
Chapter 25

Authenticated Agreement

In Section 12.5 we have already had a glimpse into the power of cryptography.
In this Chapter we want to build a practical byzantine fault-tolerant system
using cryptography. With cryptography, Byzantine lies may be detected easily.

25.1 Agreement with Authentication

Definition 25.1 (Signature). Every node can sign its messages in a way that
no other node can forge, thus nodes can reliably determine which node a signed
message originated from. We denote a message msg(x) signed by node u with
msg(x)u.

Remarks:

• Algorithm 25.2 shows a synchronous agreement protocol for binary
inputs relying on signatures. We assume there is a designated “pri-
mary” node p that all other nodes know. The goal is to decide on p’s
value.

Theorem 25.3. Algorithm 25.2 can tolerate f < n byzantine failures while
terminating in f + 1 rounds.

Proof. Assuming that the primary p is not byzantine and its input is 1, then p
broadcasts value(1)p in the first round, which will trigger all correct nodes to
decide on 1. If p’s input is 0, there is no signed message value(1)p, and no node
can decide on 1.

If primary p is byzantine, we need all correct nodes to decide on the same
value for the algorithm to be correct.

Assume i < f + 1 is minimal among all rounds in which any correct node u
decides on 1. In this case, u has a set S of at least i messages from other nodes
for value 1 in round i, including one of p. Therefore, in round i + 1 ≤ f + 1, all
other correct nodes will receive S and u’s message for value 1 and thus decide
on 1 too.

Now assume that i = f + 1 is minimal among all rounds in which a correct
node u decides for 1. Thus u must have received f + 1 messages for value 1, one

266

25.1. AGREEMENT WITH AUTHENTICATION 267

Algorithm 25.2 Byzantine Agreement with Authentication

Code for primary p:

1: if input is 1 then
2: broadcast value(1)p
3: decide 1 and terminate
4: else
5: decide 0 and terminate
6: end if

Code for all other nodes v:

7: for all rounds i ∈ {1, . . . , f + 1} do
8: S is the set of accepted messages value(1)u.
9: if |S| ≥ i and value(1)p ∈ S then

10: broadcast S ∪ {value(1)v}
11: decide 1 and terminate
12: end if
13: end for
14: decide 0 and terminate

of which must be from a correct node since there are only f byzantine nodes.
In this case some other correct node u′ must have decided on 1 in some round
j < i, which contradicts i’s minimality; hence this case cannot happen.

Finally, if no correct node decides on 1 by the end of round f + 1, then all
correct nodes will decide on 0.

Remarks:

• The algorithm only takes f + 1 rounds, which is optimal as described
in Theorem 11.20.

• Using signatures, Algorithm 25.2 solves consensus for any number of
failures! Does this contradict Theorem 11.12? Recall that in the proof
of Theorem 11.12 we assumed that a byzantine node can distribute
contradictory information about its own input. If messages are signed,
correct nodes can detect such behavior – a node u signing two contra-
dicting messages proves to all nodes that node u is byzantine.

• Does Algorithm 25.2 satisfy any of the validity conditions introduced
in Section 11.1? No! A byzantine primary can dictate the decision
value. Can we modify the algorithm such that the correct-input va-
lidity condition is satisfied? Yes! We can run the algorithm in parallel
for 2f + 1 primary nodes. Either 0 or 1 will occur at least f + 1 times,
which means that one correct process had to have this value in the
first place. In this case, we can only handle f < n

2 byzantine nodes.

• If the primary is a correct node, Algorithm 25.2 only needs two rounds!
Can we make it work with arbitrary inputs? Also, relying on syn-
chrony limits the practicality of the protocol. What if messages can
be lost or the system is asynchronous?

268 CHAPTER 25. AUTHENTICATED AGREEMENT

25.2 Practical Byzantine Fault Tolerance

Practical Byzantine Fault Tolerance (PBFT) is one of the first and perhaps
the most instructive protocol for achieving state replication among nodes as in
Definition 7.8 with byzantine nodes in an asynchronous network. We present a
very simple version of it without any optimizations.

