Chapter 11

(Quantum) Key
Distribution

Cryptography is a truly groundbreaking discovery of our time. Being able to
generate a secret in plain sight is mind-boggling.

11.1 Key Exchange

Definition 11.1 (Key Exchange). Key exchange is a technique to establish a
common key between two or more parties (often Alice and Bob), without prior
knowledge, so that no eavesdropper (Eve) can obtain a copy of the key.

Remarks:

e Key exchange is also known as key generation or key establishment.
If quantum physics is involved, the problem is often called (quantum)
key distribution.

e When two parties want to communicate secretly, they previously need
to exchange a secret key. Historically, this required meeting in private
(which can be inconvenient or impossible) or sending a (hopefully
trustworthy) courier between the communicating parties.

e Is it possible to generate a key in plain sight?

11.2 Correlated Randomness

Definition 11.2 (Correlated Randomness). We consider the satellite scenario
depicted in Figure 11.3. Alice and Bob have access to a private noiseless channel
for communication. Also, they receive random bits R = Ry, Ra,... emitted by
a satellite. However, the bits Alice and Bob receive from the satellite are erro-
neous. Each bit is flipped with probability o for Alice and B for Bob, respectively.
Therefore, Alice receives string A = Ay, As,... and Bob B = By, By, Alice
and Bob face an attacker Eve that can eavesdrop all communication on their
private channel. Eve additionally receives satellite bits £ = E1, Es,... with a
bit error rate of e. We assume 0 < o, 5, € < %

1

2 CHAPTER 11. (QUANTUM) KEY DISTRIBUTION

Alice Bob

Eve E

Figure 11.3: Scenario of communication channels for key exchange with corre-
lated randomness.

Theorem 11.4. In the satellite scenario, Alice and Bob can always generate a
key, even if e < a, .

Remarks:

e Lets briefly think about ¢ > /8 (or symmetrically € > «). Then, Bob
receives better satellite information than Eve, which allows Bob to
have more information about Alice’s bitstring A than Eve.

e Alice may be able to reveal A to Bob while only revealing parts of A
to Eve. However, Eve will learn certain bits of the shared key.

e So first we want to get into this advantageous situation where Alice
and Bob know more about each other’s strings than Eve.

11.3 Advantage Distillation

Algorithm 11.5 Advantage Distillation

Input: Satellite string R, with errors: A4, B.
Result: Strings A, B, with A ~ B.

1: repeat

2: For every two consecutive bits of R, Alice and Bob compute and exchange
the parities p4 and pp, respectively

3 if pa # pp then

4 Alice and Bob discard the two consecutive bits

5. else

6 Alice and Bob both keep the first bit, hoping to have the same bit

7. end if

8: until Alice and Bob have collected sufficiently many bits

11.3. ADVANTAGE DISTILLATION 3

Iteration | P[4; # B;] | P[A; # Ej]
0 0.48 0.4
Iteration | P[A; # B;] | P[A; # E] 1 0.46 0.396
0 0.18 0.14 2 0.421 0.388
1 0.045 0.081 3 0.346 0.375
2 0.002 0.062 4 0.217 0.350
3 ~0 0.061 5 0.072 0.320
6 0.006 0.305
(a) a=p=0.1,e=0.05 . ~0 03

(b) a = B8 =0.4,¢=0.001

Figure 11.7: Probabilities that the bits of Alice disagree with Bob’s or Eve’s
after several iterations of advantage distillation. The error between Alice and
Bob drops much faster, allowing them to beat Eve.

Lemma 11.6. Algorithm 11.5 reduces the probability that Alice and Bob dis-
agree on a bit.

Proof. Instead of a formal proof, we argue along an example: Let « = 8 = 0.1
and € = 0.05. Then each bit of Alice and Bob has a probability of a(1 —) +
B(1 — a) = 18% to be different, whereas only 14% of the bits between Alice
and Eve differ. As a case analysis reveals, this already reverses after executing
Algorithm 11.5. After the algorithm Alice and Eve disagree with about 8%, but
Alice and Bob only disagree with about 4%. Alice and Bob can improve much
more than Eve because they decide when to discard bits. An error between
Alice and Bob is only kept if there is another error in the next bit. On the
other hand, many errors between Alice and Eve stay.

