needs to run a fully validating node, and end-users will
likely use a lightweight client that only temporarily connects to the
network.

• The Bitcoin network collaboratively tracks the balance in bitcoins of
each address.

• The address is composed of a network identifier byte, the hash of the
public key and a checksum. It is commonly stored in base 58 encoding,
a custom encoding similar to base 64 with some ambiguous symbols
removed, e.g., lowercase letter “l” since it is similar to the number
“1”.

• The hashing algorithm produces addresses of size 20 bytes. This
means that there are 2160 distinct addresses. It might be tempting
to brute force a target address, however at one billion trials per sec-
ond one still requires approximately 245 years in expectation to find
a matching private/public key pair. Due to the birthday paradox the
odds improve if instead of brute forcing a single address we attempt to
brute force any address. While the odds of a successful trial increase
with the number of addresses, lookups become more costly.

16.2. BITCOIN 161

Definition 16.10 (Output). An output is a tuple consisting of an amount
of bitcoins and a spending condition. Most commonly the spending condition
requires a valid signature associated with the private key of an address.

Remarks:

• Spending conditions are scripts that offer a variety of options. Apart
from a single signature, they may include conditions that require the
result of a simple computation, or the solution to a cryptographic
puzzle.

• Outputs exist in two states: unspent and spent. Any output can be
spent at most once. The address balance is the sum of bitcoin amounts
in unspent outputs that are associated with the address.

• The set of unspent transaction outputs (UTXOs) and some additional
global parameters are the shared state of Bitcoin. Every node in the
Bitcoin network holds a complete replica of that state. Local replicas
may temporarily diverge, but consistency is eventually re-established.

Definition 16.11 (Input). An input is a tuple consisting of a reference to a
previously created output and arguments (signature) to the spending condition,
proving that the transaction creator has the permission to spend the referenced
output.

Definition 16.12 (Transaction). A transaction is a data structure that de-
scribes the transfer of bitcoins from spenders to recipients. The transaction
consists of a number of inputs and new outputs. The inputs result in the ref-
erenced outputs spent (removed from the UTXO), and the new outputs being
added to the UTXO.

Remarks:

• Inputs reference the output that is being spent by a (h, i)-tuple, where
h is the hash of the transaction that created the output, and i specifies
the index of the output in that transaction.

• Transactions are broadcast in the Bitcoin network and processed by
every node that receives them.

162 CHAPTER 16. EVENTUAL CONSISTENCY & BITCOIN

Algorithm 16.13 Node Receives Transaction

1: Receive transaction t
2: for each input (h, i) in t do
3: if output (h, i) is not in local UTXO or signature invalid then
4: Drop t and stop
5: end if
6: end for
7: if sum of values of inputs < sum of values of new outputs then
8: Drop t and stop
9: end if

10: for each input (h, i) in t do
11: Remove (h, i) from local UTXO
12: end for
13: Append t to local history
14: Forward t to neighbors in the Bitcoin network

Remarks:

• Note that the effect of a transaction on the state is deterministic. In
other words if all nodes receive the same set of transactions in the
same order (Definition 7.8), then the state across nodes is consistent.

• The outputs of a transaction may assign less than the sum of inputs, in
which case the difference is called the transaction fee. The fee is used
to incentivize other participants in the system (see Definition 16.19)

• Notice that so far we only described a local acceptance policy. Nothing
prevents nodes to locally accept different transactions that spend the
same output.

• Transactions are in one of two states: unconfirmed or confirmed. In-
coming transactions from the broadcast are unconfirmed and added
to a pool of transactions called the memory pool.

Definition 16.14 (Doublespend). A doublespend is a situation in which multi-
ple transactions attempt to spend the same output. Only one transaction can be
valid since outputs can only be spent once. When nodes accept different trans-
actions in a doublespend, the shared state becomes inconsistent.

Remarks:

• Doublespends may occur naturally, e.g., if outputs are co-owned by
multiple users. However, often doublespends are intentional – we call
these doublespend-attacks: In a transaction, an attacker pretends to
transfer an output to a victim, only to doublespend the same output
in another transaction back to itself.

• Doublespends can result in an inconsistent state since the validity
of transactions depends on the order in which they arrive. If two
conflicting transactions are seen by a node, the node considers the
first to be valid, see Algorithm 16.13. The second transaction is invalid

16.2. BITCOIN 163

since it tries to spend an output that is already spent. The order in
which transactions are seen, may not be the same for all nodes, hence
the inconsistent state.

• If doublespends are not resolved, the shared state diverges. Therefore
a conflict resolution mechanism is needed to decide which of the con-
flicting transactions is to be confirmed (accepted by everybody), to
achieve eventual consistency.

Definition 16.15 (Proof-of-Work). Proof-of-Work (PoW) is a mechanism that
allows a party to prove to another party that a certain amount of computa-
tional resources has been utilized for a period of time. A function Fd(c, x) →
{true, false}, where difficulty d is a positive number, while challenge c and
nonce x are usually bit-strings, is called a Proof-of-Work function if it has fol-
lowing properties:

1. Fd(c, x) is fast to compute if d, c, and x are given.

2. For fixed parameters d and c, finding x such that Fd(c, x) = true is com-
putationally difficult but feasible. The difficulty d is used to adjust the time
to find such an x.

Definition 16.16 (Bitcoin PoW function). The Bitcoin PoW function is given
by

Fd(c, x)→ SHA256(SHA256(c|x)) <
2224

d
.

Remarks:

• This function concatenates the challenge c and nonce x, and hashes
them twice using SHA256. The output of SHA256 is a cryptographic
hash with a numeric value in {0, . . . , 2256 − 1} which is compared to

a target value 2224

d , which gets smaller with increasing difficulty.

• SHA256 is a cryptographic hash function with pseudorandom output.
No better algorithm is known to find a nonce x such that the function
Fd(c, x) returns true than simply iterating over possible inputs. This
is by design to make it difficult to find such an input, but simple to
verify the validity once it has been found.

• If the PoW functions of all nodes had the same challenge, the fastest
node would always win. However, as we will see in Definition 16.19,
each node attempts to find a valid nonce for a node-specific challenge.

Definition 16.17 (Block). A block is a data structure used to communicate
incremental changes to the local state of a node. A block consists of a list of
transactions, a reference to a previous block and a nonce. A block lists some
transactions the block creator (“miner”) has accepted to its memory pool since
the previous block. A node finds and broadcasts a block when it finds a valid
nonce for its PoW function.

164 CHAPTER 16. EVENTUAL CONSISTENCY & BITCOIN

Algorithm 16.18 Node Finds Block

1: Nonce x = 0, challenge c, difficulty d, previous block bt−1

2: repeat
3: x = x+ 1
4: until Fd(c, x) = true
5: Broadcast block bt = (memory pool, bt−1, x)

Remarks:

• With their reference to a previous block, the blocks build a tree, rooted
in the so called genesis block.

• The primary goal for using the PoW mechanism is to adjust the rate
at which blocks are found in the network, giving the network time
to synchronize on the latest block. Bitcoin sets the difficulty so that
globally a block is created about every 10 minutes in expectation.

• Finding a block allows the finder to impose the transactions in its local
memory pool to all other nodes. Upon receiving a block, all nodes roll
back any local changes since the previous block and apply the new
block’s transactions.

• Transactions contained in a block are said to be confirmed by that
block.

Definition 16.19 (Reward Transaction). The first transaction in a block is
called the reward transaction. The block’s miner is rewarded for confirming
transactions by allowing it to mint new coins. The reward transaction has a
dummy input, and the sum of outputs is determined by a fixed subsidy plus the
sum of the fees of transactions confirmed in the block.

Remarks:

• A reward transaction is the sole exception to the rule that the sum of
inputs must be at least the sum of outputs.

• The number of bitcoins that are minted by the reward transaction and
assigned to the miner is determined by a subsidy schedule that is part
of the protocol. Initially the subsidy was 50 bitcoins for every block,
and it is being halved every 210,000 blocks, or 4 years in expectation.
Due to the halving of the block reward, the total amount of bitcoins
in circulation never exceeds 21 million bitcoins.

• It is expected that the cost of performing the PoW to find a block, in
terms of energy and infrastructure, is close to the value of the reward
the miner receives from the reward transaction in the block.

Definition 16.20 (Blockchain). The longest path from the genesis block, i.e.,
root of the tree, to a leaf is called the blockchain. The blockchain acts as a
consistent transaction history on which all nodes eventually agree.

16.2. BITCOIN 165

Remarks:

• The path length from the genesis block to block b is the height hb.

• Only the longest path from the genesis block to a leaf is a valid trans-
action history, since branches may contradict each other because of
doublespends.

• Since only transactions in the longest path are agreed upon, miners
have an incentive to append their blocks to the longest chain, thus
agreeing on the current state.

• The mining incentives quickly increased the difficulty of the PoW
mechanism: initially miners used CPUs to mine blocks, but CPUs
were quickly replaced by GPUs, FPGAs and even application specific
integrated circuits (AS-ICs) as bitcoins appreciated. This results in
an equilibrium today in which only the most cost efficient miners, in
terms of hardware supply and electricity, make a profit in expectation.

• If multiple blocks are mined more or less concurrently, the system is
said to have forked. Forks happen naturally because mining is a dis-
tributed random process and two new blocks may be found at roughly
the same time.

Algorithm 16.21 Node Receives Block

1: Receive block b
2: For this node the current head is block bmax at height hmax
3: Connect block b in the tree as child of its parent p at height hb = hp + 1
4: if hb > hmax then
5: hmax = hb
6: bmax = b
7: Compute UTXO for the path leading to bmax
8: Cleanup memory pool
9: end if

Remarks:

• Algorithm 16.21 describes how a node updates its local state upon
receiving a block. Notice that, like Algorithm 16.13, this describes
the local policy and may also result in node states diverging, i.e., by
accepting different blocks at the same height as current head.

• Unlike extending the current path, switching paths may result in con-
firmed transactions no longer being confirmed, because the blocks in
the new path do not include them. Switching paths is referred to as
a reorg.

• Cleaning up the memory pool involves 1) removing transactions that
were confirmed in a block in the current path, 2) removing transactions
that conflict with confirmed transactions, and 3) adding transactions
that were confirmed in the previous path, but are no longer confirmed
in the current path.

166 CHAPTER 16. EVENTUAL CONSISTENCY & BITCOIN

• In order to avoid having to recompute the entire UTXO at every
new block being added to the blockchain, all current implementations
use data structures that store undo information about the operations
applied by a block. This allows efficient switching of paths and updates
of the head by moving along the path.

Theorem 16.22. Forks are eventually resolved and all nodes eventually agree
on which is the longest blockchain. The system therefore guarantees eventual
consistency.

Proof. In order for the fork to continue to exist, pairs of blocks need to be
found in close succession, extending distinct branches, otherwise the nodes on
the shorter branch would switch to the longer one. The probability of branches
being extended almost simultaneously decreases exponentially with the length
of the fork, hence there will eventually be a time when only one branch is being
extended, becoming the longest branch.

16.3 Smart Contracts

Definition 16.23 (Smart Contract). A smart contract is an agreement between
two or more parties, encoded in such a way that the correct execution is guar-
anteed by the blockchain.

Remarks:

• Contracts allow business logic to be encoded in Bitcoin transactions
which mutually guarantee that an agreed upon action is performed.
The blockchain acts as conflict mediator, should a party fail to honor
an agreement.

• The use of scripts as spending conditions for outputs enables smart
contracts. Scripts, together with some additional features such as
timelocks, allow encoding complex conditions, specifying who may
spend the funds associated with an output and when.

Definition 16.24 (Timelock). Bitcoin provides a mechanism to make trans-
actions invalid until some time in the future: timelocks. A transaction may
specify a locktime: the earliest time, expressed in either a Unix timestamp or
a blockchain height, at which it may be included in a block and therefore be
confirmed.

Remarks:

• Transactions with a timelock are not released into the network until
the timelock expires. It is the responsibility of the node receiving
the transaction to store it locally until the timelock expires and then
release it into the network.

• Transactions with future timelocks are invalid. Blocks may not in-
clude transactions with timelocks that have not yet expired, i.e., they
are mined before their expiry timestamp or in a lower block than spec-
ified. If a block includes an unexpired transaction it is invalid. Upon
receiving invalid transactions or blocks, nodes discard them immedi-
ately and do not forward them to their peers.

16.3. SMART CONTRACTS 167

• Timelocks can be used to replace or supersede transactions: a time-
locked transaction t1 can be replaced by another transaction t0, spend-
ing some of the same outputs, if the replacing transaction t0 has an
earlier timelock and can be broadcast in the network before the re-
placed transaction t1 becomes valid.

Definition 16.25 (Singlesig and Multisig Outputs). When an output can be
claimed by providing a single signature it is called a singlesig output. In
contrast the script of multisig outputs specifies a set of m public keys and
requires k-of-m (with k ≤ m) valid signatures from distinct matching public
keys from that set in order to be valid.

Remarks:

• Most smart contracts begin with the creation of a 2-of-2 multisig out-
put, requiring a signature from both parties. Once the transaction
creating the multisig output is confirmed in the blockchain, both par-
ties are guaranteed that the funds of that output cannot be spent
unilaterally.

Algorithm 16.26 Parties A and B create a 2-of-2 multisig output o

1: B sends a list IB of inputs with cB coins to A
2: A selects its own inputs IA with cA coins
3: A creates transaction ts{[IA, IB], [o = cA + cB → (A,B)]}
4: A creates timelocked transaction tr{[o], [cA → A, cB → B]} and signs it
5: A sends ts and tr to B
6: B signs both ts and tr and sends them to A
7: A signs ts and broadcasts it to the Bitcoin network

Remarks:

• ts is called a setup transaction and is used to lock in funds into a shared
account. If ts is signed and broadcast immediately, one of the parties
could not collaborate to spend the multisig output, and the funds
become unspendable. To avoid a situation where the funds cannot
be spent, the protocol also creates a timelocked refund transaction
tr which guarantees that, should the funds not be spent before the
timelock expires, the funds are returned to the respective party. At no
point in time one of the parties holds a fully signed setup transaction
without the other party holding a fully signed refund transaction,
guaranteeing that funds are eventually returned.

• Both transactions require the signature of both parties. In the case of
the setup transaction because it has two inputs from A and B respec-
tively which require individual signatures. In the case of the refund
transaction the single input spending the multisig output requires both
signatures being a 2-of-2 multisig output.

168 CHAPTER 16. EVENTUAL CONSISTENCY & BITCOIN

Algorithm 16.27 Simple Micropayment Channel from S to R with capacity c

1: cS = c, cR = 0
2: S and R use Algorithm 16.26 to set up output o with value c from S
3: Create settlement transaction tf{[o], [cS → S, cR → R]}
4: while channel open and cR < c do
5: In exchange for good with value δ
6: cR = cR + δ
7: cS = cS − δ
8: Update tf with outputs [cR → R, cS → S]
9: S signs and sends tf to R

10: end while
11: R signs last tf and broadcasts it

Remarks:

• Algorithm 16.27 implements a Simple Micropayment Channel, a smart
contract that is used for rapidly adjusting micropayments from a
spender to a recipient. Only two transactions are ever broadcast and
inserted into the blockchain: the setup transaction ts and the last set-
tlement transaction tf . There may have been any number of updates
to the settlement transaction, transferring ever more of the shared
output to the recipient.

• The number of bitcoins c used to fund the channel is also the maximum
total that may be transferred over the simple micropayment channel.

• At any time the recipient R is guaranteed to eventually receive the
bitcoins, since she holds a fully signed settlement transaction, while
the spender only has partially signed ones.

• The simple micropayment channel is intrinsically unidirectional. Since
the recipient may choose any of the settlement transactions in the
protocol, she will use the one with maximum payout for her. If we
were to transfer bitcoins back, we would be reducing the amount paid
out to the recipient, hence she would choose not to broadcast that
transaction.

16.4 Weak Consistency

Eventual consistency is only one form of weak consistency. A number of different
tradeoffs between partition tolerance and consistency exist in literature.

Definition 16.28 (Monotonic Read Consistency). If a node u has seen a par-
ticular value of an object, any subsequent accesses of u will never return any
older values.

16.4. WEAK CONSISTENCY 169

Remarks:

• Users are annoyed if they receive a notification about a comment on
an online social network, but are unable to reply because the web
interface does not show the same notification yet. In this case the
notification acts as the first read operation, while looking up the com-
ment on the web interface is the second read operation.

Definition 16.29 (Monotonic Write Consistency). A write operation by a node
on a data item is completed before any successive write operation by the same
node (i.e., system guarantees to serialize writes by the same node).

Remarks:

• The ATM must replay all operations in order, otherwise it might hap-
pen that an earlier operation overwrites the result of a later operation,
resulting in an inconsistent final state.

Definition 16.30 (Read-Your-Write Consistency). After a node u has updated
a data item, any later reads from node u will never see an older value.

Definition 16.31 (Causal Relation). The following pairs of operations are said
to be causally related:

• Two writes by the same node to different variables.

• A read followed by a write of the same node.

• A read that returns the value of a write from any node.

• Two operations that are transitively related according to the above condi-
tions.

Remarks:

• The first rule ensures that writes by a single node are seen in the same
order. For example if a node writes a value in one variable and then
signals that it has written the value by writing in another variable.
Another node could then read the signalling variable but still read the
old value from the first variable, if the two writes were not causally
related.

Definition 16.32 (Causal Consistency). A system provides causal consistency
if operations that potentially are causally related are seen by every node of the
system in the same order. Concurrent writes are not causally related, and may
be seen in different orders by different nodes.

Chapter Notes

The CAP theorem was first introduced by Fox and Brewer [FB99], although it
is commonly attributed to a talk by Eric Brewer [Bre00]. It was later proven
by Gilbert and Lynch [GL02] for the asynchronous model. Gilbert and Lynch
also showed how to relax the consistency requirement in a partially synchronous
system to achieve availability and partition tolerance.

170 CHAPTER 16. EVENTUAL CONSISTENCY & BITCOIN

Bitcoin was introduced in 2008 by Satoshi Nakamoto [Nak08]. Nakamoto is
thought to be a pseudonym used by either a single person or a group of people;
it is still unknown who invented Bitcoin, giving rise to speculation and con-
spiracy theories. Among the plausible theories are noted cryptographers Nick
Szabo [Big13] and Hal Finney [Gre14]. The first Bitcoin client was published
shortly after the paper and the first block was mined on January 3, 2009. The
genesis block contained the headline of the release date’s The Times issue “The
Times 03/Jan/2009 Chancellor on brink of second bailout for banks”, which
serves as proof that the genesis block has been indeed mined on that date, and
that no one had mined before that date. The quote in the genesis block is also
thought to be an ideological hint: Bitcoin was created in a climate of finan-
cial crisis, induced by rampant manipulation by the banking sector, and Bitcoin
quickly grew in popularity in anarchic and libertarian circles. The original client
is nowadays maintained by a group of independent core developers and remains
the most used client in the Bitcoin network.

Central to Bitcoin is the resolution of conflicts due to doublespends, which
is solved by waiting for transactions to be included in the blockchain. This
however introduces large delays for the confirmation of payments which are
undesirable in some scenarios in which an immediate confirmation is required.
Karame et al. [KAC12] show that accepting unconfirmed transactions leads to
a non-negligible probability of being defrauded as a result of a doublespending
attack. This is facilitated by information eclipsing [DW13], i.e., that nodes
do not forward conflicting transactions, hence the victim does not see both
transactions of the doublespend. Bamert et al. [BDE+13] showed that the odds
of detecting a doublespending attack in real-time can be improved by connecting
to a large sample of nodes and tracing the propagation of transactions in the
network.

Bitcoin does not scale very well due to its reliance on confirmations in the
blockchain. A copy of the entire transaction history is stored on every node
in order to bootstrap joining nodes, which have to reconstruct the transaction
history from the genesis block. Simple micropayment channels were introduced
by Hearn and Spilman [HS12] and may be used to bundle multiple transfers be-
tween two parties but they are limited to transferring the funds locked into the
channel once. Recently Duplex Micropayment Channels [DW15] and the Light-
ning Network [PD15] have been proposed to build bidirectional micropayment
channels in which the funds can be transferred back and forth an arbitrary num-
ber of times, greatly increasing the flexibility of Bitcoin transfers and enabling a
number of features, such as micropayments and routing payments between any
two endpoints.

This chapter was written in collaboration with Christian Decker.

Bibliography

[BDE+13] Tobias Bamert, Christian Decker, Lennart Elsen, Samuel Welten,
and Roger Wattenhofer. Have a snack, pay with bitcoin. In IEEE
Internation Conference on Peer-to-Peer Computing (P2P), Trento,
Italy, 2013.

BIBLIOGRAPHY 171

[Big13] John Biggs. Who is the real satoshi nakamoto? one researcher may
have found the answer. http://on.tcrn.ch/l/R0vA, 2013.

[Bre00] Eric A. Brewer. Towards robust distributed systems. In Symposium
on Principles of Distributed Computing (PODC). ACM, 2000.

[DW13] Christian Decker and Roger Wattenhofer. Information propagation
in the bitcoin network. In IEEE International Conference on Peer-
to-Peer Computing (P2P), Trento, Italy, September 2013.

[DW15] Christian Decker and Roger Wattenhofer. A Fast and Scalable Pay-
ment Network with Bitcoin Duplex Micropayment Channels. In Sym-
posium on Stabilization, Safety, and Security of Distributed Systems
(SSS), 2015.

[FB99] Armando Fox and Eric Brewer. Harvest, yield, and scalable tolerant
systems. In Hot Topics in Operating Systems. IEEE, 1999.

[GL02] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibil-
ity of consistent, available, partition-tolerant web services. SIGACT
News, 2002.

[Gre14] Andy Greenberg. Nakamoto’s neighbor: My hunt for bitcoin’s cre-
ator led to a paralyzed crypto genius. http://onforb.es/1rvyecq,
2014.

[HS12] Mike Hearn and Jeremy Spilman. Contract: Rapidly adjusting
micro-payments. https://en.bitcoin.it/wiki/Contract, 2012. Last ac-
cessed on November 11, 2015.

[KAC12] G.O. Karame, E. Androulaki, and S. Capkun. Two Bitcoins at
the Price of One? Double-Spending Attacks on Fast Payments in
Bitcoin. In Conference on Computer and Communication Security
(CCS), 2012.

[Nak08] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system.
https://bitcoin.org/bitcoin.pdf, 2008.

[PD15] Joseph Poon and Thaddeus Dryja. The bitcoin lightning network.
2015.

Chapter 17

Memory Management and
Virtual Memory

You’ve already seen MMUs, TLBs, and basic paged virtual memory operations
in the Systems Programming and Computer Architecture course at ETHZ. Here
we take this a bit further.

17.1 Segments

Before paging, there were segments. Segments evolved from basic protection
mechanisms. Today they are little used (but still present on x86 machines), al-
though there is some evidence they are making a comeback as memories become
very large.

Definition 17.1 (Base and Limit). A base and limit register pair is a
couple of hardware registers containing two addresses B and L. A CPU access
to an address a is permitted iff B ≤ a < L.

Remarks:

• Base and limit registers were the first, primitive form of MMU, and at
first operated entirely on physical addresses (as did user code). Each
process in the system had its own base-and-limit region. To context
switch, the OS reprogrammed the base and limit registers.

• Since the base address is not known to the program at compile time,
programs had to be compiled to position-independent code, or a relo-
cation register used.

• Base and limit registers still live on in the x86 architecture as a way
of constraining virtual addresses.

Definition 17.2 (Relocation register). A relocation register is an enhanced
form of base register. All CPU accesses are relocated by adding the offset: a CPU
access to an address a is translated to B + a and allowed iff B ≤ B + a < L.

172

17.1. SEGMENTS 173

Remarks:

• With relocation registers each program can be compiled to run at the
same address (e.g. 0x0000).

• Relocation registers don’t allow sharing of code and data between
processes, since each process has a single region of memory (and a
different relocation address).

• Relocation registers allow a primitive form of swapping : a process’
single memory region can be written out to storage, and later read
back in to a different physical address and resumed.

The sharing problem with relocation registers was solved by generalizing
base/limit regions, and making them independent of particular processes. The
result is segments.

Definition 17.3 (Segments). A segment is a triple (I,BI , LI) of values spec-
ifying a contiguous region of memory address space with base BI , limit LI , and
an associated segment identifier I which names the segment. Memory in a
segmented system uses a form of logical addressing: each address is a pair
(I,O) of segment identifier and offset. A load or store to or from a logical
address (i, o) succeeds iff 0 ≤ o < Li and the running process is authorized to
access segment i. If it does succeed, it will access physical address Bi + o.

Remarks:

• In practice the segment identifier for an address might be specified
explicitly in machine instructions, indirectly via a special processor
“segment register”, or explicitly in the address value used.

Definition 17.4 (Segment Table). A Segment Table is an in-memory array
of base and limit values (Bi, Li) indexed by segment identifier, and possibly with
additional protection information. The MMU in a segmentation system holds
the location and size of this table in a segment table base register (STBR)
and segment table length register (STLR). Logical memory accesses cause
the MMU to look up the segment id in this table to obtain the physical address
and protection information.

Remarks:

• Segmentation is fast. As with pages, segment information can be
cached in a TLB (and locality is much higher than with pages since
segments are large and contiguous).

• Sharing is trivially easy at a segment granularity. If segments are
allowed to overlap, finer-grained sharing is possible.

• The OS and hardware might have a single, system-wide segment table,
or (more often) a per-process table. Context switching is fast: it just
involves rewriting the STBR and STLR.

• Segment idenfitiers can be virtualized by having per-process segment
tables indirect into a single, system-wide table. Protection is therefore
applied at each process’ level, while translation of addresses is the same
everywhere.

174 CHAPTER 17. MEMORY MANAGEMENT AND VIRTUAL MEMORY

• The principal downside of segmentation is that segments are still con-
tiguous in physical memory, which leads to external fragmentation
(recall this from Systems Programmming).

17.2 Paging

As we should already know from Systems Programing, paging solves the external
fragmentation problem associated with segments, at some cost in efficiency.

Definition 17.5 (Paging). A paging system divides the physical address space
into fixed-size regions called frames or physical pages, indexed by a physical
frame (or page) number (PFN), the high bits of the address. The virtual
address space is similarly divided into fixed-size regions called virtual pages,
identified by virtual page number (VPN) the high bits of the virtual address.
The MMU translates from virtual addresses to physical addresses by looking up
the VPN in a page table to obtain a PFN. Page Table Entries (PTEs) also
hold protection metadata for the virtual page, including validity information.
Access via an invalid PTE causes a Page Fault processor exception. VPN-to-
PFN translations are cached in a Translation Lookaside Buffer (TLB).

Remarks:

• Virtual pages and physical pages are almost always the same size, and
are always a power-of-two in size (often 4kB).

• Segmentation and paging can be combined. Either segments become
regions of virtual memory, which is then paged, or each segment itself
is divided into a set of pages and paged itself.

Definition 17.6 (Linear page table). A Linear Page Table is a page table
implemented as a simple array of PTEs, indexed by VPN.

Remarks:

• Linear page tables work great when there aren’t many pages – early
systems often had only 8 pages per virtual address space, and some-
times simply used registers to implement the page table.

• Linear page tables grow with the size of the virtual address space, and
become very large on 32-bit and 64-bit machines. They’re generally
not used in modern machines.

• The DEC VAX, a 32-bit machine, did use a linear page table scheme,
but ingeniously dealt with the size of the table by placing it in virtual
memory [Leo87].

Definition 17.7 (Hierarchical page table). A Hierarchical Page Table orga-
nized in multiple layers, each one translating a different set of bits in the virtual
address.

Example 17.8 (64-bit x86 paging [Int18]). . x86 has a page size of 4096 bytes,
which can be addressed using 12 bits. It happens that every page table used in
x86 is also 4kB in size, and virtual addresses are 48 bits wide.

17.2. PAGING 175

The page table has four levels, each one translating 9 bits of the virtual
address leaving 12 left over for the page offset. Since each entry is 64 bits or
8 (i.e. 23 bytes) in size, to translate 29 or 512 addresses requires 29+3 or 4096
bits of page table – a page.

The topmost level is called the Page Map Level 4 or PML4, and translates
bits 58-47 of the virtual address to (among other things) the virtual address of
the next level page table, the Page Directory Page Table or PDPT. This in
turn points to a Page Directory or PD, and thence to a Page Table proper
or PT. This then gives the physical address of the frame.

Remarks:

• Most virtual address spaces for 64-bit machines are less than the full
64 bits in size. The address is typically sign-extended to 64 bits.

• Many architectures support two page table base registers, one for the
upper portion of the virtual address space and one for the lower. This
allows the kernel to run in virtual memory (using one page table)
without needing to swap page tables for the kernel on a context switch.

• Not all architectures have the “everything is the size of a page” prop-
erty of x86. For example, ARM page tables are very different sizes at
different levels, though always a power of two bytes.

Definition 17.9 (Page table walking). The process of translating a virtual
address to a physical address using a hierarchical page table is called a Page
Table Walk. Most processor MMUs have a hardware table walker which is
used on TLB misses to find and load the appropriate page table entry into the
TLB, but others (like the MIPS [KH91]) require the OS to provide a software
page table walker.

In Systems Programming, we only looked at how a hardware walker and a
TLB use a hierarchical page table to map virtual addresses to physical addresses.
In practice, software in the operating system always has to map virtual to
physical addresses:

• A software-loaded TLB simply has no hardware to walk the page table.

• In an case, when a page fault occurs, the OS needs to map the faulting
(virtual) address to the relevant PTE, so that it can figure out what kind
of fault occurred and also where to find a physical page to satisfy the fault.
This requires a table walk.

• When a user process unmaps a region of virtual memory (including when
the process exits), the OS has to identify all the physical pages associated
with that mapping.