Definition 25.4 (System Model). There are n = 3f+1 nodes and an unbounded
number of clients. There are at most f byzantine nodes, and clients can be
byzantine as well. The network is asynchronous, and messages have variable
delay and can get lost. Clients send requests that correct nodes have to order to
achieve state replication.

The ideas behind PBFT can roughly be summarized as follows:

• Signatures guarantee that every node can determine which node/client
generated any given message.

• At any given time, every node will consider one designated node to be the
primary and the other nodes to be backups. Since we are in the variable
delay model, requests can arrive at the nodes in different orders. While a
primary remains in charge (this timespan corresponds to what is called a
view), it thus has the function of a serializer (cf. Algorithm 7.9).

• If backups detect faulty behavior in the primary, they start a new view
and the next node in round-robin order becomes primary. This is called
a view change.

• After a view change, a correct new primary makes sure that no two correct
nodes execute requests in different orders. Exchanging information will
enable backups to determine if the new primary acts in a byzantine fashion.

Definition 25.5 (View). A view is represented locally at each node i by a non-
negative integer v (we say i is in view v) that is incremented by one whenever
the node changes to a different view.

Definition 25.6 (Primary; Backups). A node that is in view v considers node
v mod n to be the primary and all other nodes to be backups.

Definition 25.7 (Sequence Number). During a view, a node relies on the pri-
mary to pick consecutive integers as sequence numbers that function as indices
in the global order (cf. Definition 7.8) for the requests that clients send.

Remarks:

• All nodes start out in view 0 and can potentially be in different views
(i.e. have different local values for v) at any given time.

• The protocol will guarantee that once a correct node has executed a
request r with sequence number s, then no correct node will execute
any r′ 6= r with sequence number s, not unlike Lemma 7.14.

• Correct primaries choose sequence numbers such that they are dense,
i.e. if a correct primary proposed s as the sequence number for the
last request, then it will use s+1 for the next request that it proposes.

25.3. PBFT: AGREEMENT PROTOCOL 269

• Before a node can safely execute a request r with a sequence number
s, it will wait until it knows that the decision to execute r with s has
been reached and is widely known.

• Informally, nodes will collect confirmation messages by sets of at least
2f + 1 nodes to guarantee that that information is sufficiently widely
distributed.

Definition 25.8 (Accepted Messages). A correct node that is in view v will
only accept messages that it can authenticate, that follow the specification of
the protocol, whose components can be validated in the same way, and that also
belong to view v.

Lemma 25.9 (2f+1 Quorum Intersection). Let S1 with |S1| ≥ 2f + 1 and S2

with |S2| ≥ 2f + 1 each be sets of nodes. Then there exists a correct node in
S1 ∩ S2.

Proof. Let S1, S2 each be sets of at least 2f + 1 nodes. There are 3f + 1 nodes
in total, thus due to the pigeonhole principle the intersection S1 ∩ S2 contains
at least f + 1 nodes. Since there are at most f faulty nodes, S1 ∩ S2 contains
at least 1 correct node.

25.3 PBFT: Agreement Protocol

First we describe how PBFT achieves agreement on a unique order of requests
within a view.

request
(r, c)c

pre-prepare
(v, s, r, n0)n0

prepare
(v, s, r, ni)ni

commit
(v, s, ni)ni

reply
(r, ni)ni

client c

primary p

backup n1

backup n2

backup n3

Figure 25.10: The agreement protocol used in PBFT for processing a client
request, exemplified for a system with 4 nodes. Node n0 is the primary in
current view v. Time runs from left to right. Messages sent at the same time
need not arrive at the same time.

Remarks:

• Figure 25.10 shows how the nodes come to an agreement on a sequence
number for a client request. Informally, the protocal has these three
steps:

1. The primary sends a pre-prepare-message to all backups, in-
forming them that he wants to execute that request with the
sequence number specified in the message.

270 CHAPTER 25. AUTHENTICATED AGREEMENT

2. Backups send prepare-messages to all nodes, informing them
that they agree with that suggestion.

3. All nodes send commit-messages to all nodes, informing everyone
that they have committed to execute the request with that se-
quence number. They execute the request and inform the client.

• Figure 25.10 shows that all nodes can start each phase at different
times.

