

 $\mathrm{HS}\ 2019$

Prof. L. Thiele / X.He

Discrete Event Systems Exercise Sheet 7

1 Comparison of Finite Automata

Here are two simple finite automata:

For each, we have a one bit encoding for the states $(x_A \text{ and } x_B)$, one binary output $(y_A \text{ and } y_B)$, and one common binary input (u). We want to verify whether or not these two automata are equivalent. This can be done through the following steps:

- a) Express the characteristic function of the transition relation for both automaton, $\psi_r(x, x', u)$.
- b) Express the joint transition function, ψ_f . **Reminder:** $\psi_f(x_A, x'_A, x_B, x'_B) = (\exists u : \psi_A(x_A, x'_A, u) \cdot \psi_B(x_B, x'_B, u)).$
- c) Express the characteristic function of the reachable states, $\psi_X(x_A, x_B)$.
- d) Express the characteristic function of the reachable output, $\psi_Y(y_A, y_B)$.
- e) Are the two automata equivalent? Hint: Evaluate, for example, $\psi_Y(0, 1)$.

2 Temporal Logic

a) We consider the following automaton. The property a is true on the colored states (0 and 3).

For each of the following CTL formula, list all the states for which it holds true.

- (i) EF a
- (ii) EG a
- (iii) EX AX a
- (iv) EF (a AND EX NOT(a))
- b) Given the transition function $\psi_f(q, q')$ and the characteristic function $\psi_Z(q)$ for a set Z, write a small pseudo-code which returns the characteristic function of $\psi_{AFZ}(q)$. It can be expressed as symbolic boolean functions, like $\overline{x_A}x'_A\overline{x_B}x'_B + \overline{x_A}x'_Ax_Bx'_B$. **Hint:** To do this, simply use the classic boolean expression AND, OB, NOT and I = - You

Hint: To do this, simply use the classic boolean operators AND, OR, NOT and ! =. You can also use the operator PRE(Q, f), which returns the predecessor of the set Q by the transition function f. That is,

$$\mathsf{PRE}(Q, f) = \{q' : \exists q, \psi_f(q', q) \cdot \psi_Q(q) = 1\}$$

Hint: It can be useful to reformulate AFZ as another CTL formula.