And so on. The OS can do this in two ways: first, it can walk the actual
hardware page table in software. Alternatively, it can keep a “shadow page
table” structure which is independent of the hardware page table. This might
be easier to walk, and might occupy less space (the hardware table might even
be constructed lazily from this structure in response to early page faults).

176 CHAPTER 17. MEMORY MANAGEMENT AND VIRTUAL MEMORY

However, the OS also needs to map physical addresses to virtual addresses
as well. For example, when a physical page needs to be reused, once it is clean,
the OS needs to identify every virtual mapping to the page and mark them
invalid. This requires a data structure for reverse mapping as well.

The bookkeeping involved is considerable.

Definition 17.10 (Virtual memory region). To facilitate tracking the mappings
between virtual and physical addresses, an OS typically divides an address space
into a set of contiguous virtual memory regions.

Remarks:

• These include the “segments” of the process – not those in Defini-
tion 17.3, but the text, data, bss, stack, etc. segments used by the
program loader.

• Regions also provide a convenient unit of sharing between address
spaces, either at the same virtual address in all cases, or backed by
a memory object that can appear at different virtual addresses in
different process address spaces.

17.3 Segmented paging

It is possible to combine segmentation and paging.

Definition 17.11 (Paged segments). A paged segmentation memory man-
agement scheme is one where memory is addressed by a pair (segment id, offset),
as in a segmentation scheme, but each segment is itself composed of fixed-size
pages whose page numbers are then translated to physical page numbers by a
paged Memory Management Unit.

Remarks:

• This is the approach adopted by Multics [Org72], but it’s also sup-
ported (though little used) by older 16-bit and 32-bit x86 proces-
sors [Int18]. In the 64-bit x86 architecture, the segmentation registers
used for this still exist, but simply hold linear offsets into a flat, paged
address space.

17.4 Page mapping operations

Each process has its own page table. At a high level, all operating systems
provide three basic operations on page mappings, which in turn manipulate the
page table for a given process:

Definition 17.12 (Map). A page map operation on an address space A:

A.map(v, p)

– takes a virtual page number v and a physical page (or frame) number p, and
creates a mapping v → p in the address space.

17.5. COPY-ON-WRITE 177

Definition 17.13 (Unmap). A page unmap operation on an address space A:

A.unmap(v)

– takes a virtual page number v and removes any mapping from v in the address
space.

Definition 17.14 (Protect). A page protect operation on an address space A:

A.protect(v, rights)

– takes a virtual page number v and changes the page protection on the page.

An MMU typically allows different protection rights on pages. The rights
are specified in the page table entry, so they apply to virtual addresses. For
example:

• READABLE: the process can read from the virtual address

• WRITEABLE: the process can write to the virtual address

• EXECUTABLE: the process can fetch machine code instructions from the
virtual address

An OS will typically change protection rights on pages not only to protect
pages, but also to cause a trap to occur when the process accesses a particular
page in a particular way.

17.5 Copy-on-write

Recall that the fork() operation in Unix makes a complete copy of the address
space of the parent process, and that this might be an expensive operation.

Definition 17.15 (On-demand page allocation). . To avoid allocating all the
physical pages needed for a process at startup time, on-demand page alloca-
tion is used to allocate physical pages lazily when they are first touched.

Algorithm 17.16 On-demand page allocation

inputs
A {An address space}
{(vi), i = 1 . . . n} {A set of virtual pages in A}

Setup the region

for i = 1 . . . n do
A.unmap(vi) {Ensure all mappings in region are invalid}

end for

Page fault

inputs
v′ {Faulting virtual address }

n← VPN(v′)
p← AllocateNewPhysicalPage()
A.map(vn → p)
return

178 CHAPTER 17. MEMORY MANAGEMENT AND VIRTUAL MEMORY

Remarks:

• This technique uses the MMU to interpose on accesses to memory,
and cause a trap when memory is touched for the first time. After
the trap, the virtual memory has been backed and the cost of the trap
doesn’t occur again

• The general technique of “trap and fix things up” is very flexible. In
particular, it is used to make fork() extremely efficient on modern
machines via copy-on-write.

Definition 17.17 (Copy-on-Write). . Copy-on-write or COW is a technique
which optimizes the copying of large regions of virtual memory when the subse-
quent changes to either copy are expected to be small.

Algorithm 17.18 Copy-On-Write

1: inputs
2: Ap {Parent address space}
3: Ac {Child address space}
4: {(vi, pi), i = 1 . . . n} {A set of virtual to physical mappings in Ap}

Setup

5: for i = 1 . . . n do
6: Ap.protect(vi, READONLY)
7: Ac.map(vi → pi)
8: Ac.protect(vi, READONLY)
9: end for

Page fault in child

10: inputs
11: V {Faulting virtual address }
12: n← VPN(V)
13: p′ ← AllocateNewPhysicalPage()
14: CopyPageContents(p′ ← pn)
15: Ac.map(vn → p′)
16: Ap.protect(vn, WRITEABLE)
17: return

Remarks:

• Essentially, we share the original physical pages between both ad-
dress spaces, and mark both mappings read-only. When either pro-
cess writes to the region, a protection fault will occur. When it does,
we identify the page, allocate a new physical page, copy the contents
across, and replace its mapping in the faulting process. Finally, we
mark the original page mapping in the other process as writeable.

• There is no need for the processes involved to be parent or child, or
for there to be only two of them. The technique is widely used, but
the canonical example for this is copying the entire process address
space in fork().

17.6. MANAGING CACHES 179

17.6 Managing caches

We’ve already seen in Systems Programming how caches work, and how cache
coherency protocols ensure varying levels of consistency among multiple caches.
What about how the OS manages caches? Before looking at why and how the
OS needs to manage the processor caches, let’s go through the operations it can
use from software on a cache.

Definition 17.19 (Cache Invalidate). An invalidate operation on a cache
(or cache line) marks the contents of the cache (or line) as invalid, effectively
discarding the data.

Example 17.20. The x86 invd instruction invalidates all a processor’s caches.

Example 17.21. The ARMv8-A dc isw instruction invalidates a specific set
and way of the core’s cache. dc ivac invalidates any line holding a specified
virtual address “to the Point of Coherency”.

Remarks:

• Invalidate operations generally don’t care about whether there is dirty
data in the cache line or lines being invalidated – it just gets thrown
away regardless. However, different hardware vendors use the word in
different ways, so it’s a good idea to check.

Definition 17.22 (Cache Clean). A clean operation on a cache writes any
dirty data held in the (write-back) cache to memory.

Example 17.23. The ARMv8-A dc vac instruction writes dirty data in any
line holding a specified virtual address back “to the Point of Coherency”. It
may, in addition, invalidate the line.

Remarks:

• “Clean” is a term usually associated with the ARM architecture, but
it is at least unambiguous in that it leaves the cache (or line) clean,
but not necessarily invalid. Rather more ambiguous is...

Definition 17.24 (Flush). A flush operation writes back any dirty data from
the cache and then invalidates the line (or the whole cache).

Example 17.25. The x86 wbinvd instruction flushes all a processor’s caches.
The clflush instruction, in contrast, flushes a single cache line.

Remarks:

• This is a reasonable definition of “Flush”, and is at least consistent
with the use of the term in Intel, ARM, and MIPS documentation
(and most OS people’s heads). However, don’t assume when you read
“flush” in some documentation that it always means this precisely.

• ARM do use this term, though when it really matters for clarity they
write “clean-and-invalidate”, which is unambiguous.

Given that caches are supposed to be transparent to software, though, why
would you need these operations? Let’s look at the kinds of problems that
occur, and then survey the types of caches we have as well.

180 CHAPTER 17. MEMORY MANAGEMENT AND VIRTUAL MEMORY

17.6.1 Homonyms and Synonyms

Definition 17.26 (Cache synonyms). Synonyms are different cache entries
(virtual addresses) that refer to the same physical addresses. Synonyms can
result in cache aliasing, where the same data appears in several copies in the
cache at the same time.

Remarks:

• Synonyms cause problems because an update to one copy in the cache
will not necessarily update others, leaving the view of physical memory
inconsistent.

• Worse, in a write-back cache, a dirty symonym may only be written
back much later, causing an unexpected change to the contents of main
memory. In a virtually-tagged cache (see below), this can even happen
after virtual-to-physical page mappings have changed, creating a write
to an arbitrary physical page. This is sometimes called a cache bomb.

Definition 17.27 (Cache homonyms). In contrast, cache homonyms are mul-
tiple physical addresses referred to using the same virtual address (for example,
in different address spaces).

Remarks:

• Homonyms are a problem since the cache tag may not uniquely iden-
tify cache data, leading to the cache accessing the wrong data. They
are a common problem in conventional operating systems

Whether homonyms and synonyms are actually a problem the OS has to
deal with depends on the cache hardware in use:

17.6.2 Cache types

These days, almost all processor caches are write-back, write-allocate, and set-
associative. The main differences (other than size, and inclusivity) are to do
with where the tag and index bits come from during a lookup.

Definition 17.28 (virtually-indexed, virtually-tagged). A virtually indexed,
virtually tagged or VIVT cache (sometimes, ambiguously, also called a “vir-
tual cache”) is one where the virtual address of the access determines both the
cache index and cache tag to look up.

Remarks:

• VIVT caches are simple to implement, and fast. However, they suffer
from homonyms: since the same virtual address in different address
spaces refers to different physical addresses, it may be necessary for
the OS to flush the cache on every address space switch, which is
expensive. Early ARM processors had this “feature”, for example.

• The problem can be alleviated by allowing cache entries to be anno-
tated with “address space tags”.

17.6. MANAGING CACHES 181

Definition 17.29 (Address space tags). , Addresss-space tags, or ASIDs
(Address Space Ids) are small (e.g. 5-8 bits) additional cache or TLB tags
which match different processes or address space and therefore allow multiple
contexts to coexist in a cache or TLB at the same time

Remarks:

• ASIDs improve performance because the cache doesn’t need to be
flused on a contact switch. In practice, VIVT caches are rare (see
VIPT caches below), so their real impact is in TLBs, where they are
almost ubiquitous these days.

• In practice, the “current” ASID is held in a register in the CPU or
MMU which is altered by the OS kernel every time the address space
switches. For example, in the MIPS R3000 this is the EntryHi register
in coprocessor CP0 [?].

• ASIDs are typically small, from 5 to 8 bits in size depending on the
processor architecture. Obviously there are likely to be rather more
processes active in a typical system. As a result, ASIDs should be
regarded as a cache for true process or address space IDs: if the OS
needs to dispatch a process which doesn’t yet have an ASID assigned
to it, it needs to reallocate an ASID, flush the cache to make sure no
older entries for that ASID exist, and then dispatch the process.

• In the cast of a VIVT cache, ASIDs don’t solve the further problem
of synonyms: if two processes share physical memory, the same data
can appear in the cache twice, making it hard to retain consistency
between these two copies. For this reason, VIVT caches tend to be
write-through.

Definition 17.30 (Physically-indexed, Physically-tagged). A physically-indexed,
physically-tagged (PIPT) cache is one where the physical address after TLB
translation determines the cache index and tag.

Remarks:

• PIPT caches are easier to manage, since nothing needs to change on a
context switch, and they do not suffer from homonyms or synonyms.

• The downside is that they are slow: you can only start to access a
PIPT cache after the TLB has translated the address. For this reason,
they are a common choice of L2 or L3 caches.

Definition 17.31 (Virtually-indexed, Physically-tagged). A virtually-indexed,
physically-tagged (VIPT) cache is one where the virtual address before TLB
translation determines the cache index, but the physical address after translation
gives the tag.

182 CHAPTER 17. MEMORY MANAGEMENT AND VIRTUAL MEMORY

Remarks:

• VIPT caches are a great choice for L1 D-caches these days, if they
can be made to work. Ideally, the virtual index is exactly what the
corresponding physical index would be. This implies that the number
of index bits, plus the number of cache offset bits, in a virtual address
is less than the number of bits in the page size. This in turn restricts
the size of a VIPT cache.

• If this condition doesn’t hold, a VIPT cache can still work, but now
the OS has to be careful about cache homonyms arising from the am-
biguity now present in the cache contents. For example, in the MIPS
R4400, the OS has to ensure that even and odd pages are allocated
together and there is never a mapping from an even VPN to an odd
PPN, or vice versa, since the cache index+offset bits are 1 bit larger
than the page size.

Definition 17.32 (Physically-indexed, Virtually-tagged). A physically-indexed,
virtually-tagged (PIVT) cache is one where the physical address after TLB trans-
lation determines the cache index to look up, but the virtual address before trans-
lation supplies the tag to then look up in the set.

Remarks:

• It is hard to imagine anyone building such a cache, and even harder to
figure out why, but they do exist: the L2 cache on the MIPS R6000 [?
], for example, is PIVT. This requires considerable complexity on the
part of the OS, and delivers questionable benefit. Thankfully, PIVT
caches are extremely rare.

17.7 Managing the TLB

Like caches, the TLB is supposed to be transparent to user programs, although
in practice as you have seen in Systems Programming it can be critical to know
the TLB’s dimensions to improve performance, for example by tiling, blocking,
and buffering large dense matrics.

Definition 17.33 (TLB coverage). The TLB coverage of a processor is the
total number of bytes of virtual address space which can be translated by a TLB
at a given point in time.

Example 17.34. The venerable Motorola MC68851 Paged MMU has a 64-
entry fully-associative TLB. When configured with a page size of 8k bytes, the
coverage of this TLB is 64 x 8 = 512k bytes.

Remarks:

• Modern processors are quite complex, with multiple TLBs: primary
and secondary TLBs (as with L1 and L2 caches), separate TLBs for
instructions and data, and even different TLBs for different page sizes
(regular pages, superpages, etc.).

BIBLIOGRAPHY 183

• However, looking purely at the regular page-sized TLB entries, TLB
coverage has barely increased over the last 30 years. Even as far back
as 2002, it was observed that TLB coverage as percentage of main
memory size was dropping precipitously [NIDC02]. In some ways this
is not too surprising: TLBs are highly-associative caches that need to
be really fast, and Content-Addressable Memory circuits (CAMs) are
very energy-inefficient, but it’s a serious factor in the performance of
computer software over time.

Regular processor caches on a multiprocessor machine typically try to remain
coherent, in other words, they present a consistent view of the contents of main
memory to the processors in the system. TLBs, by analogy, present a view of the
structure of an address space to the different cores in a multiprocessor system,
and so also need to be kept coherent. This this view changes less frequently
than the contents of memory, it is done in software by the OS when mappings
change.

Definition 17.35 (TLB shootdown). TLB shootdown on a multiprocessor
is the process of ensuring that no out-of-date virtual-to-physical translations are
held in any TLB in the system following a change to a page table.

Remarks:

• Since the TLB is a cache, it should be coherent with other TLBs in
the system, and with each process’ page tables.

• Shootdown is basically a way to invalidate certain mappings in every
TLB, if they refer to the affected process.

• Sometimes hardware does this, but more common is for one core to
send an inter-processor interrupt to every other core which might have
such a mapping, and have the kernel on that core remove the mappings
from its own TLB.

• TLB shootdown is expensive, and so operating systems try to make it
faster by, for example, trying to track which TLBs might be affected
by a change in a page table. If the OS can prove that given TLB
cannot hold a mapping, then it doesn’t need to interrupt that TLB’s
processor when the mapping needs to be invalidated.

Bibliography

[Int18] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual,
volume 3. Intel Corp., 2018.

[KH91] Gerry Kane and Joseph Heinrich. MIPS RISC Architecture. Prentice-
Hall, 2nd edition, 1991.

[Leo87] Timothy E. Leonard. VAX Architecture Reference Manual. Digital
Press, March 1987.

184 CHAPTER 17. MEMORY MANAGEMENT AND VIRTUAL MEMORY

[NIDC02] Juan Navarro, Sitaram Iyer, Peter Druschel, and Alan Cox. Practical,
transparent operating system support for superpages. In Proceedings
of the 5th Symposium on Operating Systems Design and implemen-
tationCopyright Restrictions Prevent ACM from Being Able to Make
the PDFs for This Conference Available for Downloading, OSDI ’02,
pages 89–104, Berkeley, CA, USA, 2002. USENIX Association.

[Org72] Elliott I. Organick. The Multics System: An Examination of Its
Structure. MIT Press, Cambridge, MA, USA, 1972.

Chapter 18

Demand Paging

Today, the prevailing view is that if you’re paging to storage, either in a server
or a mobile phone, you’ve already lost the game performance-wise.

It is difficult these days to imagine how transformative the idea of demand-
paged virtual memory was at the time [KELS62]: it became possible to consider
programs whose space requirements were not limited by a machine’s memory.
For the first time, a machine could precisely emulate a much more powerful
machine (memory-wise).

However, the basic ideas may be returning: persistent main memory (byte-
addressable flash, phase-change, memristor, etc.) may be the only option to
scale to very large sizes (for power reasons), whereas traditional DRAM is the
only thing that can endure lots of read/write cycles. We may end up paging
between main memory addresses using memcpy.

The other important reason to cover demand paging in this course is that it
is almost the canonical example of caching as a general system design principle.
Many of the concepts below carry over into other caching scenarios which crop
up again and again in systems.

18.1 Basic mechanism

Definition 18.1 (Demand paging). Demand paging uses page faults to ex-
change virtual pages on demand between physical pages in main memory, and
locations in a larger page file held on cheaper persistent storage.

Remarks:

• This is the traditional use of virtual memory: making a small (and
expensive) main memory plus a large (and relatively cheaper) disk
look like a large main memory.

• Ideally, this larger virtual memory would not be too much slower than
a real one of the same size, for a typical workload.

• This is, essentially, caching. However, since the access time to fetch a
virtual page from disk is much higher than in a processor cache, and
the transfer unit (a page) is much larger than a typical cache line,

185

186 CHAPTER 18. DEMAND PAGING

software can be much smarter about page replacement (though not as
smart as in wide-area network caches).

• Demand paging is lazy : it only loads a page into memory when a
virtual address in the page has been touched by the processor (or at
least its cache) – a demand pager was sometimes called a lazy swapper
for this reason.

• A note on terminology: I’ve removed any reference to frames from
this script, but you’ll hear me talk about them. A frame is the same as
a physical page (think of it as something that contains virtual page).

The process works roughly as follows, but note that this algorithm assumes
that all accesses are actually valid (the check that throws a fatal error on an
invalid access is omitted), and we also ignore concurrency issues entirely for
now:

Algorithm 18.2 Demand paging: page fault handling

On a page fault with faulting VPN vfault:

1: if there are free physical pages then
2: p← get new pfn()

3: else
4: p← get victim pfn()

5: vold ← VPN mapped to p
6: invalidate all TLB entries and page table mappings to p
7: if p is dirty (modified) then
8: write contents of p into vold’s area in storage
9: end if

10: end if
11: read page vfault in from disk into physical page p
12: install mapping from vfault to p
13: return

18.2 Paging performance

Remarks:

• The performance of a demand paging system is critically dependent
on how many page faults are generated for a workload (see below).
The goal is to minimize these page faults.

• The critical part of Algorithm 18.13 for performance is what hap-
pens in get victim pfn(), in other words what the page replacement
algorithm is.

Definition 18.3 (Page replacement policy). The page replacement policy of
a demand paging system is the algorithm which determines which physical page
(the victim page) will be used when paging a virtual page in from storage.

18.3. PAGE REPLACEMENT POLICIES 187

Page replacement algorithms matter because the performance of a computer
when it is paging can be completely dominated by the overhead of paging.

How do we measure the performance or efficiency of a paging system?

Definition 18.4 (Effective Access time). The average time taken to access
memory, over all memory references in a program, is the Effective Access
Time.

Consider a page fault rate p, 0 ≤ p ≤ 1.0. If p = 0, we have no page faults.
Similarly, if p = 1, then every memory reference causes a page fault (unlikely,
but not unheard of).

Then the Effective Access Time is:

EAT = ((1− p)×m) + (p× (o+m))

– where m is the memory access latency, and o is the paging overhead.

Remarks:

• In practice, o is the sum of a number of factors: page fault overhead
itself, the cost of swapping a dirty virtual page out if required, the cost
of swapping the required virtual page in, and the cost of restarting the
instruction.

Example 18.5. Suppose m = 50ns, and on average o is 4ms (these are plausible
figures for a disk-based system).

Then the EAT in nanoseconds is ((1–p)× 50) + (p× 4, 000, 050))

If only one access in 1,000 causes a page fault, i.e. p = 0.001, then EAT =
4µs, and we have a slowdown over main memory of a factor of 80.

Analyzing the performance of a paging system is a rather under-specified
problem. In general, it’s good to fix some things in advance.

Definition 18.6 (Reference String). A Reference String is a trace of page-
level memory accesses. A given page replacement algorithm can be evaluated
relative to a given reference string.

Remarks:

• Reference strings capture the essential part of a workload, without
having to look at what a program is actually doing.

• Generally, the best paging replacement policy minimizes the number
of page faults for a given reference string.

• Reference strings are useful in analysing page replacement algorithms,
as we will see below.

18.3 Page replacement policies

What is the optimal page replacement strategy?

188 CHAPTER 18. DEMAND PAGING

Algorithm 18.7 Optimal page replacement

When a victim page is required

1: return The virtual page that will not be referenced again for the longest
period of time.

Remarks:

• This algorithm is optimal, in that it minimizes the number of page
faults for any given reference string. The proof is left as an exercise.

• It requires knowing the reference string in advance, which is generally
not the case (except for some deterministic real-time systems). As a
result, it’s almost never used, but is useful to provide a baseline for
performance comparisons.

The following algorithm requires no knowledge at all about the reference
string:

Algorithm 18.8 FIFO page replacement

Return a new victim page on a page fault

1: inputs
2: pq: a FIFO queue of all used PFNs in the system.
3: p← pq.pop head()
4: pq.push tail(p)
5: return p

Remarks:

• Intuitively, FIFO is not the best cache replacement policy in most
cases (though you might be able to think of a case where it is), but it
is simple to implement.

• You might also think, intuitively, that increasing the size of memory
(i.e. increasing the number of physical pages available to hold vir-
tual pages) would increase the efficiency of the paging algorithm by
decreasing the number of times a victim page had to be evicted. Sur-
prisingly, this is not the case for all page replacement algorithms, and
is famously not the case for FIFO.

Definition 18.9 (Bélády’s Anomaly). Bélády’s Anomaly is the behavior ex-
hibited by some replacement algorithms in caching systems (notably demand
paging), where increasing the size of the cache actually reduces the hit rate for
some reference strings.

Example 18.10. FIFO page replacement exhibits Bélády’s Anomaly. Consider
the following reference string (from the original paper by Bélády, Nelson, and
Shedler [BNS69]):

1 2 3 4 1 2 5 1 2 3 4 5

18.3. PAGE REPLACEMENT POLICIES 189

In a machine with 3 physical pages available, this reference string will result in
9 page faults. With 4 physical pages available, the result is 10 page faults.

In practice, we need a dynamic, online page replacement algorithm. Consider
Least Recently Used:

Algorithm 18.11 A Least Recently Used (LRU) page replacement imple-
mentation

Initialization

1: inputs
2: S: Stack of all physical pages pi, 0 ≤ i < N
3: for all pi do
4: pi.referenced ← False
5: S.push(pi)
6: end for

When a page pr is referenced

7: S.remove(pr)
8: S.push(pr)

When a victim page is needed

9: return Return S.remove from bottom()

Remarks:

• LRU is hard to beat performance-wise, though not impossible: see
e.g. ARC [MM03].

• It can be easily implemented using a stack, as shown above. The gen-
eral class of algorithms with this property are called stack algorithms.
No stack-based algorithm exhibits Bélády’s Anomaly.

• LRU needs detailed information about page references. The OS sees
every page fault, but in general does not get informed about every
memory access a program makes. This makes LRU impractical for a
general-purpose OS on typical hardware, but it is the usual baseline
choice for other types of cache.

• What a modern machine and OS can do is track which virtual pages
have been referenced at some unspecified time in the recent past (and
which ones have been modified). This is done by setting a flag associ-
ated with a page whenever the page is accessed, and then periodically
clearing it after reading it.

190 CHAPTER 18. DEMAND PAGING

Algorithm 18.12 2nd-chance page replacement using reference bits

Initialization

1: inputs
2: F : FIFO queue of all physical pages pi, 0 ≤ i < N
3: for all pi do
4: pi.referenced ← False
5: F .add to tail(pi)
6: end for

When a physical page pr is referenced

7: pr.referenced ← True

What a victim page is needed

8: repeat
9: ph ← F .remove from head()

10: if ph.referenced = True then
11: ph.referenced ← False
12: F .add to tail(ph)
13: end if
14: until ph.referenced = False
15: return ph

Remarks:

• On x86 machines, the MMU hardware provides a “referenced” (or
“accessed” bit), in addition to a dirty bit, inside the PTE. On ARM
machines, this is not the case.

• The workaround for lack of hardware reference bits is to mark the
virtual page invalid at the point where one would otherwise clear the
reference bit. The next time the virtual page is referenced the OS will
take a trap on the reference, and can set the bit in software before
marking the page valid and continuing. This works: you only pay the
overhead of a trap for the first reference; after that it’s free.

• Since the x86 hardware keeps the reference bit in the PTE, it is asso-
ciated with the virtual page not the physical page (which is what you
might want), so extra bookkeeping is needed anyway.

• This algorithm is so-called because each referenced virtual page gets
a “second chance” before being evicted.

• This is a rough approximation to LRU, but we can get the same result
more efficiently with conventional hardware.

18.4. ALLOCATING PHYSICAL PAGES BETWEEN PROCESSES 191

Algorithm 18.13 “Clock” page replacement using reference bits

Initialization

1: for all physical pages pi, 0 ≤ i < N do
2: pi.referenced ← False
3: end for
4: Next physical page number n← 0

When physical pr is referenced

5: pr.referenced ← True

When a victim page is needed

6: while pn.referenced = True do
7: pn.referenced = False
8: n← (n+ 1)modN
9: end while

10: return page pn.

Remarks:

• This classic “clock” algorithm is the basis for most modern page re-
placement policies when detailed reference information is not available
(note that in software caches, such as web caches, such reference in-
formation is easy to obtain since the software sees all web requests,
and so LRU is practical).

• The term “clock” algorithm comes from the visual image of a clock
hand (the next pointer n) sweeping round through memory clearing
the referenced bits.

18.4 Allocating physical pages between processes

All the schemes we’ve seen so far operate on a single pool of physical pages,
and don’t differentiate between different processes or applications. What about
trying to allocate different physical memory to different programs?

Definition 18.14 (Global physical page allocation). In global physical page
allocation, the OS selects a replacement physical page from the set of all such
pages in the system

Remarks:

• This doesn’t quite work: each process needs to have some minimum
number of physical pages in order to be runnable at all. This can vary
depending on the OS, but it’s never zero, so you need to reserve some
memory for each process.

• Also, we need to adjust for physical pages which are shared between
multiple processes.

192 CHAPTER 18. DEMAND PAGING

Definition 18.15 (Local physical page allocation). Instead, with local phys-
ical page allocation a replacement physical page is allocated from the set of
physical pages currently held by the faulting process.

Remarks:

• Local physical page allocation doesn’t need to be fixed. The simplest
scheme is indeed to allocate an equal share to all processes, but an
alternative is to vary the proportion of physical pages dynamically,
much as we have seen CPU schedulers vary to priority of a thread or
process dynamically.

• Indeed, we can use priorities rather than quantitative measures of
process “size” to give some processes more memory. However, this
runs the risk of starving an important process which only needs a
few physical pages, but suffers disproportionately when one of them
is paged out.

• We could adopt a “rate-based” approach: we measure the number
of page faults each process takes over some fixed time period, and
reassign physical pages from processes with low fault rates to those
with high rates.

• The problem with the rate-based approach is that processes with very
large memory requirements can end up starving those with small re-
quirements.

• This naturally leads to the question: how can we define, and then
measure, the “size” of a running process?

Definition 18.16 (Working set). The working set W (t, τ) of a process at
time t is the set of virtual pages referenced by the process during the previous
time interval (t− τ, t). The working set size w(t, τ) of a process at time t is
the |W (t, τ)|.

Remarks:

• The working set size of a process is usually a good approximation to
how many pages of physical memory a process needs to avoid exces-
sively paging pages to and from storage.

• It goes without saying that τ should be chosen carefully. However, it
is often the case that above some reasonable value, the working set
of a given execution typically doesn’t increase with increasing window
size τ beyond a certain point.

• Accurately measuring the working set of a process at any time t re-
quires a complete list of virtual page references since time t − τ . As
with LRU page replacement, this information may be impractical to
obtain.

The standard approach, listed in the original paper on the Working Set
model [Den68], uses sampling at an interval σ = τ/K, where K is an integer.

18.4. ALLOCATING PHYSICAL PAGES BETWEEN PROCESSES 193

For each page table entry we keep a hardware-provided “accessed” bit u0

and K − 1 software-maintained “use bits” ui, 0 < i < K.
An interval timer is programmed to raise an interrupt every σ time units.

Algorithm 18.17 Estimating the working set by sampling

On an interval timer every σ time units

1: WS ← {}
2: for all page table entries do
3: for all use bits ui, 0 < i < K do
4: ui ← ui−1 {Shift all use bits right}
5: end for
6: u0 ← 0
7: U ←

⊕K−1
i=0 ui {Logical-or all the use bits together}

8: if U = 1 then
9: WS.add(page)

10: end if
11: end for
12: return WS {The working set W (t, σK)}

Remarks:

• This principle, while developed for demand paging, is actually a gen-
eral approach to any caching scenario.

• We find that, for the most part, when a program is allocated more
physical pages than its working set, performance improves but not by
much.

• When a program is allocated fewer physical pages than its working
set, it starts to page excessively.

Definition 18.18 (Thrashing). A paging system is thrashing when the total
working set significantly exceeds the available physical memory, resulting in al-
most all application memory accesses triggering a page fault. Performance falls
to near zero.