• To make sure byzantine nodes cannot force the execution of a re-
quest, every node waits for a certain number of prepare- and commit-
messages with the correct content before executing the request.

• Definitions 25.11, 25.14, 25.16 specify the agreement protocol formally.
Backups run Phases 1 and 2 concurrently.

Definition 25.11 (PBFT Agreement Protocol Phase 1; Pre-Prepared Pri-
mary). In phase 1 of the agreement protocol, the nodes execute Algorithm 25.12.

Algorithm 25.12 PBFT Agreement Protocol: Phase 1

Code for primary p in view v:

1: accept request(r, c)c that originated from client c
2: pick next sequence number s
3: send pre-prepare(v, s, r, p)p to all backups

Code for backup b:

4: accept request(r, c)c from client c
5: relay request(r, c)c to primary p

Definition 25.13 (Faulty-Timer). When backup b accepts request r in Algo-
rithm 25.12 Line 4, b starts a local faulty-timer (if the timer is not already
running) that will only stop once b executes r.

Remarks:

• If the faulty-timer expires, the backup considers the primary faulty
and triggers a view change. We explain the view change protocol in
Section 25.4.

• We leave out the details regarding for what timespan to set the faulty-
timer as they are an optimization with several trade-offs to consider;
the interested reader is advised to consult [CL+99].

Definition 25.14 (PBFT Agreement Protocol Phase 2; Pre-prepared Backups).
In phase 2 of the agreement protocol, every backup b executes Algorithm 25.15.
Once it has sent the prepare-message, b has pre-prepared r for (v, s).

25.3. PBFT: AGREEMENT PROTOCOL 271

Algorithm 25.15 PBFT Agreement Protocol: Phase 2

Code for backup b in view v:

1: accept pre-prepare(v, s, r, p)p
2: if p is primary of view v and b has not yet accepted a pre-prepare-message

for (v, s) and some r′ 6= r then
3: send prepare(v, s, r, b)b to all nodes
4: end if

Algorithm 25.17 PBFT Agreement Protocol: Phase 3

Code for node ni that has pre-prepared r for (v, s):

1: wait until 2f prepare-messages matching (v, s, r) have been accepted (in-
cluding ni’s own message, if it is a backup)

2: send commit(v, s, ni)ni to all nodes
3: wait until 2f +1 commit-messages (including ni’s own) matching (v, s) have

been accepted
4: execute request r once all requests with lower sequence numbers have been

executed
5: send reply(r, ni)ni

to client

Definition 25.16 (PBFT Agreement Protocol Phase 3; Prepared-Certificate).
A node ni that has pre-prepared a request executes Algorithm 25.17. It waits
until it has collected 2f prepare-messages (including ni’s own, if it is a backup)
in Line 1. Together with the pre-prepare-message for (v, s, r), they form a
prepared-certificate.

Remarks:

• Note that the agreement protocol can run for multiple requests in
parallel. Since we are in the variable delay model and messages can
arrive out of order, we thus have to wait in Algorithm 25.17 Line 4
until a request has been executed for all previous sequence numbers.

• The client only considers the request to have been processed once it
received f + 1 reply-messages sent by the nodes in Algorithm 25.17
Line 5. Since a correct node only sends a reply-message once it
executed the request, with f + 1 reply-messages the client can be
certain that the request was executed by a correct node.

• We will see in Section 25.4 that PBFT guarantees that once a single
correct node executed the request, then all correct nodes will never
execute a different request with the same sequence number. Thus,
knowing that a single correct node executed a request is enough for
the client.

• If the client does not receive at least f+1 reply-messages fast enough,
it can start over by resending the request to initiate Algorithm 25.12
again. To prevent correct nodes that already executed the request
from executing it a second time, clients can mark their requests with

272 CHAPTER 25. AUTHENTICATED AGREEMENT

some kind of unique identifiers like a local timestamp. Correct nodes
can then react to each request that is resent by a client as required
by PBFT, and they can decide if they still need to execute a given
request or have already done so before.

Lemma 25.18 (PBFT: Unique Sequence Numbers within View). If a node
gathers a prepared-certificate for (v, s, r), then no node can gather a prepared-
certificate for (v, s, r′) with r′ 6= r.