Indeed, we can use these accepted bits as inputs for one or more iterations of
Algorithm 11.5 (feeding the accepted bits back into the algorithm). O

Remarks:

e Figure 11.7a shows the approximate error probabilities for several it-
erations. We see that after three iterations Alice and Bob pretty much
agree on almost every bit.

e This algorithm also works in more extreme cases, e.g. a = 3 = 0.4
and € = 0.001. After 7 iterations, Alice and Bob get down to an error
rate of almost 0, whereas Eve has an error rate of 0.3 on Alice’s bits,
see Figure 11.7b.

e A formal proof would need a bit of Shannon’s information theory,
which is beyond the limits of this short lecture. However, information
theory is a valuable tool, and a reader is encouraged to study it.

o After advantage distillation, A and B will likely not be equal. But
now Alice and Bob know more about each other’s bitstrings than Eve
does.

e We need another algorithm to weed out the rest of the errors, and
align Alice’s and Bob’s bitstrings.

4 CHAPTER 11. (QUANTUM) KEY DISTRIBUTION

11.4 Information Reconciliation

Algorithm 11.8 Information Reconciliation
Input: Bitstrings A for Alice and B for Bob with n bits each
Result: Alice and Bob generate A = B (with high probability)

1: k=0

2: repeat

3: Alice sends Bob a random mask M € {0,1}™ using the private channel
4: Let m be the number of 1-bits in this mask M

5. Alice computes pa = > | M; - A; mod 2

6: Bob computes pg =Y. | M; - B; mod 2

7 Alice and Bob exchange the masked parities p4 and pp
8: if pa #pB then

9: k=0
10: Apr = A[M == 1], masked substring of A
11: Bj)s = B[M == 1], masked substring of B
12: ErrorCorrection(Aps, Bar, 1,m)
13: else
14: k=k+1
15: end if

16: until k£ = clogn

Algorithm 11.9 ErrorCorrection

Input: Bitstrings A for Alice and B for Bob, with differing parity, left border I
(initially 1), right border r (initially m)

Result: Bob corrects one bit that differs from Alice’s corresponding bit

1: if [==r then

2: B; = A; (Bob changes his value to Alice’s value)
3: else

4: n= HTT

5. Alice computes ps = > %, A; mod 2
6: Bob computes pg = Y., B; mod 2
7. if ps # pp then

8: ErrorCorrection(A, B, 1, 1)

9: else
10: ErrorCorrection(A, B, u+ 1,7)
11: end if
12: end if

Lemma 11.10. After termination of Algorithm 11.8, Alice and Bob share the
same bitstring with an arbitrarily high probability %

Proof. Let 91 ...0, be the indices where A5, # Bj,. The parities of the two
masked strings differ if the mask contains an odd number of these positions.
Therefore, the probability of not detecting an existing error is equal to picking

11.5. PRIVACY AMPLIFICATION 5

an even number of d; ... dy into the mask. Let ms,,...ms,_, be the choice for M
for all but the last position. If an even number of these m; are 1, the probability
1

of keeping an even number is 5 (picking ms, = 0). If an odd number of m;

are 1, the probability of having an even number is also % (this time picking

ms, = 1). Hence, our error probability of creating clogn masks in a row with

even errors is 261% =1, O

ne
Remarks:
e This algorithm reveals a lot of information to Eve:

Lemma 11.11. For correcting f errors between A, B, Eve learns f - (logn +
2) + ¢ - logn bits.

Proof. For each of the f errors, Eve learns the actual bit that is corrected, and
its neighboring bit. Eve also receives the parity information of the recursive
calls before getting down to the single wrong bit. So on each power of two, Eve
learns the equivalent information of (at most) one bit. So fixing a single bit costs
the equivalent of revealing logn + 1 bits. On top of this, there are rounds were
Bob is not correcting any bits. Apart from the final ¢-logn rounds, the first test
in Algorithm 11.8 also gives pa = pp with probability 1/2, so in expectation
we have f more rounds where Eve learns a parity. In each of these rounds, Eve
learns one parity of a mask, so the equivalent of (at most) one bit. O

Remarks:

e There are approaches that leak less information to Eve, but are more
complicated or less efficient.

e Alice and Bob want to prevent Eve from using the leaked information
to (partially) decrypt their messages. Therefore, they transform the
shared key into a smaller key using a hash function where Eve does
not have information about the values of any particular bits.