Remarks:

• The term “thrashing” comes from old, large hard disk drives. When
a process thrashes, almost all the available time is spent paging pages
in and out of memory to and from disk, and very little in actually
executing the program. The load on the disk drive causes the disk
arm the thrash back and forth, causing a lot of noise and vibration.

Working set estimation provides a basis for how many physical pages to
ideally allocate to each process. After that, the problem is to come up with a
good policy, much as with CPU scheduling. Indeed, as [Den68] points out, there
is a close connection between CPU and memory allocation in a demand paging
system.

194 CHAPTER 18. DEMAND PAGING

This should not be surprising: the trick that makes a small machine look like
a large machine can work because the (apparently) larger machine runs more
slowly.

Nevertheless, this concept of virtualization, which we will see later in other
forms, is fundamental to computer science, and is possibly unique to computers.
The thing that makes a computer special is its ability to virtualize itself.

Bibliography

[BNS69] L. A. Belady, R. A. Nelson, and G. S. Shedler. An anomaly in space-
time characteristics of certain programs running in a paging machine.
Commun. ACM, 12(6):349–353, June 1969.

[Den68] Peter J. Denning. The working set model for program behavior.
Commun. ACM, 11(5):323–333, May 1968.

[KELS62] T. Kilburn, D. B. G. Edwards, M. J. Lanigan, and F. H. Sumner.
One-level storage system. IRE Transactions on Electronic Comput-
ers, EC-11(2):223–235, April 1962.

[MM03] Nimrod Megiddo and Dharmendra Modha. Arc: A self-tuning, low
overhead replacement cache. In In Proceedings of the 2003 Conference
on File and Storage Technologies (FAST, pages 115–130, 2003.

Chapter 19

File system abstractions

Definition 19.1 (The filing system). The Filing System (as opposed to “a
filing system”, which we’ll see below) is the functionality in an operating system
which provides the abstractions of files in some system-wide namespace.

Remarks:

• The filing system virtualizes the collection of stable storage devices in
the system (and possibly some other resources as well), in the same
way that the virtual memory system virtualizes main memory.

• As with any other virtualization function, this is a combination of
multiplexing (sharing the storage between applications and users), ab-
straction (making the devices appear as a more convenient collection
of files with consistency properties) and emulation (creating this illu-
sion over an arbitrary set of storage devices).

• The Filing System comprises the core functionality for accessing files,
together with a set of additional maintenance utility programs which
are usually not needed by regular users.

This chapter is about the abstractions provided by the filing system; the
next one is about how these are actually implemented.

The key filing system abstractions can be divided into two groups: (1) files,
directories, name spaces, access control, and other issues relating to storage of
data itself, and (2) open file descriptors and other abstractions that allow access
to this data from programs.

19.1 Access control

Access control goes far beyond file systems, but this is a convenient place to in-
troduce it. Access control is about deciding which access rights a given principal
or subject has on a given object.

Definition 19.2 (Principal, Object, Right). A security principal or subject
is the entity to which particular access rights are ascribed, which grant to ability
to access particular objects. Note that a principal can also function as an object
of rights.

195

196 CHAPTER 19. FILE SYSTEM ABSTRACTIONS

Example 19.3. In a file system, for example, principals can be system users,
objects are files, and rights include read, write, execute, etc.

Definition 19.4 (Protection domain). The protection domain of a principal
is the complete set of objects that the principal has some rights over.

We think of access control for a complete system as represented by:

Definition 19.5 (Access control matrix). . The access control matrix is
a table whose rows correspond to principals, and whose columns correspond to
objects. Each element of the matrix is a list of the rights that the corresponding
principal has over the corresponding object.

Remarks:

• The Access control matrix was introduced by Butler Lampson in
1971 [Lam71].

• The rows of the matrix represent the protection domain of each princi-
pal, whereas the columns represent the accessibility of an object: who
can do what do it.

• The access control matrix is fully general for static access control.
Once you start to worry about which principals have the right (or
not) to delegate a right that they have to other principals, you need
a more sophisticated model, outside the scope of this course.

• If materialized, the access control matrix for a large file system would
be prohibitively large. Consequently, access control models in file
systems are all about trying to represent this matrix in a compact
form, perhaps by limiting its expressivity.

Definition 19.6 (Access control list). An access control list, or ACL, is a
compact list of non-zero entries for a column of the access control matrix; i.e.
an encoding of the set of principals that have any rights over the object, together
with what those rights are.

Remarks:

• Historically, the ACL is one of the two main models of discretionary
access control. The other is an encoding of the rows of the matrix,
which correspond roughly to a list of capabilities held by the principal.

• ACLs make it easy to change the rights on an object quickly.

• This ACL vs. capabilities split is convenient, but is an oversimplifica-
tion in practice.

• We concentrate here on ACLs, since they are the model adopted by
most major file systems. The ACL can be stored with the file as part
of its metadata, which means that ACLs can scale to large numbers
of files (objects).

• ACLs conversely find it hard to represent very large numbers of prin-
cipals, since the lists get very long. Most real ACL schemes have ways
of grouping principals together to mitigate this.

19.2. FILES 197

Example 19.7 (Authorization in Microsoft Windows). Microsoft Windows has
a powerful ACL system based on the MIT Kerberos authorization framework.
ACLs can be applied to all kind of objects in Windows, not simply files, using
the same scheme.

Windows ACLs support the creation of arbitrary groups of principals. Each
group is itself a principal, and there no serious limits on the number of principals
on a ACL.

Moreover, Windows supports sophisticated rights, including delegation.

Example 19.8 (POSIX (Unix) access control). Traditional Unix access con-
trol is a rather simplified form of ACLs, which limits each ACL to exactly 3
principals:

1. A single user, the owner of the file.

2. A single group of users. Groups are defined on a system-wide basis.

3. “Everyone else”, i.e. the implicit group composed of all users not the
owner and not in the named group.

Moreover, for each principal, the ACL defines 3 rights: read (or list, if the
file is a directory), write (or create a file, for directories), and execute (or
traverse, if a directory).

Remarks:

• Today, the POSIX standard now supports full ACLs similar to Win-
dows, although they are rarely used. If you are interested, man getfacl.

• There’s more to even traditional Unix ACLs that we haven’t covered
yet: sticky bits, for example. We will see some of these later.

19.2 Files

What, exactly, is a file?

Definition 19.9 (File). A file is an abstraction created by the operating system
that corresponds to a set of data items (often bytes), with associated metadata.

Remarks:

• The idea of a file sits between the fixed-size “blocks” typically pro-
vided by the storage devices (disks, SSDs, etc.) and the programmer’s
abstraction of data.

• Files in Unix are unstructured : their contents are simply vectors of
bytes. This is not true on some other systems (such as mainframes)
where the abstraction of a file can be quite rich and include fixed-
length records, for example, bringing the filing system closer to a
database.

Associated with a file aside from its data is metadata.

198 CHAPTER 19. FILE SYSTEM ABSTRACTIONS

Definition 19.10 (File metadata). The metadata of a file is additional infor-
mation about a file which is separate from its actual contents (data), such as its
size, file type, access control information, time of creation, time of last update,
etc. It also includes, critically, where the file’s data is located on the storage
devices.

Remarks:

• The “type” of a file is not a well-defined concept, but can include
whether the file is structured or not, if it’s an executable (though in
most systems that is part of the name rather than the metadata), or
if the file is “special” (such as device files in Unix, which actually
represent hardware devices rather than data sets).

• What about the file name? It’s common to not include the name in
the metadata, since (as you will recall from Chapter ??), there can be
multiple names for given file. The name of a file is, instead, considered
part of the directory or catalog entry for the file.

19.3 The Namespace

Definition 19.11 (Filename). A filename is a name which is bound to a file
in the namespace implemented by the filing system.

Remarks:

• More than one name can refer to the same file, in general, though
some file systems forbid this.

• The organization of the file system namespace can vary quite a bit.

Example 19.12 (IBM MVS). IBM Mainframes actually have a flat namespace,
though the names have to consist of sequences of 1-8 alpha-numeric characters
separated by spaces. Users can set a “default prefix” to be applied to shortened
versions of these names for files (“datasets” in IBM parlance). All the filenames
in the system are held centrally, which makes for extremely fast name lookups.

Example 19.13 (DOS). In the old MS-DOS operating system for PCs, all
filenames consist of a “drive letter”, followed by 8 characters of name, plus an
extra 3 for “type” (such as A:\AUTOEXEC.BAT).

Example 19.14 (Unix). In Unix, the namespace is hierarchical (actually, it’s
a directed acyclic graph - we will see why later).

Since Unix-like systems (including MacOS) are fairly common, and even
Windows follows a similar structure these days, the rest of this section will
assume we’re talking about the Unix file system. Be aware, though, that others
can be different.

19.4. THE POSIX NAMESPACE AND DIRECTORIES 199

19.4 The POSIX namespace and directories

What follows is a lengthy description of the API to the Unix file system, but
written from a more abstract perspective, relating it to the ideas we saw back
in the Naming chapter, for example. For a more programmer-oriented view, the
manual pages for the system called (link(), open(), etc.) are helpful.

In Unix, the file system consists of a single, system-wide namespace orga-
nized as a directed acyclic graph.

Definition 19.15 (Directory). A Unix directory (also called a folder on
other systems) is a non-leaf node in the naming graph. It implements a naming
context.

Remarks:

• A directory supports typical namespace operations: binding a name
to a file is done explicitly by a link() operation which creates a new
finding to an existing file, or implicitly when a file (or directory) is
created for the first time (using open(), creat(), etc.).

• Bindings can be removed from a directory using unlink().

• You can also enumerate a directory’s entries by open() it, and using
the readdir() system call.

• Directories are, really, a special kind of file. The file metadata for a
directory identifies it as such, and causes the filing system to treat it
differently. We’ll see more of this next time.

• One difference, however, is that the filing system only allows a direc-
tory to be bound once in the whole system, as opposed to files – in
other words, you can’t used link() to bound a name to an existing
directory (try it – you should get an EPERM error). This forces the
naming graph to be a DAG by preventing cycles.

• All directories must always contain two particular name bindings: “.”
(dot) is always bound to the directory itself, and “..” (dot-dot) is
bound to the “parent” of this directory.

• The existence of “..” is controversial, but at least has a well-defined
meaning since the naming graph is acyclic (apart from the trivial
cycles introduced by “.” and “..”.

Definition 19.16 (Current working directory). Every process has, as part of
its context, a current working directory. Any path name which does not
start with a “/” is resolved starting at this directory.

Remarks:

• You can display the current working directory’s name by typing “pwd”.

Definition 19.17 (Root directory).

There is a distinguished directory whose name is simple “/”. This is called the
root of the file system. All path names which start with “/” are resolved relative
to this root.

200 CHAPTER 19. FILE SYSTEM ABSTRACTIONS

Remarks:

• In the root, both “.” and “..” are bound to the root. In other words,
the root is its own parent.

• It is, in fact, possible to change the root directory of a process using
chroot(). This results in the process only seeing a restricted subset
of the file namespace. Implementing some form of security in this
case is, actually, rather difficult and fraught with potential errors (see
“open files” below).

Definition 19.18 (Symlink). A symbolic link or symlink is a name in a
directory bound not to a file or directory, but instead to another name.

Remarks:

• We saw symbolic links in the Naming chapter; here they are in Unix.

• They are created in Unix using the symlink() system call, or “ln
-s” in the shell.

• Technically, a symlink is a special kind of directory entry, but the
equivalent in Windows (the “shortcut”) is a actually a special kind of
file, whose contents is the destination name.

There is a clear distinction between a file itself, and the directory entry
referring to the file – there can be multiple instances of the latter corresponding
to the same file. Most of the metadata of a file in Unix is actually stored in a
separate object which actually represents the file: the inode, which we will see
in the next chapter.

However, a more important distinction from the user’s perspective is between
a file, and an open file. The most important operation on a file is open(), which
creates an open file.

19.5 Open Unix files

Definition 19.19 (Open file descriptor). An open file is an object which repre-
sents the context for reading from, writing to, and performing other operations
on, a file. An open file is identified in user space by means of an open file
descriptor.

Remarks:

• Almost all operating systems have some equivalent object to an open
file, although the details (and how it is referred to) vary.

• An open file descriptor in Unix is a small integer which names the
open file (note that this has nothing to do with the name used to open
the original file), and is returned by the open() system call.

• Almost all the file operations that regular programs are interested in
(read, write, seek, etc.) are, strictly speaking, operations on an open
files, not a file per se.

19.5. OPEN UNIX FILES 201

• The naming context for file descriptors is local to the process, but it is
possible to pass a file descriptor from one process to another through
an IPC socket. When this happens, a new number is allocated in the
destination process.

• File descriptors are, actually, a simple form of capability, as defined
above.

• The capability-like properties of file descriptors mean that they are
used to represent all kind of other objects in Unix apart from open
files: sockets, shared memory segments, etc.

What can you actually do with an open file? To some extent this depends
on the access method.

Definition 19.20 (File access method). An access method defines how the
contents of a file are read and written.

Definition 19.21 (Direct access file). Direct access (or random access is
an access method whereby any part of the file can be accessed by specifying its
offset.

Remarks:

• This is the primary access method defined by Unix. The interface for
this in Unix should be familiar to you by now: each open file has a file
position indicator which keeps track of an offset in the file. read()

and write() operations start at this position, and lseek() changes
(and reports) the position indicator.

Definition 19.22 (Sequential access). Sequential access is an access method
under which the file is read (or written) strictly in sequence from start to end.

Remarks:

• For mainframes, sequential access is quite important. Many programs
want to simply read a file from start to finish, and if you know this in
advance, you know you can usefully prefetch the file. It’s also a good
match for tape drives, which are still big business.

• Unix has a few limited forms of sequential access. Simply reading or
writing a regular open file moves the file position indicator long by
the number of bytes read or written. This is also the reason that a
convenience function in the C library to set the file position indicator
to 0 (the start of the file) is called rewind().

• You can also open a file in “append” mode, in which case all writes
are constrained to add sequentially to the end of the file.

• One of the simplifications that Unix introduced, however, was to re-
ally have only a single kind of file, and not much file access. Tape
access in Unix is deliberately not provided by a file system at all, but
instead built into utility programs like tar and cpio.

202 CHAPTER 19. FILE SYSTEM ABSTRACTIONS

Definition 19.23. Structured filesIn contrast to files which are presented simply
as a vector of bytes, structured files contain records which are, to some extent,
understood by the file system.

Remarks:

• It’s easy to forget that a plan Unix file is really an abstraction, with
a complex implementation hidden behind it. The extreme simplicity
of the abstraction (a vector of bytes) is the reason people often forget
this.

• Again, in mainframes, structured files can be quite common, some-
times resembling database tables.

• In the early Macintosh operating system (MacOS), all files were struc-
tured as two “forks”: the “data fork” which was an untyped byte
vector, and the “resource fork” which was a key-value store mapping
pairs of (type identifier, object identifier) 32-bit values to structured
data.

• In Unix, structured files barely exist, but we have already seen one
type: directories! A directory is a file, but is accessed not as bytes but
as a set of entries using readdir().

At some point, the boundary between structured files or exotic file access
methods implemented by the operating system, and the same functionality pro-
vided on top of simple, byte-oriented, direct access files by application programs,
begins to blur.

In Unix, the current consensus is towards putting file structure into database
applications, or other applications, but as we have seen, it’s not a hard bound-
ary, and it can change. New storage technologies are likely to change this
further, as are the constraints imposed by the current POSIX file interface on
multiprocessor scaling.

19.6 Memory-mapped files

Definition 19.24 (Memory-mapped file). A memory mapped file is an open
file which is accessed through the virtual memory system.

Remarks:

• In Unix, a file can be memory mapped using the mmap() system call.

• Memory-mapping a file creates a region of virtual memory which is
actually paged back to the named file (rather than the OS regular
paging file or device).

• After memory mapping, file contents can be accessed using regular
loads and stores to and from main memory

• The operation of memory mapping files is actually overloaded in Unix
to perform a variety of other tasks, such as creating shared memory
segments (which are also referred to via file descriptors).

19.7. EXECUTABLE FILES 203

19.7 Executable files

Definition 19.25 (Executable files). An executable file is one which the OS
can use to create a process.

Remarks:

• To some extent, an executable file is simply one whose metadata labels
it as executable. However, in practice the OS needs to know how to
create the process given the file, for example if it is an ELF file, a
script, etc.

• The ELF files we saw last year (and other executable binary formats
produced by a linker) are identified by a magic few bytes at the start
of the file. The Unix kernel loader then decodes the file format to
figure out where the text, data, and bss segments go, etc.

• In Unix, the magic bytes ’#’, ’!’ indicate a script : the loader reads
the rest of the line to give the pathname of a binary which is then
launched with the name of the original file as the first argument.

• Where possible, the text segment of a program (marked read-only)
will page back to the original file, to save space in the regular page
file.

• In Windows, any file which is currently executing is locked by the OS
to prevent modifications to the code while the program is running.

Bibliography

[Lam71] Butler W. Lampson. Protection. In Proc. Fifth Princeton Sympo-
sium on Information Sciences and Systems, pages 437–443, Princeton
University, March 1971. reprinted in Operating Systems Review, 8,1,
January 1974, pp. 18–24.

Chapter 20

File system implementation

How are file systems implemented? Let’s start at the bottom.

20.1 Low-level file system basics

Definition 20.1 (Volume). A volume is the generic name for a storage device,
or something which resembles it. A volume consists of a contiguous set of fixed-
size blocks, each of which can be read from or written to.

Remarks:

• Volumes are a convenient abstraction that includes spinning disks,
flash disks, logical partitions (defined below), and other ways of cre-
ating a “virtual disk”.

• In addition to splitting up a physical device into logical volumes, vol-
umes can also be constructed by adding together a collection of devices
and making them appear as a single volume, as with RAID.

Definition 20.2 (Logical block addresses). It is convenient to refer to every
block on a volume using its logical block address (LBA), treating the volume
as a compact linear array of usable blocks.

Remarks:

• LBAs nicely abstract such features of disks as tracks, sectors, spindles,
etc. They also hide wear-leveling mappings in Flash drives, storage-
area networks, RAM disks, RAID arrays, etc. behind a simple, con-
venient interface.

Definition 20.3 (Disk partitions). At a level below files, disks or other physical
volumes are divided into contiguous regions called partitions, each of which
can function as a volume. A partition table stored in sectors at the start of
the physical volume lays out the partitions.

204

20.1. LOW-LEVEL FILE SYSTEM BASICS 205

Remarks:

• Partitions coarsely multiplex a disk among file systems, but aren’t
really much of a file system themselves.

Example 20.4. Here is a Linux system with a single hard disk drive with four
different partitions on it:

troscoe@emmentaler1:~$ sudo parted

GNU Parted 3.2

Using /dev/sda

Welcome to GNU Parted! Type ’help’ to view a list of commands.

(parted) print

Model: SEAGATE ST3600057SS (scsi)

Disk /dev/sda: 600GB

Sector size (logical/physical): 512B/512B

Partition Table: msdos

Disk Flags:

Number Start End Size Type File system Flags

1 1049kB 16.0GB 16.0GB primary ext4 boot

2 16.0GB 20.0GB 4000MB primary ext4

3 20.0GB 36.0GB 16.0GB primary linux-swap(v1)

4 36.0GB 600GB 564GB primary ext4

Definition 20.5 (Logical volume). In addition to splitting a single physical
device into multiple volumes, logical volumes are created by merging multiple
physical devices into a single volume.

Remarks:

• The best framework for thinking about logical volumes, and the rea-
son we don’t discuss them further in this chapter, is as distributed
storage: data can be replicated across physical volumes for durability,
or striped across them for performance, or all kinds of combinations,
just as in more widely distributed storage systems.

Definition 20.6 (A file system). A file system (as opposed to the file system)
is a set of data structures which fill a volume and collectively provide file stor-
age, naming, and protection. The term can also mean the emphimplementation
(class) of the file system.

Remarks:

• The file system we saw in the previous chapter (that bit of the OS
which provides files) provides the interface to, and implementation of,
one or more of the file systems defined as above.

• Typically, each separate file system occupies a different part of the
global name space, though this is not necessarily true.

Example 20.7. In the following output, there are 15 different individual file
systems which collectively make up the file name space of the machine:

206 CHAPTER 20. FILE SYSTEM IMPLEMENTATION

troscoe@emmentaler1:~$ df

Filesystem 1K-blocks Used Available Use% Mounted on

udev 12316068 0 12316068 0% /dev

tmpfs 2467336 1120 2466216 1% /run

/dev/sda1 15247760 10435252 4014916 73% /

tmpfs 12336676 232 12336444 1% /dev/shm

tmpfs 5120 0 5120 0% /run/lock

tmpfs 12336676 0 12336676 0% /sys/fs/cgroup

/dev/sdb1 1922728840 981409016 843627764 54% /mnt/local2

/dev/sda2 3779640 339748 3228180 10% /tmp

/dev/sda4 542126864 298706076 215859216 59% /mnt/local

fs.roscoe:/e/g/home/harness 1043992576 710082560 333910016 69% /home/harness

fs.systems:/e/g/netos 1043992576 812044288 231948288 78% /home/netos

fs.roscoe:/e/g/home/haeckir 1043992576 710082560 333910016 69% /home/haeckir

fs.roscoe:/e/g/home/gerbesim 1043992576 710082560 333910016 69% /home/gerbesim

iiscratch-zhang:/e/s/systems 77309411328 6010442752 71298968576 8% /mnt/scratch-new

fs.roscoe:/e/g/home/troscoe 1043992576 710082560 333910016 69% /home/troscoe

troscoe@emmentaler1:~$

How are all these different file systems tied into the single name space of the
kernel’s “File System”?

Definition 20.8 (Mount point). A mount point in a hierarchically-named OS
(like Unix) is a directory under which is mounted a complete other file system.
One file system, the root file system, sits at the top, and all other file systems
accessible in the name space are mounted in directories below this.

Example 20.9. In the example above, the root file system is the volume /dev/sda1,
which is the first partition of the disk /dev/sda.

Remarks:

• A file system can, in principle, be mounted over any existing directory
in the name space, regardless of which file system that directory is part
of.

• When a directory has a file system mounted over it, its contents and
that of all its children become inaccessible.

• Having multiple file systems in the same name space is not completely
transparent to users. For example, you can’t create a hard link from a
directory in one file system to a file in another, for reasons that should
be clear from the discussion below.

• Mount points allow great flexibility in reconfiguring the name space,
and have grown more flexible over the years. It’s now possible for un-
privileged users in Linux to mount their own file systems in directories
in their home directories.

Having multiple types (implementations) of filing systems raises a final ques-
tion: how are the operations on the file system (open, read, write, etc.) imple-
mented when the sequence of operations is going to be different for different file
systems?

20.2. FILE SYSTEM GOALS 207

Definition 20.10 (Virtual File System). A virtual file system or VFS in-
terface is an abstraction layer inside the kernel which allows different file system
implementations to coexist in different parts of the name space.

Remarks:

• Most operating systems have some form of VFS interface. For POSIX-
like file systems, they all look pretty much like the original [Kle86].

• Although in C, this is good example of the long-standing use of poly-
morphism in OS design.

• The details of the VFS interface are instructive: it’s not quite the
same as the user API to files, but similar.

• VFS is quite flexible: you can attach all kinds of file systems that we
don’t cover a lot here, such as networked systems (NFS and SMB).

20.2 File system goals

What does the file system need to provide? We’ve seen the user-visible function-
ality (access control, named data, controlled sharing), but the implementation
is also concerned with:

Performance How long does it take to open a file? To read it? To write it?
etc. The key challenge here used to be that I/O accesses (to spinning
disks) were high-latency, and involved moving disk arms. The result was
file systems which tried to lay data out to maximize locality, and to al-
low common sequences of operations to require a small number of large,
sequential I/O operations.

Reliability What happens when a disk fails? Or Flash memory is corrupted?
Or the machine crashes in the middle of a file operation? The challenges
are the same as you have probably seen with databases: consistency and
durability. Approaches are similar: atomic operations, even transactions
(though hidden inside the file system implementation), write-ahead log-
ging, and redundant storage of critical data.

20.3 On-disk data structures

For the rest of this section, it’s better to describe specific examples of filing
systems rather than try to present abstract principles (though a future version
of this course might try to do so). We’ll look at FAT, BSD FFS, and Windows
NTFS.

For each, we’ll look at:

• Directories and indexes: Where on the disk is the data for each file?

• Index granularity: What is the unit of allocation for files?

• Free space maps: How to allocate more sectors on the disk?

208 CHAPTER 20. FILE SYSTEM IMPLEMENTATION

• Locality optimizations: How to make it go fast in the common case?

There is a fourth filing system that’s worth looking at, since it adopts a
range of different choices to the three we look at here. It’s called ZFS, and it’s
described in the textbook [AD14], in Chapter 13.

20.3.1 The FAT file system

Example 20.11 (FAT). FAT is the file system created for MS-DOS and the
original IBM PC, based on earlier designs that Microsoft had used for other
microcomputers.

Remarks:

• FAT dates back to the 1970s, though even then was a remarkable
unsophisticated file system. It holds almost no metadata, has no
access control, and no support for hard links (i.e. multiple names for
the same file).

• Despite this, FAT won’t die. It remains the file system of choice for
preformated USB drives, cameras, etc.

• Over time, FAT has evolved to handle larger and larger storage devices
which stressed hard limits in the original design: thus, we talk about
FAT, FAT12, FAT16, FAT32, exFAT, etc. All use the same basic
structure we describe here.

FAT

0

1

2

3

4

5

6

7

8

9

10

11

12

13

...

AUTOEXEC .BAT 7

CMD .EXE12

10

5

1

3

AUTOEXEC.BAT block 0

AUTOEXEC.BAT block 1

CMD.EXE block 0

CMD.EXE block 1

CMD.EXE block 2

CMD.EXE block 3

Data blocks

...

Figure 20.12: The FAT file system

The design of FAT is shown in Figure 20.12.

Definition 20.13 (FAT). The File Allocation Table, or FAT, is a linear
array of blocks numbers, with an entry for every block on the volume.

20.3. ON-DISK DATA STRUCTURES 209

Remarks:

• Directories in FAT are a special kind of file which the OS interprets
differently. The directory is a simple table of entries, which give the
name, metadata, and an index into the FAT. This is simple, easy to
extend (since the file can be extended using the standard file system
implementation) but slow to search for large numbers of entries in a
directory.

• Each FAT entry marks the corresponding block on the volume as free,
or used. If it’s used, it’s part of a file, and holds the block number
(and therefore FAT entry number) of the next block in the file.

• Directories in FAT are special files holding the file name, some meta-
data, and the block number of the start of the file, i.e. an initial
pointer into the File Allocation Table.

• Files are consequently allocated at the granularity of disk blocks.

• Allocating from the free space on the volume is slow: it requires a
linear search through the FAT.

• Random access to a file is slow, since it requires traversing the list of
file blocks inside the FAT.

• Resilience is poor: if the FAT is corrupted or lost, you really have lost
everything.

• The file system has poor locality, since there is nothing to prevent a
file’s block from being scattered over the disk. Over time, as the file
system ages, this causes fragmentation, which reduces performance.

20.3.2 The Berkeley Fast Filing System

For more information of FFS check out [Mck15] and [MBKQ96].

Example 20.14 (FFS). FFS was introduced in Berkeley Unix version 4.2
(4.2BSD).

Definition 20.15 (Inode). An index node or inode in a file system is a con-
tiguous region of data on a disk that contains all the necessary metadata for file
(including where the file’s data is stored).

Remarks:

• The inode is the heart of the file: all names for the file point to the
inode, and all data blocks comprising the file are listed by the inode.

• FFS has an area of disk called the inode array, which holds a table of
complete inodes, indexed by number.

• Directories in FFS are lists of file names and corresponding inode
numbers.

• Inodes are quite large, typically 4kB.

The structure of an inode (somewhat simplified) is shown in Figure 20.16.

210 CHAPTER 20. FILE SYSTEM IMPLEMENTATION

Figure 20.16: Structure of an inode

20.3. ON-DISK DATA STRUCTURES 211

Remarks:

• The first part of the inode holds standard file metadata; this is typi-
cally about 512 bytes, leaving 4096-512 = 3584 bytes left over.

• For small files (¡ 3.5kB), the file’s data is stored in the inode, making
for very fast access. This is a big win: most files in Unix (particularly
in those days) were small, and most accesses were to small files.

• Otherwise, the inode is filled with a list of addresses of the blocks
holding the file data. If block addresses are 64 bits in size (8 bytes),
there is room for (4,096-512) / 8 = 448 block pointers, so files up to
448 x 4096 = 1792kB in size could be represented with a single inode.

• Any file smaller than this size can be accessed randomly with a single
disk access, given the inode.

• To circumvent this limit, the final 3 block addresses (the “indirect
pointers” in the inode are special. The first (the “single indirect
pointer”) points to a block which only contains further block ad-
dresses, which more than doubles the maximum representable file size.
Any block in the second half of the file can now be accessed with two
(cached) disk accesses.

• The second (the “double indirect pointer”) points to a block filled with
the block addresses of further blocks which contain addresses of data
blocks. This means that much larger files can now be accommodated,
at the cost of one more disk access to read or write most of the large
file.

• The final (“triple indirect”) pointer takes this scheme one stage fur-
ther. This allows truly huge files to be accessed randomly with an
upper bound of 4 disk reads per block.

Free space on the volume is managed in FFS by using a bitmap, one per
disk block, which can be cached in memory. This is reasonably efficient when
searching for free blocks, and is quick to maintain.

Performance on a spinning disk in FFS is enhanced by block groups.

Definition 20.17 (Block group). A Block Group in FFS is a contiguous
subset of the disk tracks where related inodes, directories, free space map, and
file data blocks are gathered together.

Remarks:

• Block groups are not perfect, but they aim at increasing the locality
of reference for most file system operations. By dividing the disk into
regions by track, they try to minimize the movement of the disk arms,
which was (at the time) the biggest source of latency for disk I/O
operations.