Proof. Assume two (not necessarily distinct) nodes gather prepared-certificates
for (v, s, r) and (v, s, r′). Since a prepared-certificate contains 2f + 1 mes-
sages, a correct node sent a pre-prepare- or prepare-message for each of
(v, s, r) and (v, s, r′) due to Lemma 25.9. A correct primary only sends a single
pre-prepare-message for each (v, s), see Algorithm 25.12 Lines 2 and 3. A
correct backup only sends a single prepare-message for each (v, s), see Algo-
rithm 25.15 Lines 2 and 3. Thus, r′ = r.

Remarks:

• Due to Lemma 25.18, once a node has a prepared-certificate for (v, s, r),
no correct node will execute some r′ 6= r with sequence number s dur-
ing view v because correct nodes wait for a prepared-certificate before
executing a request (cf. Algorithm 25.17).

• However, that is not yet enough to make sure that no r′ 6= r will be
executed by a correct node with sequence number s during some later
view v′ > v. How can we make sure that that does not happen?

25.4 PBFT: View Change Protocol

If the primary is faulty, the system has to perform a view change to move to
the next primary so the system can make progress. Nodes use their faulty-timer
(and only that!) to decide whether they consider the primary to be faulty (cf.
Definition 25.13).

Remarks:

• During a view change, the protocol has to guarantee that requests
that have already been executed by some correct nodes will not be
executed with the different sequence numbers by other correct nodes.

• How can we guarantee that this happens?

Definition 25.19 (PBFT: View Change Protocol). In the view change proto-
col, a node whose faulty-timer has expired enters the view change phase by
running Algorithm 25.22. During the new view phase (which all nodes con-
tinually listen for), the primary of the next view runs Algorithm 25.23 while all
other nodes run Algorithm 25.24.

25.4. PBFT: VIEW CHANGE PROTOCOL 273

view-change
(v + 1,Pni

, ni)ni

new-view
(v + 1,V,O, n1)n1

node n0 = primary of view v

node n1 = primary of view v + 1

node n2

node n3

Figure 25.20: The view change protocol used in PBFT. Node n0 is the pri-
mary of current view v, node n1 the primary of view v + 1. Once back-
ups consider n0 to be faulty, they start the view change protocol (cf. Algo-
rithms 25.22, 25.23, 25.24). The X signifies that n0 is faulty.

Remarks:

• The idea behind the view change protocol is this: during the view
change protocol, the new primary gathers prepared-certificates from
2f + 1 nodes, so for every request that some correct node executed,
the new primary will have at least one prepared-certificate.

• After gathering that information, the primary distributes it and tells
all backups which requests need to be to executed with which sequence
numbers.

• Backups can check whether the new primary makes the decisions re-
quired by the protocol, and if it does not, then the new primary must
be byzantine and the backups can directly move to the next view
change.

Definition 25.21 (New-View-Certificate). 2f + 1 view-change-messages for
the same view v form a new-view-certificate.

Algorithm 25.22 PBFT View Change Protocol: View Change Phase

Code for backup b in view v whose faulty-timer has expired:

1: stop accepting pre-prepare/prepare/commit-messages for v
2: let Pb be the set of all prepared-certificates that b has collected since the

system was started
3: send view-change(v + 1,Pb, b)b to all nodes

Remarks:

• It is possible that V contains a prepared-certificate for a sequence
number s while it does not contain one for some sequence number s′ <
s. For each such sequence number s′, we fill up O in Algorithm 25.23
Line 4 with null-requests, i.e. requests that backups understand to
mean “do not do anything here”.