11.5 Privacy Amplification

Definition 11.12 (Universal Family). Let H C {h : U — M} be a family
of hash functions from U to M. If for all pairs of distinct keys k # k' € U,
the probability of a collision is Pr[h(k) = h(k')] < L when we choose h € H
uniformly, then H is called a universal family (of hash functions).

Remarks:

e If we choose a hash function from a universal family, we can expect
the hashes to be distributed well, regardless of the key set.

e There are (2")?" many possible functions, so we would need 2" - n bits
to decode any of those.

Definition 11.13 (Universal Hashing). Let m be prime and s € N. Let
U=A{0,...,b—1}* and let M = {0,...,m — 1} with b < m. For a key k =

6 CHAPTER 11. (QUANTUM) KEY DISTRIBUTION

(ko ..., ks—1) € U and coefficient tuple a = (ag,...,as_1) € {0,...,m — 1},
define

s—1
ha(ko, ... ke—1) = > a; - k; mod m.
i=0
Then H :={hg :a € {0,...,m —1}°} is a universal family of hash functions.

Remarks:

e We pick a universal hash function. Universal hashing gives us a gen-
eral method for picking hash functions from a universal family in an
efficient manner. We need a prime number m and uniformly at ran-
dom some integers ag, . ..,a, € {0,1,...m — 1}.

e Note that privacy amplification makes the key more secure without
actually making it more secure. Why? Before hashing, the key had n
bits, out of which Eve knew an equivalent of b (because of her satellite
data plus information learnt from Algorithm 11.8). Before hashing,
Eve could test the remaining 2”~° key candidates and this attack is
still possible now.

e For example with « = 8 = 0.1,¢ = 0.05: If Alice and Bob run two
rounds of information reconciliation and collect n = 1024 bits, they
can expect to have about f = 2 errors, whereas Eve has about 62
errors. During information reconciliation (with ¢ = 2), Eve can expect
to learn only 4logn + 4 = 44 bits. That leaves Eve with 2'® key
candidates, which she would need to hash and test.

e However, the key is still more secure, since Eve loses the positional
information of her knowledge. All that remains is a brute-force attack.

e Algorithm 11.14 summarizes the whole procedure:

Algorithm 11.14 Correlated Randomness Key Exchange
Input: Bitstrings A for Alice and B for Bob, 0 < a, 5,¢ < 0.5
Result: Alice and Bob have a shared key with high probability

: Alice and Bob determine the number of rounds based on «, 5 and €
, B = AdvantageDistillation(A,B) as in in Algorithm 11.5
, B = InformationReconciliation(A, B) as in in Algorithm 11.8

, B = hash(A), hash(B), as in Definition 11.13

NN

Remarks:

e Overall, this protocol is very complicated and takes many messages
to agree on a key. Is there a better way?

11.6. DIFFIE HELLMAN KEY EXCHANGE 7

11.6 Diffie Hellman Key Exchange

Definition 11.15 (Primitive Root). Let p € N be a prime. g € N is a primitive
root of p if the following holds: For every h € N, with 1 < h < p, there is a
k€N s.t. g =h mod p.

Example 11.16. g = 2 is a primitive Toot of p = 5, because 2! = 2 mod 5,
22 = 4 mod 5, 22 = 3 mod 5, and 2* = 1 mod 5. There exists one more
primitive root of 5.

Algorithm 11.17 Diffie-Hellman Key Exchange
Input: Publicly known prime p and a primitive root g of p.
Result: Alice and Bob agree on a common secret key.

1: Alice picks a secret key k4 € {1,2,...,p — 1} and sends A = ¢g"4 mod p to
Bob.

2: Bob picks a secret key kp € {1,2,...,p— 1} and sends B = g*® mod p to
Alice.

3: Alice calculates K = B4 mod p

4: Bob calculates K = A*® mod p

Example 11.18 (Algorithm 11.17 with p = 5 and g = 2). Let’s assume that
Alice picks ka = 2 and Bob picks kg = 3. Thus, Bob receives A = 2% mod 5 =
4 and Alice receives B = 2% mod 5 = 3. Then, Bob calculates 42 mod 5 = 4,
and Alice calculates 32 mod 5 = 4. Hence, Alice and Bob have agreed on the
common secret key of 4.

Theorem 11.19. In Algorithm 11.17, Alice and Bob agree on the same key K.