We have not yet specified how the OS figures out where all the block groups,
free space maps, etc. are on a disk when the machine starts.

212 CHAPTER 20. FILE SYSTEM IMPLEMENTATION

Definition 20.18 (Superblock). The superblock is the area of a disk which
holds all information about the overall layout of the file system: how large it is,
where the block groups are, etc.

Remarks:

• Most file systems have some equivalent of the superblock (in FAT, for
example it is stored in front of the File Allocation Table itself, in the
master boot record.

• Losing the superblock is catastrophic. For this reason, it’s replicated
several times throughout the disk, at regular, predictable intervals.
Since it doesn’t often change, it’s OK to duplicate the data in this
way. If the first copy is corrupted, the OS can hopefully recover the
file system from another copy.

20.3.3 Windows NTFS

Example 20.19 (NTFS). The Windows NT file system replaced FAT as the
default filing system in Windows NT, and then Windows XP, Windows 2000,
and so on (with various enhancements) up to the present day.

In NTFS, all file system and file metadata is stored in files.

Definition 20.20 (Master File Table). NTFS is organized around a single
Master File Table of file entries, each of which is 1kB in size. Each MFT
entry describes a file.

Remarks:

• The MFT itself is a file, described by the first entry (number 0) in the
MFT. Its name is $MFT.

• Apart from standard metadata, each MFT entry holds a list of variable-
length attributes, which serve a wide range of functions.

• Each possible name for a file is an attribute of its MFT entry.

• For very small files, the data itself is an attribute of its MFT entry.

• File data for non-tiny files is stored in extents (see below).

• If the MFT entry is not big enough to hold all the file attributes,
the first attribute is an “attribute list” which indexes the rest. More
attributes can be held in extra MFT entries for the file, or in extents.

• After file number 0 (the MFT itself), there are 10 more special files
in NTFS including a free space bitmap ($Bitmap) as in FFS, $BadClus
(the map of bad sectors to avoid), $Secure (the access control database),
etc.

• What about the superblock? This is stored in file 3 ($Volume), but
how is it made resilient? Well, file 1 ($MFTirr) actually a contains
a copy of the first four entries of the MFT, files 0-3. Note that this
includes the backup copy itself.

20.4. IN-MEMORY DATA STRUCTURES 213

• The remaining critical file (number 2) is $Logfile, a transaction log
of changes to the file system.

• The final part of the puzzle (how do you find where $MFT starts if you
don’t know where the MFT is?) is this: the first sector of the volume
points to the first block of the MFT file.

Definition 20.21 (Extent). An extent is a contiguous, variable-sized region
of a storage volume, identified by its start LBA and length in blocks.

Remarks:

• NTFS is not the only extent-based file system - the idea is very old.
The “ext” in Linux ext2, ext3, and ext4 file systems refers to extents.

• Extent-based systems are highly efficient for sequential file access
(quite a common access pattern) since they keep arbitrarily large se-
quences of data contiguously on the volume.

20.4 In-memory data structures

When a file or directory is read in from a volume, it is translated into in-kernel
data. Directory data, for example, is turned into an index in the kernel from
names to (say) inode numbers and volume identifiers.

While the representation of directories is very OS-dependent, open files
themselves mostly look the same at a high-level.

Definition 20.22 (Per-process open file table). The per-process open file ta-
ble is an array mapping file descriptors or file handles to entries in the system-
wide open file table.

Definition 20.23 (System open file table). The system open file stable
contains an entry for every open file in the OS, including its state: the seek
pointer, the layout of the file itself on its volume, and any other state of the
open file.

Remarks:

• There are thus two levels of indirection involved in a file access in
user-space: the local file descriptor is mapped to an system open file
number, which looked up to give the open file object, which itself
points to the file itself.

• Note that, if you’re using stdio in C (or similar facilities in C++, or
Java, or Rust, or...) note that an extra level of indirection happens:
a FILE * in C itself contains a file descriptor number.

• In an FFS-like file system, the system open file table includes a cache
of the inode for each open file.

How can this be made to go fast? Note that all the designs we’ve seen so
far require quite a few disk block accesses to get at a single byte of data in a
file. File systems get their performance from caching all this metadata, as well
as file data itself.

214 CHAPTER 20. FILE SYSTEM IMPLEMENTATION

Definition 20.24 (Block cache). The file system block cache, or buffer
cache, is a system-wide cache of blocks read from and written to storage vol-
umes.

Remarks:

• The block cache can be optimized for particular access patterns: for
example, if it expects a file to be accessed sequentially, it can use read-
ahead to fetch blocks speculatively before they are actually requested
by a program, and also free-behind to discard them once they have
been read if it expects them not to be accessed again.

• Some operating systems, such as Linux, can use any unused physical
page in memory as part of its block cache. Others reserve a fixed area
of memory for it.

Recall that demand paging regards main memory as a cache for large address
spaces on disk: a paging file or paging device is used to store all data in virtual
memory, and this is paged in on demand.

Recall also that memory mapped files are given a region of the virtual address
space, but are paged in not from the paging device, but from their original file
(as are the text segments of running programs).

Both operations require disk I/O, which may or may not go, in turn through
the buffer cache. This two-level caching duplicates functionality and, in many
cases, data, leading some OS designs to combine the two:

Definition 20.25 (Unified buffer cache). A unified buffer cache manages
most of a computers main memory, and allows cached pages to be accessed via
loads and stores from user space (having been mapped into a virtual address
space), and/or accessed as file contents using read/write system calls.

Bibliography

[AD14] Thomas Anderson and Michael Dahlin. Operating Systems: Prin-
ciples and Practice. Recursive Books, 2nd edition, 2014.

[Kle86] S R Kleinman. Vnodes: An architecture for multiple file system
types in sun unix. In Usenix Conference Proceedings, Atlanta, GA,
Summer, pages 238–247, 1986.

[MBKQ96] Marshall Kirk McKusick, Keith Bostic, Michael J. Karels, and
John S. Quarterman. The Design and Implementation of the 4.4
BSD Operating System. Addison-Wesley, 1st edition, 1996.

[Mck15] Marshall Kirk Mckusick. A brief history of the bsd fast filesystem.
Keynote talk at FAST 2015, 2015. https://www.youtube.com/

watch?v=TMjgShRuYbg.

https://www.youtube.com/watch?v=TMjgShRuYbg
https://www.youtube.com/watch?v=TMjgShRuYbg

Chapter 21

The Network Stack

In comparison with some other parts of OS design, networking has very little (if
any) basis in formalism or algorithms – yet (some of us are working on this. . .).

Definition 21.1 (Network stack). The network stack is the component of the
OS which handles all network I/O, including packet transmit and receive,
multiplexing and demultiplexing, and other kinds of protocol processing.

Remarks:

• Not all network protocols are handled by the OS network stack: some
(such as HTTP) will be handled as part of the application. The divi-
sion of responsibility for a complete network communication channel
between an application and the OS network stack is somewhat arbi-
trary, but typically happens above the transport layer (e.g. TCP).

• Within the OS network stack, protocol processing can (and does) oc-
cur in many different places:

– The network hardware, such as the Network Interface Card (NIC).

– The first-level interrupt handlers for the NIC

– The rest of the NIC driver bottom-half, e.g the DPCs.

– The driver top-half, and other kernel code invoked from user
space with a system call.

– Libraries linked with the application

When a packet is received by a NIC, the data generally traverses all
these layers in order.

• Similarly, when data is to be sent from a process over the network, all
these layers can be involved in reverse.

• In addition to these components, there also

– System daemons, and

– Utility programs

– which are used on longer timescales to maintain the state of the
network stack, and form part of the control plane.

215

216 CHAPTER 21. THE NETWORK STACK

21.1 Network stack functions

The network stack’s purpose is to move data between user programs on differ-
ent machines. Within a single end-system, getting this done involves converting
between the user’s data and the set of network protocols being used to commu-
nicate it.

This can be broken down into various functions, all of which happen at
multiple places in the stack:

Definition 21.2 (Multiplexing). Multiplexing is the process of sending pack-
ets from multiple connections at one layer in the protocol stack down a single
connection at a lower later. Demultiplexing is the reverse process: taking
packets received on a connection at one layer, and directing each one to the
appropriate channel in an upper layer.

Definition 21.3 (Encapsulation). While multiplexing refers to sharing a single
lower-level channel among multiple higher-level connections, encapsulation is
the mechanism by which is this usually achieved: by wrapping a packet on one
channel as the payload of a lower-layer connection, adding a header and/or
trailer in the process. De-encapsulation is the reverse: interpreting the pay-
load of one packet as a packet for a different, higher-layer protocol.

Remarks:

• Multiplexing and demultiplexing, and encapsulation and de-encapsulation,
are close related but not the same thing. Multiplexing generally re-
quires some kind encapsulation so as to be able to distinguish packets
from different connections, but encapsulation may not imply multi-
plexing.

• Demultiplexing is frequently the most important factor in the perfor-
mance of a workload over a particular network stack. Fully demulti-
plexing an Ethernet packet to an application socket may require 10 or
20 different stages of de-encapsulation, if done naively.

Definition 21.4 (Protocol state processing). The networking stack needs to do
more than simply move packets between the network interface an main memory.
In addition, it must maintain, and execute, state machines for some (though
not all) network protocols. Such protocol state processing not only means
that the network stack needs to maintain more state than simply the set of active
connections, but it also may need to generate new packets if the state machine
so requires.

Example 21.5. TCP is a good example of protocol state processing, and in
Unix (as in most other OSes) it is performed in the kernel to prevent abuse of
the protocol by unprivileged applications.

TCP state for a given TCP connection in the kernel, generally held in a data
structure called the TCP Control Block, is much more than simply the state you
are familiar with from the networking course. It includes the congestion and flow
control windows, a buffer of all unacknowledged data it might need to resend,
plus a collection of timers that trigger the state transitions that are not initiated
by packets arriving.

21.2. HEADER SPACE 217

Definition 21.6 (Buffering and data movement). The network stack also needs
to move packet data through the system, both buffering it (holding the data
until it is ready to be consumed) and transferring it between different protocol
processing elements.

Remarks:

• Copying packets between every protocol processing stage in the net-
working stack is clearly inefficient, and so implementations try to
avoid copying wherever possible. However, encapsulation and de-
encapsulation require care in data representation: adding a header
to the front of a packet without copy any data is challenging.

In addition, most network stacks also perform routing and forwarding, which
are discussed below.

21.2 Header space

Definition 21.7 (Header space). The header space is an abstract vector space
which represents the set of all possible headers of a packet.

Remarks:

• This definition is a bit under-specified: the dimensions of the header
space might be each bit in a packet header, or something more abstract
(port numbers, source/dest addresses, etc.).

• Even so, any network packet occupies a point in header space.

• Each node in the protocol graph corresponds to a region of header
space.

• The set of packets than can be received at a NIC potentially occupies
the whole header space, but each demultiplexing step in the protocol
stack reduces the sub-volume of the header space that a packet must
lie in.

• Each network connection, such as a socket, corresponds to two sub-
volumes of header space: which we might call the receive set and
the transmit set. Any packet to be transmitted has to lie inside the
transmit set when it leaves the NIC, and any packet that is received
on the socket must lie in the receive set.

• Packet demultiplexing therefore is the operation of identifying the set
of receive sets each received packet lies within, and delivering the
packet payload to the socket corresponding to each of these receive
sets.

218 CHAPTER 21. THE NETWORK STACK

21.3 Protocol graphs

Definition 21.8 (Protocol graph). The protocol graph of a network stack is
a directed-graph representation of the forwarding and multiplexing rules at any
point in time in the OS. Nodes in the protocol graph represent a protocol acting
on a communications channel, and perform encapsulation or decapsulation, and
possibly multiplexing or demultiplexing.

Example 21.9. Nodes in the protocol graph might include:

• Demultiplexing an LLC/SNAP packet based on whether the protocol field
is IP, or Appletalk, or . . .

• Demultiplexing UDP packets based on the destination IP address and port

• Demultiplexing TCP packets based on the four-tuple (destination address,
destination port, source address, source port).

• Processing a single, bidirectional TCP connection

• Responding to ICMP echo requests

• Encapsulating messages sent via a UDP socket with the correct UDP
header

And so on.

Remarks:

• If a node has multiple outgoing edges, it’s probably demultiplexing
packets. If it has multiple inbound edges, it’s multiplexing.

• People have constructed network stacks explicitly this way, notably
the x-kernel [HP88], but it’s also an appropriate model of any network
stack in the abstract.

• One advantage of the protocol graph over a traditional layered model
is that it handles multiple connections at the same layer.

• More importantly, it can be cyclic, for example: an IP packet might
be received, demultiplexed into a TCP flow, decrypted using TLS,
decapsulated via a tunneling protocol like PPTP, and result in a new
set of IP packets to be demultiplexed.

21.4 Network I/O

Let’s work up the network stack, starting at the hardware.
We’ve already seen how a NIC operates at the lowest level in Chapter 10:

packets that are received are copied into buffers supplied by the OS and en-
queued onto a descriptor queue, and these filled buffers are then returned to the
OS using the same, or possibly a different, queue.

Similarly, packets to be sent are enqueued on a descriptor queue, and the NIC
notified. When a packet has been sent over the network, its buffer is returned

21.5. DATA MOVEMENT INSIDE THE NETWORK STACK 219

to the OS by the NIC. Synchronization over the queues is handled using device
registers, flags in memory, and interrupts.

The first-level interrupt handler for packet receive therefore looks like this
(somewhat simplified):

Algorithm 21.10 First-level interrupt handler for receiving packets

1: inputs
2: rxq: the receive descriptor queue

Device interrupt handler:

3: Acknowledge interrupt
4: while not(rxq.empty()) do
5: buf ← rxq.dequeue()
6: sk buf ← sk buf allocate(buf)
7: enqueue(sk buf) for processing
8: post a DPC (software interrupt)
9: end while

10: return

Remarks:

• The receive queue of the NIC is a way of doing buffering : the OS
doesn’t have to react immediately when a packet arrives.

• The packet is removed from the NIC queue (which is defined by the
hardware) and wrapped in what I’ve called an “sk buf”. This is
a data structure the OS uses for passing packets (and other data)
around internally.

21.5 Data movement inside the network stack

Definition 21.11 (Packet descriptors). packet descriptors, known as sk bufs
in Linux, and m bufs in BSD Unix, are data structures which describe an area
of memory holding network packet data.

Remarks:

• Packet descriptors in modern operating systems (particularly Linux)
are really quite complex things (take a look at /include/linux/skbuff.h),
but what they are doing is conceptually quite simple.

• A packet descriptor holds metadata about a packet, but also a refer-
ence to multiple areas of memory that hold the actual packet data.

• A packet descriptor can also identify a subset of a buffer in memory
that is of interest.

Example 21.12 (BSD mbuf structures). To simplify somewhat, a Unix mbuf
contains the following fields:

220 CHAPTER 21. THE NETWORK STACK

struct mbuf {

struct mbuf *m_next; /* next mbuf in chain */

struct mbuf *m_nextpkt; /* next packet in list */

char *m_data; /* location of data */

int32_t m_len; /* amount of data in this mbuf */

uint32_t m_type:8, /* type of data in this mbuf */

m_flags:24; /* flags; see below */

char m_dat[0];

};

How is this used?
A single mbuf b describes b.m len bytes of data, starting in memory at

address b.m data. This data might be stored in the mbuf itself, in the array
b.m dat, or alternatively somewhere else in memory; the b.m type field specifies
which case this is.

An mbuf chain represents a single contiguous packet, using non-contiguous
areas of memory. An mbuf chain is a singly-linked list of mbufs chained with
the m next field.

Moreover, packets themselves can be hooked together in lists or queues using
the m nextpkt field.

There are a whole host of utility functions in the BSD kernel for creating,
filling, manipulating, duplicating, coalescing, freeing, and doing all kinds of other
things to mbufs.

Remarks:

• There’s a reason for this level of complexity, and it’s to do with avoid-
ing copying data, and the need for encapsulation. If a user program
wants to send a packet, a packet descriptor is created to wrap the
payload the user has supplied. To put a header on the packet, it’s
easier (in the BSD case above) to add a new mbuf to the front of the
list which holds the new header, rather than copying the entire packet
to a bigger buffer with room for the new header.

• Similarly, on receive, it’s easier to strip the header from a packet when
de-encapsulating it by simply bumping the m data field.

• The main goal here is to avoid excessive copying of packet data in the
kernel – it’s expensive and inefficient.

21.6 Protocol state processing

Protocol state processing generally also happens in the “bottom half” of the
network stack, even though it is generally independent of the particular NIC
device driver. To understand why, consider TCP.

Example 21.13 (TCP protocol state processing). The code implementing a
single TCP connection (managing a single TCP control block) has to run in
response to many different external events: the user sending a segment, or the
network receiving data on the connection, but also timers expiring, or acknowl-
edgments received by the network, etc. Many of these events don’t involve the
user program at all (such as acknowledging data as soon as it is received).

21.7. TOP-HALF HANDLING 221

What’s more, these events also require TCP to send packets (such as ac-
knowledgments or retransmissions) that the user will never see. These can be
time-critical: TCP estimates the size of its windows based on measuring round-
trip time, which includes the time taken for TCP code to execute when a packet
is received.

For this reason, if TCP is to run in the “top half” (i.e in code executed
by the user program, or in the kernel but invoked by the user program via a
syscall), it has to be scheduled to run at all kinds of events not scheduled by the
user program. Unix-like operating systems avoid this problem by running most
of TCP in the bottom half, as a set of DPCs.

21.7 Top-half handling

Moving up the stack further, we come to the top half: that invoked by user pro-
grams. You’re already familiar with the common “sockets” interface: bind(),
listen(), accept(), connect(), send(), recv(), etc.

Some protocol processing happens in the kernel directly as a result of top
half invocations, but for the most part the top half is concerned with copying
network payload data and metadata (if the user requests it) between queues of
protocol descriptors in the kernel (attached to sockets) and user-space buffers.

21.8 Performance issues

So far, so good. But much time does the OS have to process a packet with a
modern network?

Example 21.14 (10 Gb/s Ethernet performance). At full line rate for a single
10 Gb/s port, we receive about 1GB (gigabyte) per second of packet data. This
corresponds to about 700,000 full-size Ethernet frames per second, rather more
if the frames are smaller.

At 2GHz, this means the OS has to process a packet in under 3000 cycles.
This includes IP and TCP checksums, TCP window calculations and flow con-
trol, and copying the packet to user space. Note that this is a 1500-byte packet,
and we can copy about 4 bytes per cycle through CPU registers. That’s 400
cycles gone right there, and we need some left over for the user program to run.

It gets worse. An L3 cache miss (64-byte lines) is about 200 cycles, which
means we can afford at most 10 or so cache misses per packet. However, on
most machines, DMA transfers from the NIC mean that the processor cache is
cold for the packet.

Furthermore, interrupt latency in a typical PC is 500 cycles, so we’re going
to have trouble reacting fast enough if we take an interrupt on each packet.

This is without considering the cost in latency for kernel entry and exit,
hardware register access (often hundreds of cycles), context switch overhead, the
cost of enqueueing and dispatching a DPC, etc.

We also have to send packets as well as receive them.

This example is a single-port 10Gb/s Ethernet card, but vendors are selling
dual-port cards that run at 200Gb/s today.

Clearly, the network stack design we have described so far will be unable to
handle this traffic.

222 CHAPTER 21. THE NETWORK STACK

Definition 21.15 (Polling). Instead of the conventional interrupt-driven de-
scriptor queues, a network receive queue can serviced by a processor polling it
continuously.

Remarks:

• Polling eliminates the overhead of interrupts, context switches, and
even kernel entry and exit if there is a way to access the queues from
user space.

• This is an old idea, but it has recently come into vogue through
schemes like NetMap [Riz12] and Intel’s Data Plane Development
Kit [dpd18]. There is now a direct polling interface to the network in
Linux.

• This, of course, requires a dedicated processor core to spin forever
waiting for network packets. At low load, it is possible to transition
back to the interrupt-driven model, and resort to polling at high-load
– for example, microkernel-based drivers have done this for some time.

• Even polling, however, is insufficient to handle modern high-speed
networks. For one thing, it is not clear how to scale this to multiple
cores. If the network stack for a given NIC has to go through a
single core, Amdahl’s Law will fundamentally limit the performance
of networked programs.

21.9 Network hardware acceleration

The solution is to put more functionality into hardware. As with much of
networking, there are few agreed-upon terms here but a huge variety of hardware
technology features, so treat this list as a broad overview.

Definition 21.16 (Multiple queues). Modern NICs support multiple send
and receive queues per port. Received packets are demultiplexed in hardware
based on a set of flow tables which determine which descriptor queue to put
each packet onto. Similarly, multiple transmit queues are multiplexed onto the
network physical port.

Remarks:

• The number of queues supported these days ranges from 2 (on cheap
cards), to 64 (on fairly cheap cards), to several thousand (on fancy
hardware).

• There are plenty of criteria for demultiplexing flows. A typical table
maps IP 5-tuples in the packet (sometimes with “wildcard” entries) to
the queues. Other pattern matching is possible, for example the Intel
82599 has a “SYN filter”, which can redirect TCP connection setup
packets to a different queue.

• On transmit, the card typically has a configurable scheduling policy
for picking which non-empty transmit queue to pick a packet from
next.

21.9. NETWORK HARDWARE ACCELERATION 223

Definition 21.17 (Flow steering). Sending received packets to the right receive
queue is only part of the solution. Flow steering not only picks a receive queue
based on the network flow (e.g. TCP connection) that the packet is part of, but
can send an interrupt to a specific core that is waiting for that packet.

Remarks:

• Given the overhead of moving packet data from one core’s cache to
another, it’s quite important in many cases that the first core to find
out about a new packet is the one running the thread that is waiting
to receive it.

Definition 21.18 (Receive-side scaling). Receive-side scaling (RSS) uses a
deterministic hash function on the packet header to balance flows across receive
queues and interrupts.

Remarks:

• Flow steering specifies for each flow (up to the size of the hardware
table. . .) where to send it. RSS doesn’t need a table, but attempts
to balance lots of flows across lots of cores.

• The assumption here is that one core is just as good as any other at
handling a flow, and as long as it’s the same core for all packets in a
flow, cache lines will migrate to that core.

• RSS allows the network stack performance to scale with the num-
ber of cores (assuming it is written correctly . . .) by removing the
multiplexing function – which is a serialization point – from software.

Definition 21.19 (TCP Chimney Offload). TCP chimney offload, some-
times called partial TCP offload, allows the entire state machine for a TCP
connection – once it has been established – to be pushed down the hardware,
which will then handle timers, acknowledgments, retries, etc. and simply de-
liver in-order TCP segments to the kernel.

Remarks:

• Chimney offload is a limited case of a full TCP Offload Engine (TOE),
which moves even more of the TCP stack onto the NIC.

Definition 21.20 (Remote DMA). Remote Direct Memory Access or
RDMA is a completely different set of network protocols and hardware imple-
mentations. RDMA supports Ethernet-style descriptor rings for messages, but
also supports (hence the name) so-called one-sided operations which allow
main memory on a machine to be written and read directly over the network
without involving the host CPU: the NIC receives packets requesting such an
operation, executes it itself, and returns the results.

224 CHAPTER 21. THE NETWORK STACK

Remarks:

• RDMA is a big, and controversial, topic in itself which we do not talk
much about here. It comes from the High-Performance Computing
community, and hence cares much less about security, resource shar-
ing, robustness, integration with existing systems, and performance
for irregular workloads than other networking technologies.

• Nevertheless, it is gaining some traction in rack-scale appliances and
some datacenter-scale applications.

• Most of the complexity of RDMA in practice, and the reason that
it is harder than one might expect to exploit one-sided operations
for performance, is the overhead of setting up the permissions in a
distributed system to allow one machine to safely access another’s
memory.

• Stepping back, an alternative way to view RDMA (and some other of
the more complex network acceleration hardware features) is seeing
the NIC as another, rather limited, processor on the host which has
its own network connections, and can execute very limited forms of
user code (e.g. copy, and atomic memory operations).

21.10 Routing and Forwarding

Typically, the network stack in an OS not only sends and receives packets, but
also forwards them between its network interfaces, much as a router or switch
does.

Definition 21.21 (Forwarding). Packet forwarding is the process of deciding,
based on a packet and the interface on which the packet was received, which
interface to send the packet out on.

Definition 21.22 (Routing). Packet routing is the process of calculating rules
to determine how all possible packets are to be forwarded.

Remarks:

• Forwarding needs to be fast, since any latency adds to the end-to-end
delay of the packet concerned. Consequently, it’s done at the lower
levels of the stack, as close to the hardware as possible (unless the
hardware itself performs forwarding).

• As in a hardware-based router, forwarding is performed according to
a set of tables called the FIB

Definition 21.23 (Forwarding information base). The forwarding informa-
tion base or FIB in a router is the set of data structures which are traversed
for each packet received to determine what actions to perform on it, such as
sending it out on a port or putting it into a memory buffer.

BIBLIOGRAPHY 225

Remarks:

• The FIB is the result of the routing calculation. Routing may be a
purely local computation, but might involved a routing protocol which
itself needs to send and receive network messages to exchange infor-
mation with other routers.

• For this reason, routing in an OS stack usually happens in user space,
either in a routing daemon (sometimes called routed) or by manual
configuration utilities.

Example 21.24. Routing in Linux can be done manually using the ip route

command - type ip route show to show the machine’s routing table. If you
want to run a routing daemon to talk BGP, OSPF, or some other routing pro-
tocol, packages like quagga supply suitable daemons.

Remarks:

• Forwarding a packet found on a receive queue essentially involves read-
ing its header to classify it, then using this information to transfer the
packet to one or more transmit queues to be sent.

• This is essentially the same operation as demultiplexing a received
packet to an appropriate application. For this reason, forwarding code
is generally the same as the lower-level protocol demultiplexing code.

Bibliography

[dpd18] Data plane development kit. https://www.dpdk.org/, November
2018.

[HP88] N. Hutchinson and L. Peterson. Design of the x-kernel. In Sym-
posium Proceedings on Communications Architectures and Protocols,
SIGCOMM ’88, pages 65–75, New York, NY, USA, 1988. ACM.

[Riz12] Luigi Rizzo. Revisiting network i/o apis: The netmap framework. Com-
mun. ACM, 55(3):45–51, March 2012.

https://www.dpdk.org/

Chapter 22

Virtualization

We’ve seen lots of examples of virtualization.
This is another: a virtual machine monitor. A VMM virtualizes an entire

hardware machine.

Remarks:

• We can contrast this OS processes and address spaces. In a sense,
processes and address spaces present user programs with a virtual
machine, but one with a rather different execution environment to raw
hardware: system calls instead of hardware devices, signals instead of
interrupts, etc.

• The term “virtual machine” is also used to describe highly abstract
execution environments, such as the byte code executed by the Java
Virtual Machine. In practice, there is a continuum: what these defi-
nitions all have in common is that they are interpreters.

• The virtual machines we deal with here are at one end of this spectrum:
the execution environment they provide is a simulation of raw machine
hardware. This means that, in most cases, the applications than run
in this environment are, themselves, operating systems.

Definition 22.1 (Guest operating system). A guest operating system is an
OS, plus associated applications, etc. which is running inside a virtual machine.

Definition 22.2 (Hypervisor). Many people draw a distinction between a VMM,
and a hypervisor. A VMM is the functionality required to create the illusion of
real hardware for a single guest OS – that is, it creates a single virtual machine.
A hypervisor is the software than runs on real, physical hardware and supports
multiple virtual machines (each with its associated virtual machine monitor).

Remarks:

• In this distinction (which we’ll use), the hypervisor is, for all intents
and purposes, an operating system itself.

• In fact, an OS can be extended to act as a hypervisor.

226

22.1. THE USES OF VIRTUAL MACHINES 227

Definition 22.3 (Type 1 and type 2 hypervisors). A type 1 hypervisor runs
“on the metal”, that is to say, it functions as an OS kernel. In contrast, a type
2 hypervisor runs on top of, or as a part of, a conventional OS like Linux or
Windows.

Remarks:

• IBM VM/CMS, VMware ESX, and Xen are all type 1 hypervisors.

• VMware Workstation, kvm, and VirtualBox are all type 2 hypervisors.

These days, there is considerable interest in containers, which share some
characteristics with virtual machines, but are actually an example of something
different, sometimes known as OS-level virtualization.

Definition 22.4 (OS-level virtualization). Operating system-level virtual-
ization uses a single OS to provide the illusion of multiple instances or con-
tainers of that OS. Code running in a container have the same system call
interface as the underlying OS, but cannot access any devices.

Remarks:

• System-level virtualization is achieved by limiting the file system names-
pace (by changing the root for each container), and the process names-
pace (so processes can only “see” processes which share their con-
tainer).

• In addition, the OS may provide more sophisticated scheduling and
memory allocation policies to allocate to containers rather than simply
processes.

• Containers are somewhat limited in functionality compared with vir-
tual machines, but are more efficient (at least at present; this claim is
disputed by some researchers who have produced extremely efficient
hypervisors). We don’t cover them further in this course.

22.1 The uses of virtual machines

Virtual machines are an old idea, dating back to IBM’s VM/CMS for Sys-
tem/370 in the 1960s. They were revived about 15 years ago, by systems (and
companies) like VMware, Xen, Hyper-V, kvm, etc. Why would you want one?

Definition 22.5 (Server Consolidation). The industry (marketing) term server
consolidation refers to taking a set of services, each running on a dedicated
server, and consolidating them onto a single (probably larger) physical ma-
chine so that each one runs in a virtual machine.

228 CHAPTER 22. VIRTUALIZATION

Remarks:

• You might ask why these were all running on dedicated machines in
the first place. It’s typically for reasons of security and performance
isolation, and sometimes because the applications can only run one-
per-machine (for a variety of reasons), or can only run on an old
hardware configuration.