274 CHAPTER 25. AUTHENTICATED AGREEMENT

Algorithm 25.23 PBFT View Change Protocol: New View Phase - Primary

Code for primary p of view v + 1:

1: accept 2f + 1 view-change-messages (including possibly p’s own) in a set
V (this is the new-view-certificate)

2: let O be a set of pre-prepare(v + 1, s, r, p)p for all pairs (s, r) where at
least one prepared-certificate for (s, r) exists in V

3: let sVmax be the highest sequence number for which O contains a
pre-prepare-message

4: add to O a message pre-prepare(v + 1, s′, null, p)p for every sequence
number s′ < sVmax for which O does not contain a pre-prepare-message

5: send new-view(v + 1,V,O, p)p to all nodes
6: start processing requests for view v+1 according to Algorithm 25.12 starting

from sequence number sVmax + 1

Algorithm 25.24 PBFT View Change Protocol: New View Phase - Backup

Code for backup b of view v + 1 if b’s local view is v′ < v + 1:

1: accept new-view(v + 1,V,O, p)p
2: stop accepting pre-prepare-/prepare-/commit-messages for v// in case

b has not run Algorithm 25.22 for v + 1 yet

3: set local view to v + 1
4: if p is primary of v + 1 then
5: if O was correctly constructed from V according to Algorithm 25.23

Lines 2 and 4 then
6: respond to all pre-prepare-messages inO as in the agreement protocol,

starting from Algorithm 25.15
7: start accepting messages for view v + 1
8: else
9: trigger view change to v + 2 using Algorithm 25.22

10: end if
11: end if

Theorem 25.25 (PBFT:Unique Sequence Numbers Across Views). Together,
the PBFT agreement protocol and the PBFT view change protocol guarantee
that if a correct node executes a request r in view v with sequence number s,
then no correct node will execute any r′ 6= r with sequence number s in any view
v′ ≥ v.

Proof. If no view change takes place, then Lemma 25.18 proves the statement.
Therefore, assume that a view change takes place, and consider view v′ > v.

We will show that if some correct node executed a request r with sequence
number s during v, then a correct primary will send a pre-prepare-message
matching (v′, s, r) in the O-component of the new-view(v′,V,O, p)-message.
This guarantees that no correct node will be able to collect a prepared-certificate
for s and a different r′ 6= r.

Consider the new-view-certificate V (see Algorithm 25.23 Line 1). If any
correct node executed request r with sequence number s, then due to Algo-

25.4. PBFT: VIEW CHANGE PROTOCOL 275

rithm 25.17 Line 3, there is a set R1 of at least 2f + 1 nodes that sent a
commit-message matching (s, r), and thus the correct nodes in R1 all collected
a prepared-certificate in Algorithm 25.17 Line 1.

The new-view-certificate contains view-change-messages from a set R2 of
2f + 1 nodes. Thus according to Lemma 25.9, there is at least one correct
node cr ∈ R1∩R2 that both collected a prepared-certificate matching (s, r) and
whose view-change-message is contained in V.

Therefore, if some correct node executed r with sequence number s, then V
contains a prepared-certificate matching (s, r) from cr. Thus, if some correct
node executed r with sequence number s, then due to Algorithm 25.23 Line 2,
a correct primary p sends a new-view(v′,V,O, p)-message where O contains a
pre-prepare(v′, s, r, p)-message.

Correct backups will enter view v′ only if the new-view-message for v′ con-
tains a valid new-view-certificate V and if O was constructed correctly from
V, see Algorithm 25.24 Line 5. They will then respond to the messages in O
before they start accepting other pre-prepare-messages for v′ due to the order
of Algorithm 25.24 Lines 6 and 7. Therefore, for the sequence numbers that ap-
pear in O, correct backups will only send prepare-messages responding to the
pre-prepare-messages found in O due to Algorithm 25.15 Lines 2 and 3. This
guarantees that in v′, for every sequence number s that appears in O, backups
can only collect prepared-certificates for the triple (v′, s, r) that appears in O.

Together with the above, this proves that if some correct node executed
request r with sequence number s in v, then no node will be able to collect a
prepared-certificate for some r′ 6= r with sequence number s in any view v′ ≥ v,
and thus no correct node will execute r′ with sequence number s.

Remarks:

• We have shown that PBFT protocol guarantees safety or nothing bad
ever happens, i.e., the correct nodes never disagree on requests that
were commited with the same sequence numbers. But, does PBFT
also guarantee liveness, i.e., a legitimate client request is eventually
committed and receives a reply.

• To prove liveness, we make an additional assumption that message
delays are finite and bounded. With infinite message delays in an
asynchronous system and even one faulty (byzantine) process, it is
impossible to solve consensus with guaranteed termination [FLP85].