Proof. Everything mod p, we have

K = Bk = (ng)kA = ghpka = ghake — (gkA)kB = A*" = K mod p.

Remarks:

e There are sophisticated methods to quickly find primitive roots, but
they are beyond the material covered in this chapter.

o How secure is Algorithm 11.177 It relies on the assumption that
the computational problem if finding the discrete logarithm is hard to
solve.

Definition 11.20 (Discrete Logarithm Problem). Let p € N be a prime, and
let g,a € N with 1 < g,a < p. The discrete logarithm problem is defined as
finding an x € N with ¢ = a mod p.

8 CHAPTER 11. (QUANTUM) KEY DISTRIBUTION

Remarks:

e Intuitively, the best approach to calculate the common secret key of
Algorithm 11.17 from the publicly known p, g, g4, g*5 is to solve the
discrete logarithm problem. This is also the best known attack.

e However, for some classes of primes there are better attacks, which is
why one often resorts to so-called safe primes p, where p’ = (p —1)/2
is also a prime.

e The game changes with quantum computing: Shor’s algorithm for
quantum computers solves the discrete logarithm in polynomial time.

e Shor’s algorithm also solves the factorization problem, which is used
in RSA systems. In other words, both dominant asymmetric cryp-
tographic systems will be broken with the availability of a quantum
computer.

11.7 More Crypto

Is everything solved now that we exchanged a key? Nope. Additionally, crypto
systems implement at least these functions:

e Encryption: How do we use an exchanged key to make our message
unreadable to an attacker? There are several different techniques that
could be used, for instance, One Time Pad, Bulk Encryption, Cypher
Block Chaining, Advanced Encryption Standard.

e Authentication: How does the recipient know that the message was not
tempered with? Hash-Based Message Authentication Code, Signatures.

e Certification: How can the recipient know that the sender is the person
they pretend to be? Certificate Authorities, Web of Trust.

11.8 Post Quantum Cryptography

With quantum computers solving the discrete logarithm, do we have to go back
to information theoretic approaches?

Definition 11.21 (Lattice). Let by,...b, € R™ be a basis of vectors. We
define the lattice L C R™ to be all linear combinations of this basis with integer
coefficients.

Definition 11.22 (Shortest Vector Problem). Given a lattice L for a basis
b1,...b, € R™. The shortest vector problem constitutes finding the vector in the
lattice with minimal euclidean norm to the origin. This problem is believed to
be hard, even with a quantum computer.

Remarks:

e We can formulate new computational encryption schemes where the
best known attack requires solving the Shortest Vector Problem.

e Alternatively, Alice and Bob can generate a key using quantum co-
herence.

BIBLIOGRAPHY 9

Chapter Notes

The basis of Algorithm 11.14 is by Cisszér and Korner [1], where Alice sends
bits to Bob, and Bob as well as Eve receive a noisy version of these bits. In this
setting, Alice and Bob can generate a key if Bob’s noise is smaller than Eve’s.
Ueli Maurer [2] extended the scenario to the satellite setting and allowed Alice
and Bob to communicate two way. Now they can also handle a superior Eve.
In [3] this setting was analyzed. One famous algorithm for solving the discrete
logarithm problem with a quantum computer was already formulated by Peter
Shor in the last Millenium [4].

This chapter is based on text and figures from Stefan Wolf, and written in
collaboration with Lukas Faber.

Bibliography

[1] I. Csiszar and J. Korner. Broadcast channels with confidential messages.
IEEE Transactions on Information Theory, 24(3):339-348, May 1978.

[2] U. M. Maurer. Secret key agreement by public discussion from common in-
formation. IEEE Transactions on Information Theory, 39(3):733-742, May
1993.

[3] Ueli Maurer and Stefan Wolf. Information-theoretic key agreement: From
weak to strong secrecy for free. In International Conference on the The-
ory and Applications of Cryptographic Techniques, pages 351-368. Springer,
2000.

[4] Peter W. Shor. Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer. SIAM Journal on Computing,
26(5):1484-1509, Oct 1997.

	(Quantum) Key Distribution
	Key Exchange
	Correlated Randomness
	Advantage Distillation
	Information Reconciliation
	Privacy Amplification
	Diffie Hellman Key Exchange
	More Crypto
	Post Quantum Cryptography