• Server consolidation is not the first use for VMMs that many people
think about, but it was this that really drive the market in the early
2000’s.

Definition 22.6 (Backward compatibility). Backward compatibility is the
ability of a new machine to run programs (including operating systems) written
for an old machine.

Example 22.7. Programs written for Windows XP or earlier versions of Win-
dows can still run on Windows 10, but frequently this is achieved by Windows
10 creating a new virtual machine running XP behind the scenes to run the
application.

Definition 22.8 (Cloud computing). Cloud computing is, broadly speaking,
the business of renting computing resources as a utility to paying customers,
rather than selling hardware.

Remarks:

• Hypervisors decouple allocation of resources (VMs), from provisioning
of infrastructure (physical machines)

Example 22.9. Amazon Web Services (AWS) is, probably, the world’s largest
cloud computing business, and it is primarily based on renting computing re-
sources in the form of virtual machines running customers’ code.

Definition 22.10 (Resource isolation). When multiple applications contend for
resources (CPU time, physical memory, etc.), the performance of one or more
may degrade in ways outside the control of the OS. Resource isolation is the
property of an OS guaranteeing to one application that its performance will not
be impacted by others.

Remarks:

• One might think that resource isolation would be a fundamental func-
tion of any OS. Performance isolation can be critical in many enter-
prises (e.g. in cloud computing where real money is at stake).

• In some ways, this is true, but OS mechanism miss the target: Unix,
for example, can sometimes perform resource isolation between pro-
cesses, but the problem is that an “application” is not a process: many
applications are made up of multiple processes, and many processes
are servers shared by multiple applications.

• This problem has been recognized for some time (one comment is
that Unix lacks resource containers [BDM99]; however, it was vir-
tual machine monitors that first provided this (in the form of virtual
machines).

22.2. VIRTUALIZING THE CPU 229

The above uses are the most common, and the most commercially important,
cases where virtual machines are used. There are many more, it turns out:

• OS development and testing

• Recording and replaying the entire state of a machine, for debugging,
auditing, etc.

• Sandboxing for security

• Lock-step replication of arbitrary code

• Speculative execution and rollback.

– and others.

22.2 Virtualizing the CPU

How can we build an efficient virtual machine monitor? Let’s go through all the
resources that need to be virtualized, starting with the CPU.

In a sense, threads or processes virtualize the processor, but only in “user
mode”. To run an OS inside a VM, we need completely virtualize the processor
including kernel mode.

What happens when the processor executing code in a virtual machine ex-
ecutes a privileged instruction? Obviously it can’t execute it “for real”, but it
has to do something.

By default, if the processor tries to execute a privileged operation in user
space, the result is a trap or fault. We can use this to catch the attempt to do
something privileged and simulate its effect.

Definition 22.11 (Trap-and-emulate). Trap-and-emulate is a technique for
virtualization which runs privileged code (such as the guest OS kernel) in non-
privileged mode. Any privileged instruction causes a trap to the VMM, which
then emulates the instruction and returns to the VM guest code.

Remarks:

• This might be enough to fully virtualize the CPU over a conventional
OS (i.e. the host OS is functioning as the hypervisor): we can run
the guest kernel in a regular process in user mode, and use trap-
and-emulate to allow the host OS to emulate the effects of privileged
operations in the VMM.

• This is enough, if the instruction set is strictly virtualizable.

Definition 22.12 (Strict virtualizability). An instruction set architecture (ISA)
is strictly virtualizable iff it can be perfectly emulated over itself, with all non-
privileged instructions executed natively, and all privileged instructions emulated
via traps

230 CHAPTER 22. VIRTUALIZATION

Remarks:

• IBM S/390, DEC Alpha, and IBM PowerPC are all strictly virtualiz-
able ISAs.

• Basic Intel x86 and ARM are not.

What goes wrong? Instructions which do the same thing in kernel and user
space will work, and instructions which can only be executed in kernel mode
will trap and be emulated. The problem is instructions which work in both user
space and kernel mode, but do something different depending on the mode.

Example 22.13. The PUSHF and POPF instructions are among 20 or so in the
x86 ISA that cannot be virtualized. The push and pop the condition code register,
which includes the Includes interrupt enable flag (IF). In kernel mode, this really
can enable and disable interrupts, but not in user space. In this case, the VMM
can’t determine if Guest OS wants interrupts disabled. We can’t cause a trap
on a (privileged) POPF.

What can we do? There are several solutions, including:

1. Full software emulation

2. Paravirtualization

3. Binary rewriting

4. Change the hardware architecture

Definition 22.14 (Software emulation). A software emulator creates a vir-
tual machine by interpreting all kernel-mode code in software.

Remarks:

• This is, unsurprisingly, very slow - particularly for I/O intensive work-
loads.

• It is used by, e.g. SoftPC, DosBox, MAME, and other emulators.

Definition 22.15 (Paravirtualization). . A paravitualized guest OS is one
which has been specially modified to run inside a virtual machine. Critical calls
are replaced with explicit trap instruction to VMM.

Remarks:

• This was used for the first version of Xen, for example [?]: the authors
modified any problematic bits of Linux to explicitly talk to Xen.

• It prevents you from running arbitrary OS binaries in your VMM,
because the VMM simply can’t copy with, e.g., non-virtualizable in-
structions.

• However, it’s fast: almost all commercial VMMs use paravirtualizing
to punch holes in the strict VM/VMM interface for performance rea-
sons, usually in special kernel modules loaded at boot time, or custom
device drivers.

22.3. VIRTUALIZING THE MMU 231

Definition 22.16 (Hypercall). A hypercall is the virtual machine equivalent
of a system call: it explicitly causes the VM to trap into the hypervisor. Par-
avirtualized VMs use this to ask the hypervisor to do something for them; see
below.

Definition 22.17 (Binary rewriting). Virtualization using binary rewriting
scans kernel code for unvirtualizable instructions, and rewrites them – essentially
patching the kernel on the fly.

Remarks:

• This is generally done on demand: all guest kernel instruction pages
are first protected (no-execute). When the VMM takes a trap on
the first instruction fetch to the page, it is scanned for all possible
instructions that might need rewriting. After patching the code, the
page is marked executable and the faulting instruction restarted in
the Guest OS.

• VMware uses this approach for x86 virtualization [BDR+12] quite
effectively.

Definition 22.18 (Virtualization extensions). An instruction set architecture
which cannot be strictly virtualized can be converted into one that is by adding
virtualization extensions. This typically takes the form of a new processor
mode.

Remarks:

• Both x86 and ARM processor architectures now have additional pro-
cessor modes which change the behavior of non-virtualizable instruc-
tions so that they all trap in guest kernel mode.

• x86 actually has two different ways of doing this, depending on whether
you are on an Intel (VT-x) or AMD (AMD-V) processor.

• Hardware support for virtualization often goes beyond merely making
the instruction set virtualizable, as we show see below.

22.3 Virtualizing the MMU

So much for the processor, what about the MMU?
The guest OS kernel is going to create page tables and install them in the

MMU. How do we virtualize this, that is to say, how does the VMM let the
guest OS do this and create a result which is, from the point of view of the
guest kernel, correct, given that we only have one MMU per core? First, we
need some (revised) definitions of addresses.

Definition 22.19 (Virtual address (virtualized)). We define virtual address
now to mean an address in a virtual address space created by the Guest OS.

Definition 22.20 (Physical address (virtualized)). We define physical ad-
dress to mean an address that the guest OS thinks is a physical address. In
practice, this is likely to be in virtual memory as seen by the VMM. We let
the guest OS create arbitrary mappings between virtual and physical addresses
inside its virtual machine.

232 CHAPTER 22. VIRTUALIZATION

Definition 22.21 (Machine address). We define a machine address to be
a “real” physical address, that is, a physical address as seen by the hypervisor.
Guest physical addresses are translated into machine addresses, but the guest
OS is typically unaware of this extra layer of translation.

What’s happening under the cover is that the hypervisor is allocating ma-
chine memory to the VM, and somehow ensuring that the MMU translates a
guest virtual address not to a guest physical address but instead to a machine
address. The efficiency of this is critical for VM performance.

There are basically three ways to achieve this:

1. Direct writable page tables

2. Shadow page tables

3. Hardware-assisted nested paging

Definition 22.22 (Directly writeable page tables). In the first approach, the
guest OS creates the page tables that the hardware uses to directly translate guest
virtual to machine addresses.

Remarks:

• Clearly, this requires paravirtualization: the guest must be modified
to do this.

• The VM has to enforce two conditions on each update to a PTE:

1. The guest may only map pages that it owns

2. Page table pages may only be mapped RO

• The VMM needs to validate all updates to page tables, to ensure
that the guest is not trying to “escape” its VM by installing a rogue
mapping.

• In fact, we need more than that: the VMM needs to check all writes
to any PTE in the system.

• In practice, all page table pages are marked read-only to the guest
kernel, and a hypercall is used to modify them.

• We also need to watch for race conditions: the VMM may have to
“unhook” whole chunks of the page table in order to be able to apply
a set of updates.

• A further hypercall is needed to change the page table base.

• This is naturally expensive (hypercalls can be slow), but many up-
dates to the page tables can be batched up and requested in a single
hypercall, which helps somewhat.

Definition 22.23 (Shadow mage tables). A shadow page table is a page
table maintained by the hypervisor which contains the result of translating virtual
addresses through first the guest OS’s page tables, and then the VMM’s physical-
to-machine page table.

22.3. VIRTUALIZING THE MMU 233

Remarks:

• With shadow page tables, the guest OS sets up its own page tables
but these are never used by the hardware.

• Instead, the VMM maintains shadow page tables which map directly
from guest VAs to machine addresses.

• A new shadow page table is installed whenever the guest OS attempts
to reload the Page Table Base Register (which does cause a trap to
the VMM).

• The VMM must keep the shadow table consistent with both the guest’s
page tables and the hypervisors own physical-to-machine table. It does
this by write-protecting all the guest OS page tables, and trapping
writes to them. When this happens, it applies the update to the
shadow table as well.

• As with direct page tables, this can incur significant overhead, but
many clever optimizations can be applied [BDF+03].

Definition 22.24 (Nested paging). Nested paging, also known as second
level page translation or (on Intel processors) extended page tables, is an
enhancement to the MMU hardware that allows it to translate through two page
tables (guest-virtual to guest-physical, and guest-physical to machine), caching
the end result (guest-virtual to machine) in the TLB.

Remarks:

• Most modern processors which support virtualization offer nested pag-
ing. It can be significantly faster than shadow page tables (but was
not always such).

• Nested paging reduces TLB coverage, the TLB tends to hold both
guest-virtual to machine and host-virtual to machine translations (in
particular, the ones needed for the guest OS page tables).

• TLB miss costs are correspondingly higher, and a TLB fill (and table
talk) can itself miss in the TLB.

• Prior to adding nested paging to x86 processors, neither AMD nor
Intel provided tagged TLBs (with address space identifiers). However,
the context switch overhead became so high (since the TLB had to be
completely flushed even on an intra-guest context switch) that they
finally introduced TLB tags to the architecture.

• Whatever its performance trade offs, nested paging gives hardware
designers a performance target, to is likely to improve in the future.

• Nested paging is also much, much easier to write the VMM for. It is
the main reason that kvm is so small.

234 CHAPTER 22. VIRTUALIZATION

22.4 Virtualizing physical memory

That takes care of the page tables and MMU, but what about allocating memory
to a virtual machine? A VM guest OS is, typically, expecting a fixed area of
physical memory (since that’s what a real computer looks like). It is certainly
not expecting it’s allocation of “physical” memory to change dynamically.

In practice, of course, the VM’s “physical” memory is not actually real, but
“virtual” memory as seen by the underlying VMM. Not only that, as we saw
with virtual memory and processes, the amount of physical memory allocated
to a VM should be able to change over time. This leads to two problems:

1. How can the hypervisor “overcommit” RAM, as an OS does with regular
processes, and obtain the same dramatic increase in efficiency as a result?

2. How can the hypervisor reallocate (machine) memory between VMs with-
out them crashing?

In theory, this is just demand paging: if the hypervisor demand pages guest-
physical memory to disk, it can reallocate machine memory between VMs ex-
actly how an OS reallocates physical memory among processes. The problem
is:

Definition 22.25 (Double Paging). Double paging is the following sequence
of events:

1. The hypervisor pages out a guest physical page P to storage.

2. A guest OS decides to page out the virtual page associated with P , and
touches it.

3. This triggers a page fault in the hypervisor, which pages P back into mem-
ory

4. The page is immediate written out to disk and discarded by the guest OS.

Again, this might be fixable using paravirtualization to move paging code
out of the guest and into the hypervisor, at the cost of considerable complexity
in both the (modified) guest OS and hypervisor. A more elegant solution was
created by VMware: ballooning [Wal02].

Definition 22.26 (Memory ballooning). Memory ballooning is a technique
to allow hypervisors to reallocate machine memory between VMs without in-
curring the overhead of double paging. A loadable device driver (the balloon
driver is installed in the guest OS kernel. This driver is “VM-aware”: it can
make hypercalls, and also receive messages from the underlying VMM.

Ballooning allows memory to be reclaimed from a guest OS thus (this is
called “inflating the balloon”):

1. The VMM asks the balloon driver to return n physical pages from the
guest OS to the hypervisor.

2. The balloon driver uses the guest OS memory allocator to allocate n pages
of kernel memory for its own private use.

22.5. VIRTUALIZING DEVICES 235

3. It then communicates the guest-physical addresses of these frames to the
VMM using a hypercall.

4. The VMM then unmaps these pages from the guest OS kernel, and real-
locates them elsewhere.

Deflating the balloon, i.e. reallocating machine memory back to a VM, is
similar:

1. The VMM maps the newly-allocate machine pages into guest-physical
pages inside the balloon, i.e. page numbers previous handed by the balloon
driver to the VMM.

2. The VMM then notifies the balloon driver that these pages are now re-
turned.

3. The balloon driver returns these guest-physical pages to the rest of the
guest OS, which can now use them for any purpose.

22.5 Virtualizing devices

How do we virtualize devices? That is to say, how do we give each guest OS a
set of devices to access?

Recall that, to software, a device is something that the kernel (or the driver
at least) communicates with using:

• Memory-mapped I/O register access from the CPU

• Interrupts from the device to the CPU

• DMA access by the device to and from main memory

Definition 22.27 (Device model). A device model is a software model of a
device that can be used to emulate a hardware device inside a virtual machine,
using trap-and-emulate to catch CPU writes to device registers.

Remarks:

• Device models emulate real, commonly-found hardware devices, so
that the guest OS is already likely to have a driver for.

• “Interrupts” from the emulated device are simulated using upcalls
from the hypervisor into the guest OS kernel at its interrupt vector.

• There’s a minimal number of device models that a virtual machine
has to support, and it’s not trivial: you need device models for all the
interrupt controllers, memory controllers, PCIe bridges, basic console,
in short, everything the OS needs in order to minimally boot.

• The best hardware devices to emulate in software are not always the
ones you would want “in real life”: a highly sophisticated network
card, for instance, would be difficult and slow to emulate, while a
very basic card (such as the notorious RTL8139, or the much-loved
DECchip 21140 Tulip, emulated in Microsoft Hyper-V) can transfer
data to and from the virtual machine more efficiently.

236 CHAPTER 22. VIRTUALIZATION

The next logical step after emulated “real” devices, is to create fictitious
devices which are only designed to be emulated in a VMM, and write optimized
drivers for them for the most popular OSes.

Definition 22.28 (Paravirtualized devices). A paravirtualized device is a
hardware device design which only exists as an emulated piece of hardware. The
driver of the device in the guest OS is aware that it’s running in a virtual ma-
chine, and can communicate efficiently with the hypervisor using shared memory
buffers and hypercalls instead of trap-and-emulate.

Remarks:

• When using a desktop hypervisor (such as VMware workstation or
VirtualBox), it’s common to install the guest OS (particularly if it’s
an old one like Windows XP), and then subsequently install a set of
“tools” which make its performance improve dramatically. Most of
these “tools” are actually paravirtualized drivers.

• It sounds like a good idea to standardize the interface to paravirtual-
ized drivers to that they can be supported by as many hypervisors and
guest OSes as possible. It’s such a good idea that almost every hy-
pervisor has standardized them, unfortunately in different ways. The
Linux/kvm way of doing this is called virtio.

What about the real device drivers, that talk to the real devices?
One option is to put them in the hypervisor kernel (as in, say, VMware

ESX). This is fast, but requires the hypervisor itself to natively provide drivers
for any device that it supports (much like any other OS).

Alternatively, they can be in a virtual machine, using “device passthrough.”

Definition 22.29 (Device passthrough). Device passthrough maps a real
hardware device into the physical address space of a guest OS, allowing it exclu-
sive access to the hardware device as if it were running on real hardware.

Remarks:

• Device passthrough is rather more difficult than simply mapping the
memory-mapped I/O regions of the device into the virtual machine’s
physical address space. For one thing, you need to make sure that the
physical addresses the driver hands to its DMA engine are translated
into machine addresses before it actually transfers data.

• If you know something about PCI configuration, you’ll also have real-
ized that you need to emulate a whole PCI or PCIe tree just to have
a single device direct-mapped into it.

• Nevertheless, it can be done (in the past, three ETH students did this
for Barrelfish’s VMM as a semester lab project!).

• Modern hardware has made this a lot easier: IOMMUs (mostly) solve
the memory translation problem, and processor support for virtual
machines now includes the ability to deliver selected hardware inter-
rupts directly to the virtual machine.

22.5. VIRTUALIZING DEVICES 237

• Device passthrough doesn’t solve the problem of how to share a real
device among multiple virtualized guest OSes – all it does is allow a
single guest to use the device directly.

Definition 22.30 (Driver domain). A driver domain is a virtual machine
whose purpose is not to run user applications, but instead to provide drivers for
devices mapped into its physical address space using device passthrough.

Remarks:

• The solution to device sharing used by, say, Xen, uses driver domains.
A driver domain runs some version of a popular, well-supported kernel
(such as Linux), which has drivers for all the devices you might need
to support on the real machine.

• The driver domain then runs user-space code which talks to the kernel
device drivers, and re-exports a different interface to these devices
using inter-VM communication channels.

• For example, the driver domain might export a physical disk by run-
ning a file server which other virtual machines might access over “the
network”, or alternatively it could export a block interface to virtual
disk volumes over another channel. In the client virtual machines, this
channel appears as a paravirtualized disk driver.

• Driver domains are great for compatibility, but they are slow for the
same reason that poorly-implemented microkernels can be slow: com-
munication between a guest OS kernel and the physical device involves
a lot of boundary crossings: from the guest kernel to the hypervisor,
into the driver domain kernel, up into user space in the driver domain,
and all the way back again.

The commercial importance of virtual machines is demonstrated by the fact
that, fairly early on, hardware vendors started working on how to make devices
which solved these problems on their own.

Definition 22.31 (Self-virtualizing devices). A self-virtualizing device is a
hardware device which is designed to be shared between different virtual machines
on the same physical machine by having different parts of the device mapped into
each virtual machine’s physical address space

The most common form of self-virtualizing devices today is SR-IOV.

Definition 22.32 (Single-Root I/O Virtualization). Single-Root I/O Vir-
tualization (SR-IOV) is a extension to the PCI Express standard which is
designed to give virtual machines fast, direct, but safe access to real hardware.

An SR-IOV-capable device appears initially as a single PCI device (or “func-
tion”, in PCI jargon), known as the physical function or PF. This device,
however, can be configured to make further emphvirtual functions (VFs) to ap-
pear in the PCI device space: each of this is restricted version of the PF, but
otherwise looks like a complete different, new device.

238 CHAPTER 22. VIRTUALIZATION

Remarks:

• The way this works is that you run a driver for the PF in a driver do-
main. When a new VM is created, the system asks the driver domain
to create a new VF for the VM, and this is then direct-mapped in the
new guest’s physical address space.

• You can have quite a few of these. It’s not unusual for a SR-IOV
device to support to 4096 VF on a single PF (4096 is the architectural
limit). That’s a lot of ethernet cards.

22.6 Virtualizing the network

Networking is a particularly interesting case for virtualization, as it is often the
main interface between the virtual machine and the “real” world.

Definition 22.33 (Soft switch). A soft switch is a network switch imple-
mented inside a hypervisor, which switches network packets sent from paravir-
tualized network interfaces in virtual machines to other VMs and/or one or
more physical network interfaces.

Remarks:

• In effect, a soft switch extends the network deep into the edge system.

• The soft switch can be quite powerful (including switching on IP head-
ers, etc.) but it needs to be fast: implementations like OpenVSwitch
are highly optimized at parsing packet headers.

• There are many different ways of addressing network interfaces inside
virtual machines. The most common is to give each virtual network
interface a new MAC address, and let DHCP do the rest. However, it’s
also common for packets to and from a particular VM to go through
a GRE tunnel, so that if the virtual machine is migrated between
physical machines the network traffic can follow it.

• With SR-IOV-capable network interfaces, this gets a bit complicated.
Many SR-IOV NICs actually have their own hardware switch on board,
which switches packets between all the VFs, the PF, and the physical
network ports.

Bibliography

[BDF+03] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris,
Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen
and the art of virtualization. In Proceedings of the Nineteenth ACM
Symposium on Operating Systems Principles, SOSP ’03, pages 164–
177, New York, NY, USA, 2003. ACM.

[BDM99] Gaurav Banga, Peter Druschel, and Jeffrey C. Mogul. Resource con-
tainers: A new facility for resource management in server systems. In

BIBLIOGRAPHY 239

Proceedings of the Third Symposium on Operating Systems Design
and Implementation, OSDI ’99, pages 45–58, Berkeley, CA, USA,
1999. USENIX Association.

[BDR+12] Edouard Bugnion, Scott Devine, Mendel Rosenblum, Jeremy Sug-
erman, and Edward Y. Wang. Bringing virtualization to the x86
architecture with the original vmware workstation. ACM Trans.
Comput. Syst., 30(4):12:1–12:51, November 2012.

[Wal02] Carl A. Waldspurger. Memory resource management in vmware esx
server. SIGOPS Oper. Syst. Rev., 36(SI):181–194, December 2002.

Chapter 23

Game Theory

“Game theory is a sort of umbrella or ‘unified field’ theory for the rational side
of social science, where ‘social’ is interpreted broadly, to include human as well

as non-human players (computers, animals, plants).”

– Robert Aumann, 1987

23.1 Introduction

In this chapter we look at a distributed system from a different perspective.
Nodes no longer have a common goal, but are selfish. The nodes are not byzan-
tine (actively malicious), instead they try to benefit from a distributed system
– possibly without contributing.

Game theory attempts to mathematically capture behavior in strategic sit-
uations, in which an individual’s success depends on the choices of others.

Remarks:

• Examples of potentially selfish behavior are file sharing or TCP. If a
packet is dropped, then most TCP implementations interpret this as
a congested network and alleviate the problem by reducing the speed
at which packets are sent. What if a selfish TCP implementation will
not reduce its speed, but instead transmit each packet twice?

• We start with one of the most famous games to introduce some defi-
nitions and concepts of game theory.

23.2 Prisoner’s Dilemma

A team of two prisoners (players u and v) are being questioned by the police.
They are both held in solitary confinement and cannot talk to each other. The
prosecutors offer a bargain to each prisoner: snitch on the other prisoner to
reduce your prison sentence.

240

23.2. PRISONER’S DILEMMA 241

u Player u
v Cooperate Defect

Player v
Cooperate

1
1

0
3

Defect
3

0
2

2

Table 23.1: The prisoner’s dilemma game as a matrix.

• If both of them stay silent (cooperate), both will be sentenced to one year
of prison on a lesser charge.

• If both of them testify against their fellow prisoner (defect), the police has
a stronger case and they will be sentenced to two years each.

• If player u defects and the player v cooperates, then player u will go free
(snitching pays off) and player v will have to go to jail for three years; and
vice versa.

• This two player game can be represented as a matrix, see Table 23.1.

Definition 23.2 (game). A game requires at least two rational players, and
each player can choose from at least two options (strategies). In every possible
outcome (strategy profile) each player gets a certain payoff (or cost). The
payoff of a player depends on the strategies of the other players.

Definition 23.3 (social optimum). A strategy profile is called social optimum
(SO) if and only if it minimizes the sum of all costs (or maximizes payoff).

Remarks:

• The social optimum for the prisoner’s dilemma is when both players
cooperate – the corresponding cost sum is 2.

Definition 23.4 (dominant). A strategy is dominant if a player is never worse
off by playing this strategy. A dominant strategy profile is a strategy profile in
which each player plays a dominant strategy.

Remarks:

• The dominant strategy profile in the prisoner’s dilemma is when both
players defect – the corresponding cost sum is 4.

Definition 23.5 (Nash Equilibrium). A Nash Equilibrium (NE) is a strategy
profile in which no player can improve by unilaterally (the strategies of the other
players do not change) changing its strategy.

242 CHAPTER 23. GAME THEORY

Remarks:

• A game can have multiple Nash Equilibria.

• In the prisoner’s dilemma both players defecting is the only Nash
Equilibrium.

• If every player plays a dominant strategy, then this is by definition a
Nash Equilibrium.

• Nash Equilibria and dominant strategy profiles are so called solution
concepts. They are used to analyze a game. There are more solution
concepts, e.g. correlated equilibria or best response.

• The best response is the best strategy given a belief about the strategy
of the other players. In this game the best response to both strategies
of the other player is to defect. If one strategy is the best response to
any strategy of the other players, it is a dominant strategy.

• If two players play the prisoner’s dilemma repeatedly, it is called iter-
ated prisoner’s dilemma. It is a dominant strategy to always defect.
To see this, consider the final game. Defecting is a dominant strat-
egy. Thus, it is fixed what both players do in the last game. Now the
penultimate game is the last game and by induction always defecting
is a dominant strategy.

• Game theorists were invited to come up with a strategy for 200 iter-
ations of the prisoner’s dilemma to compete in a tournament. Each
strategy had to play against every other strategy and accumulated
points throughout the tournament. The simple Tit4Tat strategy (co-
operate in the first game, then copy whatever the other player did in
the previous game) won. One year later, after analyzing each strat-
egy, another tournament (with new strategies) was held. Tit4Tat won
again.

• We now look at a distributed system game.

23.3 Selfish Caching

Computers in a network want to access a file regularly. Each node v ∈ V , with
V being the set of nodes and n = |V |, has a demand dv for the file and wants to
minimize the cost for accessing it. In order to access the file, node v can either
cache the file locally which costs 1 or request the file from another node u which
costs cv←u. If a node does not cache the file, the cost it incurs is the minimal
cost to access the file remotely. Note that if no node caches the file, then every
node incurs cost ∞. There is an example in Figure 23.6.

Remarks:

• We will sometimes depict this game as a graph. The cost cv←u for
node v to access the file from node u is equivalent to the length of the
shortest path times the demand dv.

23.3. SELFISH CACHING 243

• Note that in undirected graphs cu←v > cv←u if and only if du > dv.
We assume that the graphs are undirected for the rest of the chapter.

Figure 23.6: In this example we assume du = dv = dw = 1. Either the nodes u
and w cache the file. Then neither of the three nodes has an incentive to change
its behavior. The costs are 1, 1/2, and 1 for the nodes u, v, w, respectively.
Alternatively, only node v caches the file. Again, neither of the three nodes has
an incentive to change its behavior. The costs are 1/2, 1, and 3/4 for the nodes
u, v, w, respectively.

Algorithm 23.7 Nash Equilibrium for Selfish Caching

1: S = {} //set of nodes that cache the file
2: repeat
3: Let v be a node with maximum demand dv in set V
4: S = S ∪ {v}, V = V \ {v}
5: Remove every node u from V with cu←v ≤ 1
6: until V = {}

Theorem 23.8. Algorithm 23.7 computes a Nash Equilibrium for Selfish Caching.

Proof. Let u be a node that is not caching the file. Then there exists a node v
for which cu←v ≤ 1. Hence, node u has no incentive to cache.

Let u be a node that is caching the file. We now consider any other node v
that is also caching the file. First, we consider the case where v cached the file
before u did. Then it holds that cu←v > 1 by construction.

It could also be that v started caching the file after u did. Then it holds
that du ≥ dv and therefore cu←v ≥ cv←u. Furthermore, we have cv←u > 1 by
construction. Combining these implies that cu←v ≥ cv←u > 1.

In either case, node u has no incentive to stop caching.

Definition 23.9 (Price of Anarchy). Let NE− denote the Nash Equilibrium
with the highest cost (smallest payoff). The Price of Anarchy (PoA) is defined
as

PoA =
cost(NE−)

cost(SO)
.

Definition 23.10 (Optimistic Price of Anarchy). Let NE+ denote the Nash
Equilibrium with the smallest cost (highest payoff). The Optimistic Price of
Anarchy (OPoA) is defined as

OPoA =
cost(NE+)

cost(SO)
.

244 CHAPTER 23. GAME THEORY

0

0

0

0

0

0

0

0

Figure 23.12: A network with a Price of Anarchy of Θ(n).

Remarks:

• The Price of Anarchy measures how much a distributed system de-
grades because of selfish nodes.

• We have PoA ≥ OPoA ≥ 1.

Theorem 23.11. The (Optimistic) Price of Anarchy of Selfish Caching can be
Θ(n).

Proof. Consider a network as depicted in Figure 23.12. Every node v has de-
mand dv = 1. Note that if any node caches the file, no other node has an
incentive to cache the file as well since the cost to access the file is at most 1−ε.
Without loss of generality, let us assume that a node v on the left caches the
file, then it is cheaper for every node on the right to access the file remotely.
Hence, the total cost of this solution is 1 + n

2 · (1 − ε). In the social optimum
one node from the left and one node from the right cache the file. This reduces

the cost to 2. Hence, the Price of Anarchy is
1+ n

2 ·(1−ε)
2 =

ε→0

1
2 + n

4 = Θ(n).