• A faulty new primary could delay the system indefinitely by never
sending a new-view-message. To prevent this, as soon as a node sends
its view-change-message for v + 1, it starts its faulty-timer and stops
it once it accepts a new-view-message for v + 1. If the timer runs out
before being stopped, the node triggers another view change.

• However, the timer doubles to trigger the next view change because
the message delays might be larger. Eventually, the timer values are
larger than the message delays and the messages are received before
the timer expires.

276 CHAPTER 25. AUTHENTICATED AGREEMENT

• Since at most f consecutive primaries can be faulty, the system makes
progress after at most f + 1 view changes.

• We described a simplified version of PBFT; any practically relevant
variant makes adjustments to what we presented. The references
found in the chapter notes can be consulted for details that we did
not include.

Chapter Notes

PBFT is perhaps the central protocol for asynchronous byzantine state replica-
tion. The seminal first publication about it, of which we presented a simplified
version, can be found in [CL+99]. The canonical work about most versions of
PBFT is Miguel Castro’s PhD dissertation [Cas01].

Notice that the sets Pb in Algorithm 25.22 grow with each view change
as the system keeps running since they contain all prepared-certificates that
nodes have collected so far. All variants of the protocol found in the literature
introduce regular checkpoints where nodes agree that enough nodes executed
all requests up to a certain sequence number so they can continuously garbage-
collect prepared-certificates. We left this out for conciseness.

Remember that all messages are signed. Generating signatures is some-
what pricy, and variants of PBFT exist that use the cheaper, but less powerful
Message Authentication Codes (MACs). These variants are more complicated
because MACs only provide authentication between the two endpoints of a mes-
sage and cannot prove to a third party who created a message. An extensive
treatment of a variant that uses MACs can be found in [CL02].

Before PBFT, byzantine fault-tolerance was considered impractical, just
something academics would be interested in. PBFT changed that as it showed
that byzantine fault-tolerance can be practically feasible. As a result, numerous
asynchronous byzantine state replication protocols were developed. Other well-
known protocols are Q/U [AEMGG+05], HQ [CML+06], and Zyzzyva [KAD+07].
An overview over the relevant literature can be found in [AGK+15].

This chapter was written in collaboration with Georg Bachmeier.

Bibliography

[AEMGG+05] Michael Abd-El-Malek, Gregory R Ganger, Garth R Goodson,
Michael K Reiter, and Jay J Wylie. Fault-scalable byzantine
fault-tolerant services. In ACM SIGOPS Operating Systems Re-
view, volume 39, pages 59–74. ACM, 2005.

[AGK+15] Pierre-Louis Aublin, Rachid Guerraoui, Nikola Knežević, Vivien
Quéma, and Marko Vukolić. The next 700 bft protocols. ACM
Transactions on Computer Systems (TOCS), 32(4):12, 2015.

[Cas01] Miguel Castro. Practical Byzantine Fault Tolerance. Ph.d., MIT,
January 2001. Also as Technical Report MIT-LCS-TR-817.

[CL+99] Miguel Castro, Barbara Liskov, et al. Practical byzantine fault
tolerance. In OSDI, volume 99, pages 173–186, 1999.

BIBLIOGRAPHY 277

[CL02] Miguel Castro and Barbara Liskov. Practical byzantine fault tol-
erance and proactive recovery. ACM Transactions on Computer
Systems (TOCS), 20(4):398–461, 2002.

[CML+06] James Cowling, Daniel Myers, Barbara Liskov, Rodrigo Ro-
drigues, and Liuba Shrira. Hq replication: A hybrid quorum
protocol for byzantine fault tolerance. In Proceedings of the
7th symposium on Operating systems design and implementa-
tion, pages 177–190. USENIX Association, 2006.

[FLP85] Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impos-
sibility of Distributed Consensus with One Faulty Process. J.
ACM, 32(2):374–382, 1985.

[KAD+07] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen
Clement, and Edmund Wong. Zyzzyva: speculative byzantine
fault tolerance. In ACM SIGOPS Operating Systems Review,
volume 41, pages 45–58. ACM, 2007.