23.4 Braess’ Paradox

Consider the graph in Figure 23.13, it models a road network. Let us assume
that there are 1000 drivers (each in their own car) that want to travel from node
s to node t. Traveling along the road from s to u (or v to t) always takes 1
hour. The travel time from s to v (or u to t) depends on the traffic and increases
by 1/1000 of an hour per car, i.e., when there are 500 cars driving, it takes 30
minutes to use this road.

Lemma 23.14. Adding a super fast road (delay is 0) between u and v can
increase the travel time from s to t.

Proof. Since the drivers act rationally, they want to minimize the travel time.
In the Nash Equilibrium, 500 drivers first drive to node u and then to t and 500
drivers first to node v and then to t. The travel time for each driver is 1 + 500
/ 1000 = 1.5.

23.5. ROCK-PAPER-SCISSORS 245

(a) The road network without the shortcut (b) The road network with the shortcut

Figure 23.13: Braess’ Paradox, where d denotes the number of drivers using an
edge.

To reduce congestion, a super fast road (delay is 0) is built between nodes u
and v. This results in the following Nash Equilibrium: every driver now drives
from s to v to u to t. The total cost is now 2 > 1.5.

Remarks:

• There are physical systems which exhibit similar properties. Some
famous ones employ a spring. YouTube has some fascinating videos
about this. Simply search for “Braess Paradox Spring”.

• We will now look at another famous game that will allow us to deepen
our understanding of game theory.

23.5 Rock-Paper-Scissors

There are two players, u and v. Each player simultaneously chooses one of three
options: rock, paper, or scissors. The rules are simple: paper beats rock, rock
beats scissors, and scissors beat paper. A matrix representation of this game is
in Table 23.15.

u Player u
v Rock Paper Scissors

Player v

Rock
0

0
1

-1
-1

1

Paper
-1

1
0

0
1

-1

Scissors
1

-1
-1

1
0

0

Table 23.15: Rock-Paper-Scissors as a matrix.

246 CHAPTER 23. GAME THEORY

Remarks:

• None of the three strategies is a Nash Equilibrium. Whatever player
u chooses, player v can always switch her strategy such that she wins.

• This is highlighted in the best response concept. The best response
to e.g. scissors is to play rock. The other player switches to paper.
And so on.

• Is this a game without a Nash Equilibrium? John Nash answered this
question in 1950. By choosing each strategy with a certain probability,
we can obtain a so called mixed Nash Equilibrium. Indeed:

Theorem 23.16. Every game has a mixed Nash Equilibrium.

Remarks:

• The Nash Equilibrium of this game is if both players choose each
strategy with probability 1/3. The expected payoff is 0.

• Any strategy (or mix of them) is a best response to a player choosing
each strategy with probability 1/3.

• In a pure Nash Equilibrium, the strategies are chosen deterministi-
cally. Rock-Paper-Scissors does not have a pure Nash Equilibrium.

• Even though every game has a mixed Nash Equilibrium. Sometimes
such an equilibrium is computationally difficult to compute. One
should be cautious about economic assumptions such as “the mar-
ket will always find the equilibrium”.

• Unfortunately, game theory does not always model problems accu-
rately. Many real world problems are too complex to be captured by
a game. And as you may know, humans (not only politicians) are
often not rational.

• In distributed systems, players can be servers, routers, etc. Game
theory can tell us whether systems and protocols are prone to selfish
behavior.

23.6 Mechanism Design

Whereas game theory analyzes existing systems, there is a related area that
focuses on designing games – mechanism design. The task is to create a game
where nodes have an incentive to behave “nicely”.

Definition 23.17 (auction). One good is sold to a group of bidders in an auc-
tion. Each bidder vi has a secret value zi for the good and tells his bid bi to the
auctioneer. The auctioneer sells the good to one bidder for a price p.

Remarks:

• For simplicity, we assume that no two bids are the same, and that
b1 > b2 > b3 > . . .

Definition 23.19 (truthful). An auction is truthful if no player vi can gain
anything by not stating the truth, i.e., bi = zi.

23.6. MECHANISM DESIGN 247

Algorithm 23.18 First Price Auction

1: every bidder vi submits his bid bi
2: the good is allocated to the highest bidder v1 for the price p = b1

Theorem 23.20. A First Price Auction (Algorithm 23.18) is not truthful.

Proof. Consider an auction with two bidders, with bids b1 and b2. By not stating
the truth and decreasing his bid to b1 − ε > b2, player one could pay less and
thus gain more. Thus, the first price auction is not truthful.

Algorithm 23.21 Second Price Auction

1: every bidder vi submits his bid bi
2: the good is allocated to the highest bidder v1 for p = b2

Theorem 23.22. Truthful bidding is a dominant strategy in a Second Price
Auction.

Proof. Let zi be the truthful value of node vi and bi his bid. Let bmax =
maxj 6=i bj is the largest bid from other nodes but vi. The payoff for node vi is
zi − bmax if bi > bmax and 0 else. Let us consider overbidding first, i.e., bi > zi:

• If bmax < zi < bi, then both strategies win and yield the same payoff
(zi − bmax).

• If zi < bi < bmax, then both strategies lose and yield a payoff of 0.

• If zi < bmax < bi, then overbidding wins the auction, but the payoff
(zi − bmax) is negative. Truthful bidding loses and yields a payoff of 0.

Likewise underbidding, i.e. bi < zi:

• If bmax < bi < zi, then both strategies win and yield the same payoff
(zi − bmax).

• If bi < zi < bmax, then both strategies lose and yield a payoff of 0.

• If bi < bmax < zi, then truthful bidding wins and yields a positive payoff
(zi − bmax). Underbidding loses and yields a payoff of 0.

Hence, truthful bidding is a dominant strategy for each node vi.

Remarks:

• Let us use this for Selfish Caching. We need to choose a node that is
the first to cache the file. But how? By holding an auction. Every
node says for which price it is willing to cache the file. We pay the
node with the lowest offer and pay it the second lowest offer to ensure
truthful offers.

• Since a mechanism designer can manipulate incentives, she can im-
plement a strategy profile by making all the strategies in this profile
dominant.

248 CHAPTER 23. GAME THEORY

Theorem 23.23. Any Nash Equilibrium of Selfish Caching can be implemented
for free.

Proof. If the mechanism designer wants the nodes from the caching set S of the
Nash Equilibrium to cache, then she can offer the following deal to every node
not in S: “If any node from set S does not cache the file, then I will ensure
a positive payoff for you.” Thus, all nodes not in S prefer not to cache since
this is a dominant strategy for them. Consider now a node v ∈ S. Since S is a
Nash Equilibrium, node v incurs cost of at least 1 if it does not cache the file.
For nodes that incur cost of exactly 1, the mechanism designer can even issue a
penalty if the node does not cache the file. Thus, every node v ∈ S caches the
file.

Remarks:

• Mechanism design assumes that the players act rationally and want to
maximize their payoff. In real-world distributed systems some players
may be not selfish, but actively malicious (byzantine).

• What about P2P file sharing? To increase the overall experience,
BitTorrent suggests that peers offer better upload speed to peers who
upload more. This idea can be exploited. By always claiming to have
nothing to trade yet, the BitThief client downloads without uploading.
In addition to that, it connects to more peers than the standard client
to increase its download speed.

• Many techniques have been proposed to limit such free riding behavior,
e.g., tit-for-tat trading: I will only share something with you if you
share something with me. To solve the bootstrap problem (“I don’t
have anything yet”), nodes receive files or pieces of files whose hash
match their own hash for free. One can also imagine indirect trading.
Peer u uploads to peer v, who uploads to peer w, who uploads to peer
u. Finally, one could imagine using virtual currencies or a reputation
system (a history of who uploaded what). Reputation systems suffer
from collusion and Sybil attacks. If one node pretends to be many
nodes who rate each other well, it will have a good reputation.

Chapter Notes

Game theory was started by a proof for mixed-strategy equilibria in two-person
zero-sum games by John von Neumann [Neu28]. Later, von Neumann and Mor-
genstern introduced game theory to a wider audience [NM44]. In 1950 John
Nash proved that every game has a mixed Nash Equilibrium [Nas50]. The Pris-
oner’s Dilemma was first formalized by Flood and Dresher [Flo52]. The iterated
prisoner’s dilemma tournament was organized by Robert Axelrod [AH81]. The
Price of Anarchy definition is from Koutsoupias and Papadimitriou [KP99].
This allowed the creation of the Selfish Caching Game [CCW+04], which we
used as a running example in this chapter. Braess’ paradox was discovered by
Dietrich Braess in 1968 [Bra68]. A generalized version of the second-price auc-
tion is the VCG auction, named after three successive papers from first Vickrey,

BIBLIOGRAPHY 249

then Clarke, and finally Groves [Vic61, Cla71, Gro73]. One popular exam-
ple of selfishness in practice is BitThief – a BitTorrent client that successfully
downloads without uploading [LMSW06]. Using game theory economists try to
understand markets and predict crashes. Apart from John Nash, the Sveriges
Riksbank Prize (Nobel Prize) in Economics has been awarded many times to
game theorists. For example in 2007 Hurwicz, Maskin, and Myerson received the
prize for “for having laid the foundations of mechanism design theory”. There
is a considerable amount of work on mixed adversarial models with byzantine,
altruistic, and rational (“BAR”) players, e.g., [AAC+05, ADGH06, MSW06].
Daskalakis et al. [DGP09] showed that computing a Nash Equilibrium may not
be trivial.

This chapter was written in collaboration with Philipp Brandes.

Bibliography

[AAC+05] Amitanand S. Aiyer, Lorenzo Alvisi, Allen Clement, Michael Dahlin,
Jean-Philippe Martin, and Carl Porth. BAR fault tolerance for
cooperative services. In Proceedings of the 20th ACM Symposium
on Operating Systems Principles 2005, SOSP 2005, Brighton, UK,
October 23-26, 2005, pages 45–58, 2005.

[ADGH06] Ittai Abraham, Danny Dolev, Rica Gonen, and Joseph Y. Halpern.
Distributed computing meets game theory: robust mechanisms for
rational secret sharing and multiparty computation. In Proceedings
of the Twenty-Fifth Annual ACM Symposium on Principles of Dis-
tributed Computing, PODC 2006, Denver, CO, USA, July 23-26,
2006, pages 53–62, 2006.

[AH81] Robert Axelrod and William Donald Hamilton. The evolution of
cooperation. Science, 211(4489):1390–1396, 1981.

[Bra68] Dietrich Braess. Über ein paradoxon aus der verkehrsplanung. Un-
ternehmensforschung, 12(1):258–268, 1968.

[CCW+04] Byung-Gon Chun, Kamalika Chaudhuri, Hoeteck Wee, Marco Bar-
reno, Christos H Papadimitriou, and John Kubiatowicz. Selfish
caching in distributed systems: a game-theoretic analysis. In Pro-
ceedings of the twenty-third annual ACM symposium on Principles
of distributed computing, pages 21–30. ACM, 2004.

[Cla71] Edward H Clarke. Multipart pricing of public goods. Public choice,
11(1):17–33, 1971.

[DGP09] Constantinos Daskalakis, Paul W. Goldberg, and Christos H. Pa-
padimitriou. The complexity of computing a nash equilibrium.
SIAM J. Comput., 39(1):195–259, 2009.

[Flo52] Merrill M Flood. Some experimental games. Management Science,
5(1):5–26, 1952.

[Gro73] Theodore Groves. Incentives in teams. Econometrica: Journal of
the Econometric Society, pages 617–631, 1973.

250 CHAPTER 23. GAME THEORY

[KP99] Elias Koutsoupias and Christos Papadimitriou. Worst-case equilib-
ria. In STACS 99, pages 404–413. Springer, 1999.

[LMSW06] Thomas Locher, Patrick Moor, Stefan Schmid, and Roger Watten-
hofer. Free Riding in BitTorrent is Cheap. In 5th Workshop on Hot
Topics in Networks (HotNets), Irvine, California, USA, November
2006.

[MSW06] Thomas Moscibroda, Stefan Schmid, and Roger Wattenhofer. When
selfish meets evil: byzantine players in a virus inoculation game. In
Proceedings of the Twenty-Fifth Annual ACM Symposium on Prin-
ciples of Distributed Computing, PODC 2006, Denver, CO, USA,
July 23-26, 2006, pages 35–44, 2006.

[Nas50] John F. Nash. Equilibrium points in n-person games. Proc. Nat.
Acad. Sci. USA, 36(1):48–49, 1950.

[Neu28] John von Neumann. Zur Theorie der Gesellschaftsspiele. Mathema-
tische Annalen, 100(1):295–320, 1928.

[NM44] John von Neumann and Oskar Morgenstern. Theory of games and
economic behavior. Princeton university press, 1944.

[Vic61] William Vickrey. Counterspeculation, auctions, and competitive
sealed tenders. The Journal of finance, 16(1):8–37, 1961.

Chapter 24

Distributed Storage

How do you store 1M movies, each with a size of about 1GB, on 1M nodes, each
equipped with a 1TB disk? Simply store the movies on the nodes, arbitrarily,
and memorize (with a global index) which movie is stored on which node. What
if the set of movies or nodes changes over time, and you do not want to change
your global index too often?

24.1 Consistent Hashing

Several variants of hashing will do the job, e.g. consistent hashing:

Algorithm 24.1 Consistent Hashing

1: Hash the unique file name of each movie x with a known set of hash functions
hi(x)→ [0, 1), for i = 1, . . . , k

2: Hash the unique name (e.g., IP address and port number) of each node with
the same hash function h(u)→ [0, 1)

3: Store a copy of movie x on node u if hi(x) ≈ h(u), for any i. More formally,
store movie x on node u if

|hi(x)− h(u)| = min
v
{|hi(x)− h(v)|}, for any i

Theorem 24.2 (Consistent Hashing). In expectation, each node in Algorithm
24.1 stores km/n movies, where k is the number of hash functions, m the number
of different movies and n the number of nodes.

Proof. For a specific movie (out of m) and a specific hash function (out of k),
all n nodes have the same probability 1/n to hash closest to the movie hash.
By linearity of expectation, each node stores km/n movies in expectation if we
also count duplicates of movies on a node.

251

252 CHAPTER 24. DISTRIBUTED STORAGE

Remarks:

• Let us do a back-of-the-envelope calculation. We have m = 1M
movies, n = 1M nodes, each node has storage for 1TB/1GB = 1K
movies, i.e., we use k = 1K hash functions. Theorem 24.2 shows each
node stores about 1K movies.

• Using the Chernoff bound below with µ = km/n = 1K, the probability
that a node uses 10% more memory than expected is less than 1%.

Facts 24.3. A version of a Chernoff bound states the following:
Let x1, . . . , xn be independent Bernoulli-distributed random variables with
Pr[xi = 1] = pi and Pr[xi = 0] = 1 − pi = qi, then for X :=

∑n
i=1 xi and

µ := E[X] =
∑n
i=1 pi the following holds:

for any δ > 0: Pr[X ≥ (1 + δ)µ] <

(
eδ

(1 + δ)(1+δ)

)µ

Remarks:

• Instead of storing movies directly on nodes as in Algorithm 24.1, we
can also store the movies on any nodes we like. The nodes of Algorithm
24.1 then simply store forward pointers to the actual movie locations.

• For better load balancing, we might also hash nodes multiple times.

• In this chapter we want to push unreliability to the extreme. What if
the nodes are so unreliable that on average a node is only available for
1 hour? In other words, nodes exhibit a high churn, they constantly
join and leave the distributed system.

• With such a high churn, hundreds or thousands of nodes will change
every second. No single node can have an accurate picture of what
other nodes are currently in the system. This is remarkably different
to classic distributed systems, where a single unavailable node may
already be a minor disaster: all the other nodes have to get a consistent
view (Definition 25.5) of the system again. In high churn systems it
is impossible to have a consistent view at any time.

• Instead, each node will just know about a small subset of 100 or less
other nodes (“neighbors”). This way, nodes can withstand high churn
situations.

• On the downside, nodes will not directly know which node is responsi-
ble for what movie. Instead, a node searching for a movie might have
to ask a neighbor node, which in turn will recursively ask another
neighbor node, until the correct node storing the movie (or a forward
pointer to the movie) is found. The nodes of our distributed storage
system form a virtual network, also called an overlay network.

24.2. HYPERCUBIC NETWORKS 253

24.2 Hypercubic Networks

In this section we present a few overlay topologies of general interest.

Definition 24.4 (Topology Properties). Our virtual network should have the
following properties:

• The network should be (somewhat) homogeneous: no node should play a
dominant role, no node should be a single point of failure.

• The nodes should have IDs, and the IDs should span the universe [0, 1),
such that we can store data with hashing, as in Algorithm 24.1.

• Every node should have a small degree, if possible polylogarithmic in n,
the number of nodes. This will allow every node to maintain a persistent
connection with each neighbor, which will help us to deal with churn.

• The network should have a small diameter, and routing should be easy.
If a node does not have the information about a data item, then it should
know which neighbor to ask. Within a few (polylogarithmic in n) hops,
one should find the node that has the correct information.

2

1

4

Figure 24.5: The structure of a fat tree.

Remarks:

• Some basic network topologies used in practice are trees, rings, grids
or tori. Many other suggested networks are simply combinations or
derivatives of these.

• The advantage of trees is that the routing is very easy: for every
source-destination pair there is only one path. However, since the
root of a tree is a bottleneck, trees are not homogeneous. Instead,
so-called fat trees should be used. Fat trees have the property that
every edge connecting a node v to its parent u has a capacity that is
proportional to the number of leaves of the subtree rooted at v. See
Figure 24.5 for a picture.

254 CHAPTER 24. DISTRIBUTED STORAGE

• Fat trees belong to a family of networks that require edges of non-
uniform capacity to be efficient. Networks with edges of uniform ca-
pacity are easier to build. This is usually the case for grids and tori.
Unless explicitly mentioned, we will treat all edges in the following to
be of capacity 1.

Definition 24.6 (Torus, Mesh). Let m, d ∈ N. The (m, d)-mesh M(m, d) is a
graph with node set V = [m]d and edge set

E =

{
{(a1, . . . , ad), (b1, . . . , bd)} | ai, bi ∈ [m],

d∑
i=1

|ai − bi| = 1

}
,

where [m] means the set {0, . . . ,m − 1}. The (m, d)-torus T (m, d) is a graph
that consists of an (m, d)-mesh and additionally wrap-around edges from nodes
(a1, . . . , ai−1,m − 1, ai+1, . . . , ad) to nodes (a1, . . . , ai−1, 0, ai+1, . . . , ad) for all
i ∈ {1, . . . , d} and all aj ∈ [m] with j 6= i. In other words, we take the expression
ai − bi in the sum modulo m prior to computing the absolute value. M(m, 1) is
also called a path, T (m, 1) a cycle, and M(2, d) = T (2, d) a d-dimensional
hypercube. Figure 24.7 presents a linear array, a torus, and a hypercube.

011010

110

100

000 001

101

111

M(2,3)

0 1 2

M(,1)m

−1m

01

02

00 10

11

12

03

20

21

22

13

30

31

32

23 33

(4,2)T

Figure 24.7: The structure of M(m, 1), T (4, 2), and M(2, 3).

Remarks:

• Routing on a mesh, torus, or hypercube is trivial. On a d-dimensional
hypercube, to get from a source bitstring s to a target bitstring t one
only needs to fix each “wrong” bit, one at a time; in other words, if
the source and the target differ by k bits, there are k! routes with k
hops.

• As required by Definition 24.4, the d-bit IDs of the nodes need to be
mapped to the universe [0, 1). One way to do this is by interpreting
an ID as the binary representation of the fractional part of a decimal
number. For example, the ID 101 is mapped to 0.1012 which has a
decimal value of 0 · 20 + 1 · 2−1 + 0 · 2−2 + 1 · 2−3 = 5

8 .

• The Chord architecture is a close relative of the hypercube, basically
a less rigid hypercube. The hypercube connects every node with an
ID in [0, 1) with every node in exactly distance 2−i, i = 1, 2, . . . , d in
[0, 1). Chord instead connect nodes with approximately distance 2−i.

24.2. HYPERCUBIC NETWORKS 255

• The hypercube has many derivatives, the so-called hypercubic net-
works. Among these are the butterfly, cube-connected-cycles, shuffle-
exchange, and de Bruijn graph. We start with the butterfly, which is
basically a “rolled out” hypercube.

Definition 24.8 (Butterfly). Let d ∈ N. The d-dimensional butterfly BF (d)
is a graph with node set V = [d+ 1]× [2]d and an edge set E = E1 ∪ E2 with

E1 = {{(i, α), (i+ 1, α)} | i ∈ [d], α ∈ [2]d}

and

E2 = {{(i, α), (i+ 1, β)} | i ∈ [d], α, β ∈ [2]d, α⊕ β = 2i}.

A node set {(i, α) | α ∈ [2]d} is said to form level i of the butterfly. The d-
dimensional wrap-around butterfly W-BF(d) is defined by taking the BF (d)
and having (d, α) = (0, α) for all α ∈ [2]d.

Remarks:

• Figure 24.9 shows the 3-dimensional butterfly BF (3). The BF (d) has
(d+ 1)2d nodes, 2d · 2d edges and degree 4. It is not difficult to check
that combining the node sets {(i, α) | i ∈ [d]} for all α ∈ [2]d into a
single node results in the hypercube.

• Butterflies have the advantage of a constant node degree over hyper-
cubes, whereas hypercubes feature more fault-tolerant routing.

• You may have seen butterfly-like structures before, e.g. sorting net-
works, communication switches, data center networks, fast fourier
transform (FFT). The Benes network (telecommunication) is noth-
ing but two back-to-back butterflies. The Clos network (data centers)
is a close relative to Butterflies too. Actually, merging the 2i nodes on
level i that share the first d − i bits into a single node, the Butterfly
becomes a fat tree. Every year there are new applications for which
hypercubic networks are the perfect solution!

• Next we define the cube-connected-cycles network. It only has a de-
gree of 3 and it results from the hypercube by replacing the corners
by cycles.

Definition 24.10 (Cube-Connected-Cycles). Let d ∈ N. The cube-
connected-cycles network CCC(d) is a graph with node set V = {(a, p) | a ∈
[2]d, p ∈ [d]} and edge set

E =
{
{(a, p), (a, (p+ 1) mod d)} | a ∈ [2]d, p ∈ [d]

}
∪
{
{(a, p), (b, p)} | a, b ∈ [2]d, p ∈ [d], |a− b| = 2p

}

256 CHAPTER 24. DISTRIBUTED STORAGE

000 100010 110001 101011 111

1

2

0

3

Figure 24.9: The structure of BF(3).

000 001 010 011 100 101 110 111

2

1

0

(110,1)

(011,2)

(101,1)

(001,2)

(001,1)

(001,0)(000,0)

(100,0)

(100,1)

(100,2)

(000,2)

(000,1)

(010,1)

(010,0)

(010,2)

(110,2)

(110,0) (111,0)

(111,1)

(111,2)

(011,1)

(011,0)

(101,2)

(101,0)

Figure 24.11: The structure of CCC(3).

Remarks:

• Two possible representations of a CCC can be found in Figure 24.11.

• The shuffle-exchange is yet another way of transforming the hypercu-
bic interconnection structure into a constant degree network.

Definition 24.12 (Shuffle-Exchange). Let d ∈ N. The d-dimensional
shuffle-exchange SE(d) is defined as an undirected graph with node set
V = [2]d and an edge set E = E1 ∪ E2 with

E1 = {{(a1, . . . , ad), (a1, . . . , ād)} | (a1, . . . , ad) ∈ [2]d, ād = 1− ad}

and
E2 = {{(a1, . . . , ad), (ad, a1, . . . , ad−1)} | (a1, . . . , ad) ∈ [2]d} .

Figure 24.13 shows the 3- and 4-dimensional shuffle-exchange graph.

Definition 24.14 (DeBruijn). The b-ary DeBruijn graph of dimension
d DB(b, d) is an undirected graph G = (V,E) with node set V = {v ∈ [b]d}

24.2. HYPERCUBIC NETWORKS 257

000 001

100

010

101

011

110 111 0000 0001

0010 0011

0100 0101

0110 0111

1000 1001

1010 1011

1100 1101

1110 1111

SE(3) SE(4)

E

E

1

2

Figure 24.13: The structure of SE(3) and SE(4).

and edge set E that contains all edges {v, w} with the property that w ∈
{(x, v1, . . . , vd−1) : x ∈ [b]}, where v = (v1, . . . , vd).

010

100

001

110

1111100

01

000
101

011

10

Figure 24.15: The structure of DB(2, 2) and DB(2, 3).

Remarks:

• Two examples of a DeBruijn graph can be found in Figure 24.15.

• There are some data structures which also qualify as hypercubic net-
works. An example of a hypercubic network is the skip list, the bal-
anced binary search tree for the lazy programmer:

Definition 24.16 (Skip List). The skip list is an ordinary ordered linked list
of objects, augmented with additional forward links. The ordinary linked list is
the level 0 of the skip list. In addition, every object is promoted to level 1 with
probability 1/2. As for level 0, all level 1 objects are connected by a linked list.
In general, every object on level i is promoted to the next level with probability
1/2. A special start-object points to the smallest/first object on each level.

Remarks:

• Search, insert, and delete can be implemented in O(log n) expected
time in a skip list, simply by jumping from higher levels to lower ones
when overshooting the searched position. Also, the amortized memory
cost of each object is constant, as on average an object only has two
forward links.

• The randomization can easily be discarded, by deterministically pro-
moting a constant fraction of objects of level i to level i + 1, for all

258 CHAPTER 24. DISTRIBUTED STORAGE

i. When inserting or deleting, object o simply checks whether its left
and right level i neighbors are being promoted to level i+ 1. If none
of them is, promote object o itself. Essentially we establish a maximal
independent set (MIS) on each level, hence at least every third and at
most every second object is promoted.

• There are obvious variants of the skip list, e.g., the skip graph. Instead
of promoting only half of the nodes to the next level, we always pro-
mote all the nodes, similarly to a balanced binary tree: All nodes are
part of the root level of the binary tree. Half the nodes are promoted
left, and half the nodes are promoted right, on each level. Hence on
level i we have have 2i lists (or, if we connect the last element again
with the first: rings) of about n/2i objects. The skip graph features
all the properties of Definition 24.4.

• More generally, how are degree and diameter of Definition 24.4 re-
lated? The following theorem gives a general lower bound.

Theorem 24.17. Every graph of maximum degree d > 2 and size n must have
a diameter of at least d(log n)/(log(d− 1))e − 2.

Proof. Suppose we have a graph G = (V,E) of maximum degree d and size
n. Start from any node v ∈ V . In a first step at most d other nodes can be
reached. In two steps at most d · (d−1) additional nodes can be reached. Thus,
in general, in at most r steps at most

1 +

r−1∑
i=0

d · (d− 1)i = 1 + d · (d− 1)r − 1

(d− 1)− 1
≤ d · (d− 1)r

d− 2

nodes (including v) can be reached. This has to be at least n to ensure that v
can reach all other nodes in V within r steps. Hence,

(d− 1)r ≥ (d− 2) · n
d

⇔ r ≥ logd−1((d− 2) · n/d) .

Since logd−1((d − 2)/d) > −2 for all d > 2, this is true only if r ≥
d(log n)/(log(d− 1))e − 2.

Remarks:

• In other words, constant-degree hypercubic networks feature an
asymptotically optimal diameter D.

• Other hypercubic graphs manage to have a different tradeoff between
node degree d and diameter D. The pancake graph, for instance, min-
imizes the maximum of these with max(d,D) = Θ(log n/ log log n).
The ID of a node u in the pancake graph of dimension d is an ar-
bitrary permutation of the numbers 1, 2, . . . , d. Two nodes u, v are
connected by an edge if one can get the ID of node v by taking the
ID of node u, and reversing (flipping) the first k (for k = 1, . . . , d)
numbers of u’s ID. For example, in dimension d = 4, nodes u = 2314
and v = 1324 are neighbors.

24.3. DHT & CHURN 259

• There are a few other interesting graph classes which are not hyper-
cubic networks, but nevertheless seem to relate to the properties of
Definition 24.4. Small-world graphs (a popular representations for
social networks) also have small diameter, however, in contrast to hy-
percubic networks, they are not homogeneous and feature nodes with
large degrees.

• Expander graphs (an expander graph is a sparse graph which has
good connectivity properties, that is, from every not too large subset
of nodes you are connected to an even larger set of nodes) are homo-
geneous, have a low degree and small diameter. However, expanders
are often not routable.

24.3 DHT & Churn

Definition 24.18 (Distributed Hash Table (DHT)). A distributed hash table
(DHT) is a distributed data structure that implements a distributed storage. A
DHT should support at least (i) a search (for a key) and (ii) an insert (key,
object) operation, possibly also (iii) a delete (key) operation.

Remarks:

• A DHT has many applications beyond storing movies, e.g., the Inter-
net domain name system (DNS) is essentially a DHT.

• A DHT can be implemented as a hypercubic overlay network with
nodes having identifiers such that they span the ID space [0, 1).

• A hypercube can directly be used for a DHT. Just use a globally
known set of hash functions hi, mapping movies to bit strings with d
bits.

• Other hypercubic structures may be a bit more intricate when using
it as a DHT: The butterfly network, for instance, may directly use the
d+ 1 layers for replication, i.e., all the d+ 1 nodes are responsible for
the same ID.

• Other hypercubic networks, e.g. the pancake graph, might need a bit
of twisting to find appropriate IDs.

• We assume that a joining node knows a node which already belongs to
the system. This is known as the bootstrap problem. Typical solutions
are: If a node has been connected with the DHT previously, just try
some of these previous nodes. Or the node may ask some authority
for a list of IP addresses (and ports) of nodes that are regularly part
of the DHT.

• Many DHTs in the literature are analyzed against an adversary that
can crash a fraction of random nodes. After crashing a few nodes the
system is given sufficient time to recover again. However, this seems
unrealistic. The scheme sketched in this section significantly differs
from this in two major aspects.

260 CHAPTER 24. DISTRIBUTED STORAGE

• First, we assume that joins and leaves occur in a worst-case manner.
We think of an adversary that can remove and add a bounded number
of nodes; the adversary can choose which nodes to crash and how nodes
join.

• Second, the adversary does not have to wait until the system is recov-
ered before it crashes the next batch of nodes. Instead, the adversary
can constantly crash nodes, while the system is trying to stay alive.
Indeed, the system is never fully repaired but always fully functional.
In particular, the system is resilient against an adversary that contin-
uously attacks the “weakest part” of the system. The adversary could
for example insert a crawler into the DHT, learn the topology of the
system, and then repeatedly crash selected nodes, in an attempt to
partition the DHT. The system counters such an adversary by con-
tinuously moving the remaining or newly joining nodes towards the
areas under attack.

• Clearly, we cannot allow the adversary to have unbounded capabili-
ties. In particular, in any constant time interval, the adversary can
at most add and/or remove O(log n) nodes, n being the total num-
ber of nodes currently in the system. This model covers an adversary
which repeatedly takes down nodes by a distributed denial of service
attack, however only a logarithmic number of nodes at each point in
time. The algorithm relies on messages being delivered timely, in at
most constant time between any pair of operational nodes, i.e., the
synchronous model. Using the trivial synchronizer this is not a prob-
lem. We only need bounded message delays in order to have a notion
of time which is needed for the adversarial model. The duration of
a round is then proportional to the propagation delay of the slowest
message.

Algorithm 24.19 DHT

1: Given: a globally known set of hash functions hi, and a hypercube (or any
other hypercubic network)

2: Each hypercube virtual node (“hypernode”) consists of Θ(log n) nodes.
3: Nodes have connections to all other nodes of their hypernode and to nodes

of their neighboring hypernodes.
4: Because of churn, some of the nodes have to change to another hypernode

such that up to constant factors, all hypernodes own the same number of
nodes at all times.

5: If the total number of nodes n grows or shrinks above or below a certain
threshold, the dimension of the hypercube is increased or decreased by one,
respectively.

Remarks:

• Having a logarithmic number of hypercube neighbors, each with a
logarithmic number of nodes, means that each node has Θ(log2 n)
neighbors. However, with some additional bells and whistles one can
achieve Θ(log n) neighbor nodes.

24.3. DHT & CHURN 261

• The balancing of nodes among the hypernodes can be seen as a dy-
namic token distribution problem on the hypercube. Each hypernode
has a certain number of tokens, the goal is to distribute the tokens
along the edges of the graph such that all hypernodes end up with the
same or almost the same number of tokens. While tokens are moved
around, an adversary constantly inserts and deletes tokens. See also
Figure 24.20.

Figure 24.20: A simulated 2-dimensional hypercube with four hypernodes, each
consisting of several nodes. Also, all the nodes are either in the core or in
the periphery of a node. All nodes within the same hypernode are completely
connected to each other, and additionally, all nodes of a hypernode are connected
to the core nodes of the neighboring nodes. Only the core nodes store data items,
while the peripheral nodes move between the nodes to balance biased adversarial
churn.

• In summary, the storage system builds on two basic components: (i)
an algorithm which performs the described dynamic token distribution
and (ii) an information aggregation algorithm which is used to esti-
mate the number of nodes in the system and to adapt the dimension
of the hypercube accordingly:

Theorem 24.21 (DHT with Churn). We have a fully scalable, efficient distrib-
uted storage system which tolerates O(log n) worst-case joins and/or crashes per
constant time interval. As in other storage systems, nodes have O(log n) overlay
neighbors, and the usual operations (e.g., search, insert) take time O(log n).

Remarks:

• Indeed, handling churn is only a minimal requirement to make a dis-
tributed storage system work. Advanced studies proposed more elab-
orate architectures which can also handle other security issues, e.g.,
privacy or Byzantine attacks.

Chapter Notes

The ideas behind distributed storage were laid during the peer-to-peer (P2P)
file sharing hype around the year 2000, so a lot of the seminal research

262 CHAPTER 24. DISTRIBUTED STORAGE

in this area is labeled P2P. The paper of Plaxton, Rajaraman, and Richa
[PRR97] laid out a blueprint for many so-called structured P2P architec-
ture proposals, such as Chord [SMK+01], CAN [RFH+01], Pastry [RD01],
Viceroy [MNR02], Kademlia [MM02], Koorde [KK03], SkipGraph [AS03], Skip-
Net [HJS+03], or Tapestry [ZHS+04]. Also the paper of Plaxton et. al. was
standing on the shoulders of giants. Some of its eminent precursors are: lin-
ear and consistent hashing [KLL+97], locating shared objects [AP90, AP91],
compact routing [SK85, PU88], and even earlier: hypercubic networks, e.g.
[AJ75, Wit81, GS81, BA84].

Furthermore, the techniques in use for prefix-based overlay structures are
related to a proposal called LAND, a locality-aware distributed hash table pro-
posed by Abraham et al. [AMD04].

More recently, a lot of P2P research focussed on security aspects, describing
for instance attacks [LMSW06, SENB07, Lar07], and provable countermeasures
[KSW05, AS09, BSS09]. Another topic currently garnering interest is using
P2P to help distribute live streams of video content on a large scale [LMSW07].
There are several recommendable introductory books on P2P computing, e.g.
[SW05, SG05, MS07, KW08, BYL08].

Some of the figures in this chapter have been provided by Christian Schei-
deler.

Bibliography

[AJ75] George A. Anderson and E. Douglas Jensen. Computer Interconnec-
tion Structures: Taxonomy, Characteristics, and Examples. ACM
Comput. Surv., 7(4):197–213, December 1975.

[AMD04] Ittai Abraham, Dahlia Malkhi, and Oren Dobzinski. LAND: stretch
(1 + epsilon) locality-aware networks for DHTs. In Proceedings of
the fifteenth annual ACM-SIAM symposium on Discrete algorithms,
SODA ’04, pages 550–559, Philadelphia, PA, USA, 2004. Society for
Industrial and Applied Mathematics.

[AP90] Baruch Awerbuch and David Peleg. Efficient Distributed Construc-
tion of Sparse Covers. Technical report, The Weizmann Institute of
Science, 1990.

[AP91] Baruch Awerbuch and David Peleg. Concurrent Online Tracking of
Mobile Users. In SIGCOMM, pages 221–233, 1991.

[AS03] James Aspnes and Gauri Shah. Skip Graphs. In SODA, pages 384–
393. ACM/SIAM, 2003.

[AS09] Baruch Awerbuch and Christian Scheideler. Towards a Scalable and
Robust DHT. Theory Comput. Syst., 45(2):234–260, 2009.

[BA84] L. N. Bhuyan and D. P. Agrawal. Generalized Hypercube and Hy-
perbus Structures for a Computer Network. IEEE Trans. Comput.,
33(4):323–333, April 1984.

[BSS09] Matthias Baumgart, Christian Scheideler, and Stefan Schmid. A
DoS-resilient information system for dynamic data management. In

BIBLIOGRAPHY 263

Proceedings of the twenty-first annual symposium on Parallelism in
algorithms and architectures, SPAA ’09, pages 300–309, New York,
NY, USA, 2009. ACM.

[BYL08] John Buford, Heather Yu, and Eng Keong Lua. P2P Networking
and Applications. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2008.

[GS81] J.R. Goodman and C.H. Sequin. Hypertree: A Multiprocessor
Interconnection Topology. Computers, IEEE Transactions on, C-
30(12):923–933, dec. 1981.

[HJS+03] Nicholas J. A. Harvey, Michael B. Jones, Stefan Saroiu, Marvin
Theimer, and Alec Wolman. SkipNet: a scalable overlay network
with practical locality properties. In Proceedings of the 4th con-
ference on USENIX Symposium on Internet Technologies and Sys-
tems - Volume 4, USITS’03, pages 9–9, Berkeley, CA, USA, 2003.
USENIX Association.

[KK03] M. Frans Kaashoek and David R. Karger. Koorde: A Simple Degree-
Optimal Distributed Hash Table. In M. Frans Kaashoek and Ion
Stoica, editors, IPTPS, volume 2735 of Lecture Notes in Computer
Science, pages 98–107. Springer, 2003.

[KLL+97] David R. Karger, Eric Lehman, Frank Thomson Leighton, Rina
Panigrahy, Matthew S. Levine, and Daniel Lewin. Consistent Hash-
ing and Random Trees: Distributed Caching Protocols for Relieving
Hot Spots on the World Wide Web. In Frank Thomson Leighton
and Peter W. Shor, editors, STOC, pages 654–663. ACM, 1997.

[KSW05] Fabian Kuhn, Stefan Schmid, and Roger Wattenhofer. A Self-
Repairing Peer-to-Peer System Resilient to Dynamic Adversarial
Churn. In 4th International Workshop on Peer-To-Peer Systems
(IPTPS), Cornell University, Ithaca, New York, USA, Springer
LNCS 3640, February 2005.

[KW08] Javed I. Khan and Adam Wierzbicki. Introduction: Guest edi-
tors’ introduction: Foundation of peer-to-peer computing. Comput.
Commun., 31(2):187–189, February 2008.

[Lar07] Erik Larkin. Storm Worm’s virulence may change tac-
tics. http://www.networkworld.com/news/2007/080207-black-hat-
storm-worms-virulence.html, Agust 2007. Last accessed on June 11,
2012.

[LMSW06] Thomas Locher, Patrick Moor, Stefan Schmid, and Roger Watten-
hofer. Free Riding in BitTorrent is Cheap. In 5th Workshop on Hot
Topics in Networks (HotNets), Irvine, California, USA, November
2006.

[LMSW07] Thomas Locher, Remo Meier, Stefan Schmid, and Roger Watten-
hofer. Push-to-Pull Peer-to-Peer Live Streaming. In 21st Inter-
national Symposium on Distributed Computing (DISC), Lemesos,
Cyprus, September 2007.

264 CHAPTER 24. DISTRIBUTED STORAGE

[MM02] Petar Maymounkov and David Mazières. Kademlia: A Peer-to-Peer
Information System Based on the XOR Metric. In Revised Papers
from the First International Workshop on Peer-to-Peer Systems,
IPTPS ’01, pages 53–65, London, UK, UK, 2002. Springer-Verlag.

[MNR02] Dahlia Malkhi, Moni Naor, and David Ratajczak. Viceroy: a scal-
able and dynamic emulation of the butterfly. In Proceedings of the
twenty-first annual symposium on Principles of distributed comput-
ing, PODC ’02, pages 183–192, New York, NY, USA, 2002. ACM.

[MS07] Peter Mahlmann and Christian Schindelhauer. Peer-to-Peer Net-
works. Springer, 2007.

[PRR97] C. Greg Plaxton, Rajmohan Rajaraman, and Andréa W. Richa.
Accessing Nearby Copies of Replicated Objects in a Distributed
Environment. In SPAA, pages 311–320, 1997.

[PU88] David Peleg and Eli Upfal. A tradeoff between space and efficiency
for routing tables. In Proceedings of the twentieth annual ACM
symposium on Theory of computing, STOC ’88, pages 43–52, New
York, NY, USA, 1988. ACM.

[RD01] Antony Rowstron and Peter Druschel. Pastry: Scalable, decen-
tralized object location and routing for large-scale peer-to-peer sys-
tems. In IFIP/ACM International Conference on Distributed Sys-
tems Platforms (Middleware), pages 329–350, November 2001.

[RFH+01] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and
Scott Shenker. A scalable content-addressable network. SIGCOMM
Comput. Commun. Rev., 31(4):161–172, August 2001.

[SENB07] Moritz Steiner, Taoufik En-Najjary, and Ernst W. Biersack. Exploit-
ing KAD: possible uses and misuses. SIGCOMM Comput. Commun.
Rev., 37(5):65–70, October 2007.

[SG05] Ramesh Subramanian and Brian D. Goodman. Peer to Peer Com-
puting: The Evolution of a Disruptive Technology. IGI Publishing,
Hershey, PA, USA, 2005.

[SK85] Nicola Santoro and Ramez Khatib. Labelling and Implicit Routing
in Networks. Comput. J., 28(1):5–8, 1985.

[SMK+01] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and
Hari Balakrishnan. Chord: A scalable peer-to-peer lookup ser-
vice for internet applications. SIGCOMM Comput. Commun. Rev.,
31(4):149–160, August 2001.

[SW05] Ralf Steinmetz and Klaus Wehrle, editors. Peer-to-Peer Systems and
Applications, volume 3485 of Lecture Notes in Computer Science.
Springer, 2005.

[Wit81] L. D. Wittie. Communication Structures for Large Networks of
Microcomputers. IEEE Trans. Comput., 30(4):264–273, April 1981.

BIBLIOGRAPHY 265

[ZHS+04] Ben Y. Zhao, Ling Huang, Jeremy Stribling, Sean C. Rhea, An-
thony D. Joseph, and John Kubiatowicz. Tapestry: a resilient
global-scale overlay for service deployment. IEEE Journal on Se-
lected Areas in Communications, 22(1):41–53, 2004.

Chapter 25

Authenticated Agreement

In Section 12.5 we have already had a glimpse into the power of cryptography.
In this Chapter we want to build a practical byzantine fault-tolerant system
using cryptography. With cryptography, Byzantine lies may be detected easily.

25.1 Agreement with Authentication

Definition 25.1 (Signature). Every node can sign its messages in a way that
no other node can forge, thus nodes can reliably determine which node a signed
message originated from. We denote a message msg(x) signed by node u with
msg(x)u.

Remarks:

• Algorithm 25.2 shows a synchronous agreement protocol for binary
inputs relying on signatures. We assume there is a designated “pri-
mary” node p that all other nodes know. The goal is to decide on p’s
value.

Theorem 25.3. Algorithm 25.2 can tolerate f < n byzantine failures while
terminating in f + 1 rounds.

Proof. Assuming that the primary p is not byzantine and its input is 1, then
p broadcasts value(1)p in the first round, which will trigger all correct nodes
to decide on 1. If p’s input is 0, there is no signed message value(1)p, and no
node can decide on 1.

If primary p is byzantine, we need all correct nodes to decide on the same
value for the algorithm to be correct.

Assume i < f + 1 is minimal among all rounds in which any correct node u
decides on 1. In this case, u has a set S of at least i messages from other nodes
for value 1 in round i, including one of p. Therefore, in round i+ 1 ≤ f + 1, all
other correct nodes will receive S and u’s message for value 1 and thus decide
on 1 too.

Now assume that i = f + 1 is minimal among all rounds in which a correct
node u decides for 1. Thus u must have received f + 1 messages for value 1, one

266

25.1. AGREEMENT WITH AUTHENTICATION 267

Algorithm 25.2 Byzantine Agreement with Authentication

Code for primary p:

1: if input is 1 then
2: broadcast value(1)p
3: decide 1 and terminate
4: else
5: decide 0 and terminate
6: end if

Code for all other nodes v:

7: for all rounds i ∈ {1, . . . , f + 1} do
8: S is the set of accepted messages value(1)u.
9: if |S| ≥ i and value(1)p ∈ S then

10: broadcast S ∪ {value(1)v}
11: decide 1 and terminate
12: end if
13: end for
14: decide 0 and terminate

of which must be from a correct node since there are only f byzantine nodes.
In this case some other correct node u′ must have decided on 1 in some round
j < i, which contradicts i’s minimality; hence this case cannot happen.

Finally, if no correct node decides on 1 by the end of round f + 1, then all
correct nodes will decide on 0.

Remarks:

• The algorithm only takes f + 1 rounds, which is optimal as described
in Theorem 11.20.

• Using signatures, Algorithm 25.2 solves consensus for any number of
failures! Does this contradict Theorem 11.12? Recall that in the proof
of Theorem 11.12 we assumed that a byzantine node can distribute
contradictory information about its own input. If messages are signed,
correct nodes can detect such behavior – a node u signing two contra-
dicting messages proves to all nodes that node u is byzantine.

• Does Algorithm 25.2 satisfy any of the validity conditions introduced
in Section 11.1? No! A byzantine primary can dictate the decision
value. Can we modify the algorithm such that the correct-input va-
lidity condition is satisfied? Yes! We can run the algorithm in parallel
for 2f + 1 primary nodes. Either 0 or 1 will occur at least f + 1 times,
which means that one correct process had to have this value in the
first place. In this case, we can only handle f < n

2 byzantine nodes.

• If the primary is a correct node, Algorithm 25.2 only needs two rounds!
Can we make it work with arbitrary inputs? Also, relying on syn-
chrony limits the practicality of the protocol. What if messages can
be lost or the system is asynchronous?

268 CHAPTER 25. AUTHENTICATED AGREEMENT

25.2 Practical Byzantine Fault Tolerance

Practical Byzantine Fault Tolerance (PBFT) is one of the first and perhaps
the most instructive protocol for achieving state replication among nodes as in
Definition 7.8 with byzantine nodes in an asynchronous network. We present a
very simple version of it without any optimizations.

Definition 25.4 (System Model). There are n = 3f+1 nodes and an unbounded
number of clients. There are at most f byzantine nodes, and clients can be
byzantine as well. The network is asynchronous, and messages have variable
delay and can get lost. Clients send requests that correct nodes have to order to
achieve state replication.

The ideas behind PBFT can roughly be summarized as follows:

• Signatures guarantee that every node can determine which node/client
generated any given message.

• At any given time, every node will consider one designated node to be the
primary and the other nodes to be backups. Since we are in the variable
delay model, requests can arrive at the nodes in different orders. While a
primary remains in charge (this timespan corresponds to what is called a
view), it thus has the function of a serializer (cf. Algorithm 7.9).

• If backups detect faulty behavior in the primary, they start a new view
and the next node in round-robin order becomes primary. This is called
a view change.

• After a view change, a correct new primary makes sure that no two correct
nodes execute requests in different orders. Exchanging information will
enable backups to determine if the new primary acts in a byzantine fashion.

Definition 25.5 (View). A view is represented locally at each node i by a non-
negative integer v (we say i is in view v) that is incremented by one whenever
the node changes to a different view.

Definition 25.6 (Primary; Backups). A node that is in view v considers node
v mod n to be the primary and all other nodes to be backups.

Definition 25.7 (Sequence Number). During a view, a node relies on the pri-
mary to pick consecutive integers as sequence numbers that function as indices
in the global order (cf. Definition 7.8) for the requests that clients send.

Remarks:

• All nodes start out in view 0 and can potentially be in different views
(i.e. have different local values for v) at any given time.

• The protocol will guarantee that once a correct node has executed a
request r with sequence number s, then no correct node will execute
any r′ 6= r with sequence number s, not unlike Lemma 7.14.

• Correct primaries choose sequence numbers such that they are dense,
i.e. if a correct primary proposed s as the sequence number for the
last request, then it will use s+1 for the next request that it proposes.

25.3. PBFT: AGREEMENT PROTOCOL 269

• Before a node can safely execute a request r with a sequence number
s, it will wait until it knows that the decision to execute r with s has
been reached and is widely known.

• Informally, nodes will collect confirmation messages by sets of at least
2f + 1 nodes to guarantee that that information is sufficiently widely
distributed.

Definition 25.8 (Accepted Messages). A correct node that is in view v will
only accept messages that it can authenticate, that follow the specification of
the protocol, whose components can be validated in the same way, and that also
belong to view v.

Lemma 25.9 (2f+1 Quorum Intersection). Let S1 with |S1| ≥ 2f + 1 and S2

with |S2| ≥ 2f + 1 each be sets of nodes. Then there exists a correct node in
S1 ∩ S2.

Proof. Let S1, S2 each be sets of at least 2f + 1 nodes. There are 3f + 1 nodes
in total, thus due to the pigeonhole principle the intersection S1 ∩ S2 contains
at least f + 1 nodes. Since there are at most f faulty nodes, S1 ∩ S2 contains
at least 1 correct node.

25.3 PBFT: Agreement Protocol

First we describe how PBFT achieves agreement on a unique order of requests
within a view.

request
(r, c)c

pre-prepare
(v, s, r, n0)n0

prepare
(v, s, r, ni)ni

commit
(v, s, ni)ni

reply
(r, ni)ni

client c

primary p

backup n1

backup n2

backup n3

Figure 25.10: The agreement protocol used in PBFT for processing a client
request, exemplified for a system with 4 nodes. Node n0 is the primary in
current view v. Time runs from left to right. Messages sent at the same time
need not arrive at the same time.

Remarks:

• Figure 25.10 shows how the nodes come to an agreement on a sequence
number for a client request. Informally, the protocal has these three
steps:

1. The primary sends a pre-prepare-message to all backups, in-
forming them that he wants to execute that request with the
sequence number specified in the message.

270 CHAPTER 25. AUTHENTICATED AGREEMENT

2. Backups send prepare-messages to all nodes, informing them
that they agree with that suggestion.

3. All nodes send commit-messages to all nodes, informing everyone
that they have committed to execute the request with that se-
quence number. They execute the request and inform the client.

• Figure 25.10 shows that all nodes can start each phase at different
times.

• To make sure byzantine nodes cannot force the execution of a re-
quest, every node waits for a certain number of prepare- and commit-
messages with the correct content before executing the request.

• Definitions 25.11, 25.14, 25.16 specify the agreement protocol formally.
Backups run Phases 1 and 2 concurrently.

Definition 25.11 (PBFT Agreement Protocol Phase 1; Pre-Prepared Pri-
mary). In phase 1 of the agreement protocol, the nodes execute Algo-
rithm 25.12.

Algorithm 25.12 PBFT Agreement Protocol: Phase 1

Code for primary p in view v:

1: accept request(r, c)c that originated from client c
2: pick next sequence number s
3: send pre-prepare(v, s, r, p)p to all backups

Code for backup b:

4: accept request(r, c)c from client c
5: relay request(r, c)c to primary p

Definition 25.13 (Faulty-Timer). When backup b accepts request r in Algo-
rithm 25.12 Line 4, b starts a local faulty-timer (if the timer is not already
running) that will only stop once b executes r.

Remarks:

• If the faulty-timer expires, the backup considers the primary faulty
and triggers a view change. We explain the view change protocol in
Section 25.4.

• We leave out the details regarding for what timespan to set the faulty-
timer as they are an optimization with several trade-offs to consider;
the interested reader is advised to consult [CL+99].

Definition 25.14 (PBFT Agreement Protocol Phase 2; Pre-prepared Backups).
In phase 2 of the agreement protocol, every backup b executes Algorithm 25.15.
Once it has sent the prepare-message, b has pre-prepared r for (v, s).

25.3. PBFT: AGREEMENT PROTOCOL 271

Algorithm 25.15 PBFT Agreement Protocol: Phase 2

Code for backup b in view v:

1: accept pre-prepare(v, s, r, p)p
2: if p is primary of view v and b has not yet accepted a pre-prepare-message

for (v, s) and some r′ 6= r then
3: send prepare(v, s, r, b)b to all nodes
4: end if

Definition 25.16 (PBFT Agreement Protocol Phase 3; Prepared-Certificate).
A node ni that has pre-prepared a request executes Algorithm 25.17. It waits
until it has collected 2f prepare-messages (including ni’s own, if it is a backup)
in Line 1. Together with the pre-prepare-message for (v, s, r), they form a
prepared-certificate.

Algorithm 25.17 PBFT Agreement Protocol: Phase 3

Code for node ni that has pre-prepared r for (v, s):

1: wait until 2f prepare-messages matching (v, s, r) have been accepted (in-
cluding ni’s own message, if it is a backup)

2: send commit(v, s, ni)ni
to all nodes

3: wait until 2f+1 commit-messages (including ni’s own) matching (v, s) have
been accepted

4: execute request r once all requests with lower sequence numbers have been
executed

5: send reply(r, ni)ni
to client

Remarks:

• Note that the agreement protocol can run for multiple requests in
parallel. Since we are in the variable delay model and messages can
arrive out of order, we thus have to wait in Algorithm 25.17 Line 4
until a request has been executed for all previous sequence numbers.

• The client only considers the request to have been processed once it
received f + 1 reply-messages sent by the nodes in Algorithm 25.17
Line 5. Since a correct node only sends a reply-message once it
executed the request, with f + 1 reply-messages the client can be
certain that the request was executed by a correct node.

• We will see in Section 25.4 that PBFT guarantees that once a single
correct node executed the request, then all correct nodes will never
execute a different request with the same sequence number. Thus,
knowing that a single correct node executed a request is enough for
the client.

• If the client does not receive at least f+1 reply-messages fast enough,
it can start over by resending the request to initiate Algorithm 25.12
again. To prevent correct nodes that already executed the request

272 CHAPTER 25. AUTHENTICATED AGREEMENT

from executing it a second time, clients can mark their requests with
some kind of unique identifiers like a local timestamp. Correct nodes
can then react to each request that is resent by a client as required
by PBFT, and they can decide if they still need to execute a given
request or have already done so before.

Lemma 25.18 (PBFT: Unique Sequence Numbers within View). If a node
gathers a prepared-certificate for (v, s, r), then no node can gather a prepared-
certificate for (v, s, r′) with r′ 6= r.

Proof. Assume two (not necessarily distinct) nodes gather prepared-certificates
for (v, s, r) and (v, s, r′). Since a prepared-certificate contains 2f + 1 mes-
sages, a correct node sent a pre-prepare- or prepare-message for each of
(v, s, r) and (v, s, r′) due to Lemma 25.9. A correct primary only sends a single
pre-prepare-message for each (v, s), see Algorithm 25.12 Lines 2 and 3. A
correct backup only sends a single prepare-message for each (v, s), see Algo-
rithm 25.15 Lines 2 and 3. Thus, r′ = r.

Remarks:

• Due to Lemma 25.18, once a node has a prepared-certificate for
(v, s, r), no correct node will execute some r′ 6= r with sequence
number s during view v because correct nodes wait for a prepared-
certificate before executing a request (cf. Algorithm 25.17).

• However, that is not yet enough to make sure that no r′ 6= r will be
executed by a correct node with sequence number s during some later
view v′ > v. How can we make sure that that does not happen?

25.4 PBFT: View Change Protocol

If the primary is faulty, the system has to perform a view change to move to
the next primary so the system can make progress. Nodes use their faulty-timer
(and only that!) to decide whether they consider the primary to be faulty (cf.
Definition 25.13).

Remarks:

• During a view change, the protocol has to guarantee that requests
that have already been executed by some correct nodes will not be
executed with the different sequence numbers by other correct nodes.

• How can we guarantee that this happens?

Definition 25.19 (PBFT: View Change Protocol). In the view change proto-
col, a node whose faulty-timer has expired enters the view change phase by
running Algorithm 25.22. During the new view phase (which all nodes con-
tinually listen for), the primary of the next view runs Algorithm 25.23 while all
other nodes run Algorithm 25.24.

25.4. PBFT: VIEW CHANGE PROTOCOL 273

view-change
(v + 1,Pni

, ni)ni

new-view
(v + 1,V,O, n1)n1

node n0 = primary of view v

node n1 = primary of view v + 1

node n2

node n3

Figure 25.20: The view change protocol used in PBFT. Node n0 is the pri-
mary of current view v, node n1 the primary of view v + 1. Once back-
ups consider n0 to be faulty, they start the view change protocol (cf. Algo-
rithms 25.22, 25.23, 25.24). The X signifies that n0 is faulty.

Remarks:

• The idea behind the view change protocol is this: during the view
change protocol, the new primary gathers prepared-certificates from
2f + 1 nodes, so for every request that some correct node executed,
the new primary will have at least one prepared-certificate.

• After gathering that information, the primary distributes it and tells
all backups which requests need to be to executed with which sequence
numbers.

• Backups can check whether the new primary makes the decisions re-
quired by the protocol, and if it does not, then the new primary must
be byzantine and the backups can directly move to the next view
change.

Definition 25.21 (New-View-Certificate). 2f + 1 view-change-messages for
the same view v form a new-view-certificate.

Algorithm 25.22 PBFT View Change Protocol: View Change Phase

Code for backup b in view v whose faulty-timer has expired:

1: stop accepting pre-prepare/prepare/commit-messages for v
2: let Pb be the set of all prepared-certificates that b has collected since the

system was started
3: send view-change(v + 1,Pb, b)b to all nodes

Remarks:

• It is possible that V contains a prepared-certificate for a sequence
number s while it does not contain one for some sequence number s′ <
s. For each such sequence number s′, we fill up O in Algorithm 25.23
Line 4 with null-requests, i.e. requests that backups understand to
mean “do not do anything here”.

274 CHAPTER 25. AUTHENTICATED AGREEMENT

Algorithm 25.23 PBFT View Change Protocol: New View Phase - Primary

Code for primary p of view v + 1:

1: accept 2f + 1 view-change-messages (including possibly p’s own) in a set
V (this is the new-view-certificate)

2: let O be a set of pre-prepare(v + 1, s, r, p)p for all pairs (s, r) where at
least one prepared-certificate for (s, r) exists in V

3: let sVmax be the highest sequence number for which O contains a
pre-prepare-message

4: add to O a message pre-prepare(v + 1, s′, null, p)p for every sequence
number s′ < sVmax for which O does not contain a pre-prepare-message

5: send new-view(v + 1,V,O, p)p to all nodes
6: start processing requests for view v+1 according to Algorithm 25.12 starting

from sequence number sVmax + 1

Algorithm 25.24 PBFT View Change Protocol: New View Phase - Backup

Code for backup b of view v + 1 if b’s local view is v′ < v + 1:

1: accept new-view(v + 1,V,O, p)p
2: stop accepting pre-prepare-/prepare-/commit-messages for v// in case

b has not run Algorithm 25.22 for v + 1 yet

3: set local view to v + 1
4: if p is primary of v + 1 then
5: if O was correctly constructed from V according to Algorithm 25.23

Lines 2 and 4 then
6: respond to all pre-prepare-messages inO as in the agreement protocol,

starting from Algorithm 25.15
7: start accepting messages for view v + 1
8: else
9: trigger view change to v + 2 using Algorithm 25.22

10: end if
11: end if

Theorem 25.25 (PBFT:Unique Sequence Numbers Across Views). Together,
the PBFT agreement protocol and the PBFT view change protocol guarantee
that if a correct node executes a request r in view v with sequence number s,
then no correct node will execute any r′ 6= r with sequence number s in any view
v′ ≥ v.

Proof. If no view change takes place, then Lemma 25.18 proves the statement.
Therefore, assume that a view change takes place, and consider view v′ > v.

We will show that if some correct node executed a request r with sequence
number s during v, then a correct primary will send a pre-prepare-message
matching (v′, s, r) in the O-component of the new-view(v′,V,O, p)-message.
This guarantees that no correct node will be able to collect a prepared-certificate
for s and a different r′ 6= r.

Consider the new-view-certificate V (see Algorithm 25.23 Line 1). If any
correct node executed request r with sequence number s, then due to Algo-

25.4. PBFT: VIEW CHANGE PROTOCOL 275

rithm 25.17 Line 3, there is a set R1 of at least 2f + 1 nodes that sent a
commit-message matching (s, r), and thus the correct nodes in R1 all collected
a prepared-certificate in Algorithm 25.17 Line 1.

The new-view-certificate contains view-change-messages from a set R2 of
2f + 1 nodes. Thus according to Lemma 25.9, there is at least one correct
node cr ∈ R1∩R2 that both collected a prepared-certificate matching (s, r) and
whose view-change-message is contained in V.

Therefore, if some correct node executed r with sequence number s, then V
contains a prepared-certificate matching (s, r) from cr. Thus, if some correct
node executed r with sequence number s, then due to Algorithm 25.23 Line 2,
a correct primary p sends a new-view(v′,V,O, p)-message where O contains a
pre-prepare(v′, s, r, p)-message.

Correct backups will enter view v′ only if the new-view-message for v′ con-
tains a valid new-view-certificate V and if O was constructed correctly from
V, see Algorithm 25.24 Line 5. They will then respond to the messages in O
before they start accepting other pre-prepare-messages for v′ due to the order
of Algorithm 25.24 Lines 6 and 7. Therefore, for the sequence numbers that ap-
pear in O, correct backups will only send prepare-messages responding to the
pre-prepare-messages found in O due to Algorithm 25.15 Lines 2 and 3. This
guarantees that in v′, for every sequence number s that appears in O, backups
can only collect prepared-certificates for the triple (v′, s, r) that appears in O.

Together with the above, this proves that if some correct node executed
request r with sequence number s in v, then no node will be able to collect a
prepared-certificate for some r′ 6= r with sequence number s in any view v′ ≥ v,
and thus no correct node will execute r′ with sequence number s.

Remarks:

• We have shown that PBFT protocol guarantees safety or nothing bad
ever happens, i.e., the correct nodes never disagree on requests that
were commited with the same sequence numbers. But, does PBFT
also guarantee liveness, i.e., a legitimate client request is eventually
committed and receives a reply.

• To prove liveness, we make an additional assumption that message
delays are finite and bounded. With infinite message delays in an
asynchronous system and even one faulty (byzantine) process, it is
impossible to solve consensus with guaranteed termination [FLP85].

• A faulty new primary could delay the system indefinitely by never
sending a new-view-message. To prevent this, as soon as a node sends
its view-change-message for v+ 1, it starts its faulty-timer and stops
it once it accepts a new-view-message for v+ 1. If the timer runs out
before being stopped, the node triggers another view change.

• However, the timer doubles to trigger the next view change because
the message delays might be larger. Eventually, the timer values are
larger than the message delays and the messages are received before
the timer expires.

276 CHAPTER 25. AUTHENTICATED AGREEMENT

• Since at most f consecutive primaries can be faulty, the system makes
progress after at most f + 1 view changes.

• We described a simplified version of PBFT; any practically relevant
variant makes adjustments to what we presented. The references
found in the chapter notes can be consulted for details that we did
not include.

Chapter Notes

PBFT is perhaps the central protocol for asynchronous byzantine state replica-
tion. The seminal first publication about it, of which we presented a simplified
version, can be found in [CL+99]. The canonical work about most versions of
PBFT is Miguel Castro’s PhD dissertation [Cas01].

Notice that the sets Pb in Algorithm 25.22 grow with each view change
as the system keeps running since they contain all prepared-certificates that
nodes have collected so far. All variants of the protocol found in the literature
introduce regular checkpoints where nodes agree that enough nodes executed
all requests up to a certain sequence number so they can continuously garbage-
collect prepared-certificates. We left this out for conciseness.

Remember that all messages are signed. Generating signatures is some-
what pricy, and variants of PBFT exist that use the cheaper, but less powerful
Message Authentication Codes (MACs). These variants are more complicated
because MACs only provide authentication between the two endpoints of a mes-
sage and cannot prove to a third party who created a message. An extensive
treatment of a variant that uses MACs can be found in [CL02].

Before PBFT, byzantine fault-tolerance was considered impractical, just
something academics would be interested in. PBFT changed that as it
showed that byzantine fault-tolerance can be practically feasible. As a re-
sult, numerous asynchronous byzantine state replication protocols were devel-
oped. Other well-known protocols are Q/U [AEMGG+05], HQ [CML+06], and
Zyzzyva [KAD+07]. An overview over the relevant literature can be found
in [AGK+15].

This chapter was written in collaboration with Georg Bachmeier.

Bibliography

[AEMGG+05] Michael Abd-El-Malek, Gregory R Ganger, Garth R Goodson,
Michael K Reiter, and Jay J Wylie. Fault-scalable byzantine
fault-tolerant services. In ACM SIGOPS Operating Systems Re-
view, volume 39, pages 59–74. ACM, 2005.

[AGK+15] Pierre-Louis Aublin, Rachid Guerraoui, Nikola Knežević, Vivien
Quéma, and Marko Vukolić. The next 700 bft protocols. ACM
Transactions on Computer Systems (TOCS), 32(4):12, 2015.

[Cas01] Miguel Castro. Practical Byzantine Fault Tolerance. Ph.d., MIT,
January 2001. Also as Technical Report MIT-LCS-TR-817.

BIBLIOGRAPHY 277

[CL+99] Miguel Castro, Barbara Liskov, et al. Practical byzantine fault
tolerance. In OSDI, volume 99, pages 173–186, 1999.

[CL02] Miguel Castro and Barbara Liskov. Practical byzantine fault tol-
erance and proactive recovery. ACM Transactions on Computer
Systems (TOCS), 20(4):398–461, 2002.

[CML+06] James Cowling, Daniel Myers, Barbara Liskov, Rodrigo Ro-
drigues, and Liuba Shrira. Hq replication: A hybrid quorum
protocol for byzantine fault tolerance. In Proceedings of the
7th symposium on Operating systems design and implementa-
tion, pages 177–190. USENIX Association, 2006.

[FLP85] Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impos-
sibility of Distributed Consensus with One Faulty Process. J.
ACM, 32(2):374–382, 1985.

[KAD+07] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen
Clement, and Edmund Wong. Zyzzyva: speculative byzantine
fault tolerance. In ACM SIGOPS Operating Systems Review,
volume 41, pages 45–58. ACM, 2007.

Chapter 26

Advanced Blockchain

In this chapter we study various advanced blockchain concepts, which are pop-
ular in research.

26.1 Selfish Mining

Satoshi Nakamoto suggested that it is rational to be altruistic, e.g., by always
attaching newly found block to the longest chain. But is it true?

Definition 26.1 (Selfish Mining). A selfish miner hopes to earn the reward of a
larger share of blocks than its hardware would allow. The selfish miner achieves
this by temporarily keeping newly found blocks secret.

Algorithm 26.2 Selfish Mining

1: Idea: Mine secretly, without immediately publishing newly found blocks
2: Let dp be the depth of the public blockchain
3: Let ds be the depth of the secretly mined blockchain
4: if a new block bp is published, i.e., dp has increased by 1 then
5: if dp > ds then
6: Start mining on that newly published block bp
7: else if dp = ds then
8: Publish secretly mined block bs
9: Mine on bs and publish newly found block immediately

10: else if dp = ds − 1 then
11: Publish both secretly mined blocks
12: end if
13: end if

Remarks:

• If the selfish miner is more than two blocks ahead, the original research
suggested to always answer a newly published block by releasing the
oldest unpublished block. The idea is that honest miners will then
split their mining power between these two blocks. However, what
matters is how long it takes the honest miners to find the next block,

278

26.1. SELFISH MINING 279

to extend the public blockchain. This time does not change whether
the honest miners split their efforts or not. Hence the case dp < ds−1
is not needed in Algorithm 26.2.

Theorem 26.3 (Selfish Mining). It may be rational to mine selfishly, depending
on two parameters α and γ, where α is the ratio of the mining power of the selfish
miner, and γ is the share of the altruistic mining power the selfish miner can
reach in the network if the selfish miner publishes a block right after seeing a
newly published block. Precisely, the selfish miner share is

α(1− α)2(4α+ γ(1− 2α))− α3

1− α(1 + (2− α)α)
.

0 1 2 3 ...β

α α α α

β β
β

β

Figure 26.4: Each state of the Markov chain represents how many blocks the
selfish miner is ahead, i.e., ds − dp. In each state, the selfish miner finds a
block with probability α, and the honest miners find a block with probability
β = 1 − α. The interesting cases are the “irregular” β arrow from state 2 to
state 0, and the β arrow from state 1 to state 0 as it will include three subcases.

Proof. We model the current state of the system with a Markov chain, see
Figure 26.4.

We can solve the following Markov chain equations to figure out the proba-
bility of each state in the stationary distribution:

p1 = αp0

βpi+1 = αpi, for all i > 1

and 1 =
∑
i

pi.

Using ρ = α/β, we express all terms of above sum with p1:

1 =
p1

α
+ p1

∑
i≥0

ρi =
p1

α
+

p1

1− ρ
, hence p1 =

2α2 − α
α2 + α− 1

.

Each state has an outgoing arrow with probability β. If this arrow is taken,
one or two blocks (depending on the state) are attached that will eventually
end up in the main chain of the blockchain. In state 0 (if arrow β is taken),
the honest miners attach a block. In all states i with i > 2, the selfish miner
eventually attaches a block. In state 2, the selfish miner directly attaches 2
blocks because of Line 11 in Algorithm 26.2.

State 1 in Line 8 is interesting. The selfish miner secretly was 1 block ahead,
but now (after taking the β arrow) the honest miners are attaching a competing
block. We have a race who attaches the next block, and where. There are three
possibilities:

280 CHAPTER 26. ADVANCED BLOCKCHAIN

• Either the selfish miner manages to attach another block to its own block,
giving 2 blocks to the selfish miner. This happens with probability α.

• Or the honest miners attach a block (with probability β) to their previous
honest block (with probability 1 − γ). This gives 2 blocks to the honest
miners, with total probability β(1− γ).

• Or the honest miners attach a block to the selfish block, giving 1 block to
each side, with probability βγ.

The blockchain process is just a biased random walk through these states.
Since blocks are attached whenever we have an outgoing β arrow, the total
number of blocks being attached per state is simply 1+p1 +p2 (all states attach
a single block, except states 1 and 2 which attach 2 blocks each).

As argued above, of these blocks, 1− p0 + p2 + αp1 − β(1− γ)p1 are blocks
by the selfish miner, i.e., the ratio of selfish blocks in the blockchain is

1− p0 + p2 + αp1 − β(1− γ)p1

1 + p1 + p2
.

Remarks:

• If the miner is honest (altruistic), then a miner with computational
share α should expect to find an α fraction of the blocks. For some
values of α and γ the ratio of Theorem 26.3 is higher than α.

• In particular, if γ = 0 (the selfish miner only wins a race in Line 8 if it
manages to mine 2 blocks in a row), the break even of selfish mining
happens at α = 1/3.

• If γ = 1/2 (the selfish miner learns about honest blocks very quickly
and manages to convince half of the honest miners to mine on the
selfish block instead of the slightly earlier published honest block),
already α = 1/4 is enough to have a higher share in expectation.

• And if γ = 1 (the selfish miner controls the network, and can hide any
honest block until the selfish block is published) any α > 0 justifies
selfish mining.

26.2 DAG-Blockchain

Traditional Bitcoin-like blockchains require mining blocks sequentially. Some-
times effort is wasted if two blocks happen to be mined at roughly the same time,
as one of these two blocks is going to become obsolete. DAG-blockchains (where
DAG stands for directed acyclic graph) try to prevent such wasted blocks. They
allow for faster block production, as forks are less of a problem.

Definition 26.5 (DAG-blockchain). In a DAG-blockchain the genesis block
does not reference other blocks. Every other block has at least one (and possibly
multiple references) to previous blocks.

26.2. DAG-BLOCKCHAIN 281

Definition 26.6 (DAG-Relations). Block p is a dag-parent of block b if block
b references (includes a hash) to p. Likewise b is a dag-child of p. Block a is
a dag-ancestor of block b, if a is b’s dag-parent, dag-grandparent (dag-parent of
dag-parent), dag-grandgrandparent, and so on. Likewise b is a’s dag-descendant.

Theorem 26.7. There are no cycles in a DAG-blockchain.

Proof. A block b includes its dag-parents’ hashes. These dag-parents themselves
include the hashes of their dag-parents, etc. To get a cycle of references, some
of b’s dag-ancestors must include b’s hash, which is cryptographically infeasible.

Definition 26.8 (Tree-Relations). We are going to implicitly mark some of the
references in the DAG of blocks, such that these marked references form a tree,
directed towards the genesis block. For every non-genesis block one edge to one
of its dag-parents is marked. We use the prefix “tree” to denote these special
relations. The marked edge is between tree-parent and tree-child. The tree also
defines tree-ancestors and tree-descendants.

Remarks:

• In other words, every tree-something is also a dag-something, but not
necessarily vice versa.

• Blocks do not specify who is their tree-parent, or the order of their
dag-parents. Instead, tree-parents are implicitly defined as follows.

Definition 26.9 (DAG Weight). The weight of a dag-ancestor block a with
respect to a block b is defined as the number of tree-descendants of a in the set
of dag-ancestors of b. If two blocks a and a′ have the same weight, we use the
hashes of a and a′ to break ties.

Definition 26.10 (Parent Order). Let x and y be any pair of dag-parents of b,
and z be the lowest common tree-ancestor of x and y. x′ and y′ are the tree-
children of z that are tree-ancestors of x and y respectively. If x′ has a higher
weight than y′, then block b orders dag-parent x before y.

Definition 26.11 (Tree-Parent). The tree-parent of b is the first dag-parent in
b’s parent order.

Remarks:

• Now we can totally order all the blocks in the DAG-Blockchain.

Theorem 26.13. Let p be the tree-parent of b. The order of blocks <b computed
by Algorithm 26.12 extends the order <p by appending some blocks.

Proof. Block p is the first dag-parent of b, so in the first iteration of the loop,
we have <b = <p. Further modifications of <b consist only of appending more
blocks to <b, ending with block b itself.

282 CHAPTER 26. ADVANCED BLOCKCHAIN

Algorithm 26.12 DAG-Blockchain Ordering

1: We totally order all dag-ancestors of block b as <b as follows:
2: Initialize <b as empty
3: for all dag-parents p of b, in their parent order do
4: Compute <p (recursively)
5: Remove from <p any blocks already included in <b
6: Append <p at the end of <b
7: end for
8: Append block b at the end of <b

Remarks:

• Note that b is appended to the order only after ordering all its dag-
ancestors. The genesis block is the only block where the recursion will
stop, so the genesis block is always first in the total order.

• By Theorem 26.13 tree-children extend the order of their tree-parent,
so appending blocks to the DAG preserves the previous order and new
blocks are appended at the end.

Definition 26.14 (Transaction Order). Transactions in each block are ordered
by the miner of the block. Since blocks themselves are ordered, all transactions
are ordered. If two transactions contradict each other (e.g. they try to spend
the same money twice), the first transaction in the total order is considered
executed, while the second transaction is simply ignored (or possibly punished).

Remarks:

• Ethereum allows blocks to not only have a parent, but also up to two
“uncles” (childless blocks). In contrast to above description, blocks
must specify the main parent.

• In Ethereum, new blocks are mined approximately every 15 seconds
(as opposed to 10 minutes in Bitcoin). New blocks being generated
in such rapid succession leads to a lot of childless blocks. Uncles have
been introduced to not “waste” those blocks.

• In Ethereum, the original uncle-miners get 7/8 of the block reward.
The miner who references these uncle blocks also gets a small reward.
This reward depends on the height-difference of the uncle and the
included parent. Also, to be included, the uncle and the current block
should have a common ancestor not too far in the past.

26.3 Smart Contracts

Definition 26.15 (Ethereum). Ethereum is a distributed state machine. Unlike
Bitcoin, Ethereum promises to run arbitrary computer programs in a blockchain.

26.3. SMART CONTRACTS 283

Remarks:

• Like the Bitcoin network, Ethereum consists of nodes that are con-
nected by a random virtual network. These nodes can join or leave
the network arbitrarily. There is no central coordinator.

• Like in Bitcoin, users broadcast cryptographically signed transactions
in the network. Nodes collate these transactions and decide on the
ordering of transactions by putting them in a block on the Ethereum
blockchain.

Definition 26.16 (Smart Contract). Smart contracts are programs deployed on
the Ethereum blockchain that have associated storage and can execute arbitrarily
complex logic.

Remarks:

• Smart Contracts are written in higher level programming languages
like Solidity, Vyper, etc. and are compiled down to EVM (Ethereum
Virtual Machine) bytecode, which is a Turing complete low level pro-
gramming language.

• Smart contracts cannot be changed after deployment. But most smart
contracts contain mutable storage, and this storage can be used to
adapt the behavior of the smart contract. With this, many smart
contracts can update to a new version.

Definition 26.17 (Account). Ethereum knows two kinds of accounts. Exter-
nally Owned Accounts (EOAs) are controlled by individuals, with a secret key.
Contract Accounts (CAs) are for smart contracts. CAs are not controlled by a
user.

Definition 26.18 (Ethereum Transaction). An Ethereum transaction is sent by
a user who controls an EOA to the Ethereum network. A transaction contains:

• Nonce: This “number only used once” is simply a counter that counts how
many transactions the account of the sender of the transaction has already
sent.

• 160-bit address of the recipient.

• The transaction is signed by the user controlling the EOA.

• Value: The amount of Wei (the native currency of Ethereum) to transfer
from the sender to the recipient.

• Data: Optional data field, which can be accessed by smart contracts.

• StartGas: A value representing the maximum amount of computation this
transaction is allowed to use.

• GasPrice: How many Wei per unit of Gas the sender is paying. Miners
will probably select transactions with a higher GasPrice, so a high GasPrice
will make sure that the transaction is executed more quickly.

284 CHAPTER 26. ADVANCED BLOCKCHAIN

Remarks:

• There are three types of transactions.

Definition 26.19 (Simple Transaction). A simple transaction in Ethereum
transfers some of the native currency, called Wei, from one EOA to another.
Higher units of curency are called Szabo, Finney, and Ether, with 1018 Wei =
106 Szabo = 103 Finney = 1 Ether. The data field in a simple transaction is
empty.

Definition 26.20 (Smart Contract Creation Transaction). A transaction whose
recipient address field is set to 0 and whose data field is set to compiled EVM
code is used to deploy that code as a smart contract on the Ethereum blockchain.
The contract is considered deployed after it has been mined in a block and is
included in the blockchain at a sufficient depth.

Definition 26.21 (Smart Contract Execution Transaction). A transaction that
has a smart contract address in its recipient field and code to execute a specific
function of that contract in its data field.

Remarks:

• Smart Contracts can execute computations, store data, send Ether to
other accounts or smart contracts, and invoke other smart contracts.

• Smart contracts can be programmed to self destruct. This is the only
way to remove them again from the Ethereum blockchain.

• Each contract stores data in 3 separate entities: storage, memory, and
stack. Of these, only the storage area is persistent between transac-
tions. Storage is a key-value store of 256 bit words to 256 bit words.
The storage data is persisted in the Ethereum blockchain, like the
hard disk of a traditional computer. Memory and stack are for in-
termediate storage required while running a specific function, similar
to RAM and registers of a traditional computer. The read/write gas
costs of persistent storage is significantly higher than those of memory
and stack.

Definition 26.22 (Gas). Gas is the unit of an atomic computation, like swap-
ping two variables. Complex operations use more than 1 Gas, e.g., ADDing two
numbers costs 3 Gas.

Remarks:

• As Ethereum contracts are programs (with loops, function calls, and
recursions), end users need to pay more gas for more computations.
In particular, smart contracts might call another smart contract as a
subroutine, and StartGas must include enough gas to pay for all these
function calls invoked by the transaction.

• The product of StartGas and GasPrice is the maximum cost of the
entire transaction.

26.4. PAYMENT HUBS 285

• Transactions are an all or nothing affair. If the entire transaction could
not be finished within the StartGas limit, an Out-of-Gas exception is
raised. The state of the blockchain is reverted back to its values before
the transaction. The amount of gas consumed is not returned back to
the sender.

Definition 26.23 (Block). In Ethereum, like in Bitcoin, a block is a collection
of transactions that is considered a part of the canonical history of transactions.
Among other things, a block contains: pointers to parent and up to two uncles,
the hash of the root node of a trie structure populated with each transaction of
the block, the hash of the root node of the state trie (after transactions have been
executed)

26.4 Payment Hubs

How to we enable many parties to send payments to each other efficiently?

Definition 26.24 (Payment Hub). Multiple parties can send payments to each
other by means of a payment hub.

Remarks:

• While we could always call the smart contract to transfer money be-
tween users that joined the hub, every smart contract call costs as it
involves the blockchain. Rather, we want a frugal system with just
few blockchain transactions.

Definition 26.25 (Smart Contract Hub). A smart contract hub is a payment
hub that is realized by a smart contract on a blockchain and an off-chain server.
The smart contract and the server together enable off-chain payments between
users that joined the hub.

Algorithm 26.26 Smart Contract Hub

1: Users join the hub by depositing some native currency of the blockchain into
the smart contract

2: Funds of all participants are maintained together as a fungible pool in the
smart contract

3: Time is divided into epochs: in each epoch users can send each other pay-
ment transactions through the server

4: The server does the bookkeeping of who has paid how much to whom during
the epoch

5: At the end of the epoch, the server aggregates all balances into a commit-
ment, which is sent to the smart contract

6: Also at the end of the epoch, the server sends a proof to each user, informing
about the current account balance

7: Each user can verify that its balance is correct; if not the user can call the
smart contract with its proof to get its money back

286 CHAPTER 26. ADVANCED BLOCKCHAIN

Remarks:

• The smart contract lives forever, but the server can disappear anytime.
If it does, nodes can show their recent balance proofs to the smart
contract and withdraw their balances.

• The server can be scaled to in terms of latency and number of users.
The smart contract does not need to scale as it only needs to just
accept one commitment per epoch.

• In case the server disappears, the smart contract will be flooded with
withdrawal requests, and could be subject to delays based on the
delays of the underlying blockchain.

26.5 Proof-of-Stake

Almost all of the energy consumption of permissionless (everybody can par-
ticipate) blockchains is wasted because of proof-of-work. Proof-of-stake avoids
these wasteful computations, without going all the way to permissioned (the
participating nodes are known a priori) systems such as Paxos or PBFT.

Definition 26.27 (Proof-of-stake). Proof-of-work awards block rewards to the
lucky miner that solved a cryptopuzzle. In contrast, proof-of-stake awards block
rewards proportionally to the economic stake in the system.

Remarks:

• Literally, “the rich get richer”.

• Ethereum is expected to move to proof-of-stake eventually.

• There are multiple flavors of proof-of-stake algorithms.

Definition 26.28 (Chain based proof-of-stake). Accounts hold lottery tickets
according to their stake. The lottery is pseudo-random, in the sense that hash
functions computed on the state of the blockchain will select which account is
winning. The winning account can extend the longest chain by a block, and earn
the block reward.

Remarks:

• It gets tricky if the actual winner of the lottery does not produce a
block in time, or some nodes do not see this block in time. This is
why some suggested proof-of-stake systems add a voting phase.

Definition 26.29 (BFT based proof-of-stake). The lottery winner only gets
to propose a block to be added to the blockchain. A committee then votes (yes,
byzantine fault tolerance) whether to accept that block into the blockchain. If no
agreement is reached, this process is repeated.

26.5. PROOF-OF-STAKE 287

Remarks:

• Proof-of-stake can be attacked in various ways. Let us discuss the two
most prominent attacks.

• Most importantly, there is the “nothing at stake” attack: In
blockchains, forks occur naturally. In proof-of-work, a fork is resolved
because every miner has to choose which blockchain fork to extend,
as it does not pay off to mine on a hopeless fork. Eventually, some
chain will end up with more miners, and that chain is considered to
be the real blockchain, whereas other (childless) blocks are just not
being extended. In a proof-of-stake system, a user can trivially extend
all prongs of a fork. As generating a block costs nothing, the miner
has no incentive to not extend all the prongs of the fork. This results
in a situation with more and more forks, and no canonical order of
transactions. If there is a double-spend attack, there is no way to tell
which blockchain is valid, as all blockchains are the same length (all
miners are extending all forks). It can be argued that honest miners,
who want to preserve the value of the network, will extend the first
prong of the fork that they see. But that leaves room for a dishon-
est miner to double spend by moving their mining opportunity to the
appropriate fork at the appropriate time.

• Long range attack: As there are no physical resources being used to
produce blocks in a proof-of-stake system, nothing prevents a bad
player from creating an alternate blockchain starting at the genesis
block, and make it longer than the canonical blockchain. New nodes
may have difficulties to determine which blockchain is the real estab-
lished blockchain. In proof-of-work, long range attacks takes an enor-
mous amount of computing power. In proof-of-stake systems, a new
node has to check with trusted sources to know what the canonical
blockchain is.

	Introduction
	Format
	Prerequisites
	Grading
	Mistakes

	Naming
	Basic definitions
	Naming networks
	Indirect entries and symbolic links
	Pure names and addresses
	Search paths
	Synonyms and Homonyms

	Classical Operating Systems and the Kernel
	The role of the OS
	Domains
	OS components
	Operating System models
	Bootstrap
	Entering and leaving the kernel

	Processes
	Basic definitions
	Execution environment
	Process creation
	Process life cycle
	Coroutines
	Threads

	Inter-process communication
	Hardware support for synchronization
	Shared-memory synchronization instructions
	Hardware Transactional Memory

	Shared-memory synchronization models
	Messages: IPC without shared memory
	Upcalls
	Client-Server and RPC
	Distributed objects

	Introduction to Distributed Systems
	Fault-Tolerance & Paxos
	Client/Server
	Paxos

	Consensus
	Two Friends
	Consensus
	Impossibility of Consensus
	Randomized Consensus
	Shared Coin

	CPU scheduling
	Non-preemptive uniprocessor batch-oriented scheduling
	Batch scheduling terminology
	Batch scheduling metrics

	Uniprocessor preemptive batch scheduling
	Uniprocessor interactive scheduling
	Priority-based scheduling

	Real-time scheduling
	Multiprocessor scheduling
	Sequential programs on multiprocessors
	Parallel programs on multiprocessors

	Input / output
	Devices and data transfer
	Dealing with asynchrony
	Device models
	Device configuration
	Naming devices
	Protection
	More on I/O

	Byzantine Agreement
	Validity
	How Many Byzantine Nodes?
	The King Algorithm
	Lower Bound on Number of Rounds
	Asynchronous Byzantine Agreement

	Broadcast & Shared Coins
	Random Oracle and Bitstring
	Shared Coin on a Blackboard
	Broadcast Abstractions
	Blackboard with Message Passing
	Using Cryptography

	Consistency & Logical Time
	Consistency Models
	Logical Clocks
	Consistent Snapshots
	Distributed Tracing
	Mutual Exclusion

	Time, Clocks & GPS
	Time & Clocks
	Clock Synchronization
	Time Standards
	Clock Sources
	GPS
	Lower Bounds

	Quorum Systems
	Load and Work
	Grid Quorum Systems
	Fault Tolerance
	Byzantine Quorum Systems

	Eventual Consistency & Bitcoin
	Consistency, Availability and Partitions
	Bitcoin
	Smart Contracts
	Weak Consistency

	Memory Management and Virtual Memory
	Segments
	Paging
	Segmented paging
	Page mapping operations
	Copy-on-write
	Managing caches
	Homonyms and Synonyms
	Cache types

	Managing the TLB

	Demand Paging
	Basic mechanism
	Paging performance
	Page replacement policies
	Allocating physical pages between processes

	File system abstractions
	Access control
	Files
	The Namespace
	The POSIX namespace and directories
	Open Unix files
	Memory-mapped files
	Executable files

	File system implementation
	Low-level file system basics
	File system goals
	On-disk data structures
	The FAT file system
	The Berkeley Fast Filing System
	Windows NTFS

	In-memory data structures

	The Network Stack
	Network stack functions
	Header space
	Protocol graphs
	Network I/O
	Data movement inside the network stack
	Protocol state processing
	Top-half handling
	Performance issues
	Network hardware acceleration
	Routing and Forwarding

	Virtualization
	The uses of virtual machines
	Virtualizing the CPU
	Virtualizing the MMU
	Virtualizing physical memory
	Virtualizing devices
	Virtualizing the network

	Game Theory
	Introduction
	Prisoner's Dilemma
	Selfish Caching
	Braess' Paradox
	Rock-Paper-Scissors
	Mechanism Design

	Distributed Storage
	Consistent Hashing
	Hypercubic Networks
	DHT & Churn

	Authenticated Agreement
	Agreement with Authentication
	Practical Byzantine Fault Tolerance
	PBFT: Agreement Protocol
	PBFT: View Change Protocol

	Advanced Blockchain
	Selfish Mining
	DAG-Blockchain
	Smart Contracts
	Payment Hubs
	Proof-of-Stake

