Discrete Event Systems

Exercise Sheet 3

1 Pumping Lemma [Exam]

The Pumping Lemma in a Nutshell

Given a language L, assume for contradiction that L is regular and has the pumping length p. Construct a suitable word $w \in L$ with $|w| \geq p$ ("there exists $w \in L$ ") and show that for all divisions of w into three parts, $w=x y z$, with $|x| \geq 0,|y| \geq 1$, and $|x y| \leq p$, there exists a pumping exponent $i \geq 0$ such that $w^{\prime}=x y^{i} z \notin L$. If this is the case, L is not regular.

Language L_{1} can be shown to be non-regular using the pumping lemma. Assume for contradiction that L_{1} is regular and let p be the corresponding pumping length. Choose w to be the word $0110^{p} 1^{p}$. Because w is an element of L_{1} and has length more than p, the pumping lemma guarantees that w can be split into three parts, $w=x y z$, where $|x y| \leq p$ and for any $i \geq 0$, we have $x y^{i} z \in L_{1}$. In order to obtain the contradiction, we must prove that for every possible partition into three parts $w=x y z$ where $|x y| \leq p$, the word w cannot be pumped. We therefore consider the various cases.
a) If y starts anywhere within the first three symbols (i.e. 011) of w, deleting y (pumping with $i=0$) creates a word with an illegal prefix (e.g. $10^{p} 1^{p}$ for $y=01$).
b) If y consists of only 0 s from the second block, the word $w^{\prime}=x y^{2} z$ has more 0 s than 1 s in the last $\left|w^{\prime}\right|-3$ symbols and hence $c \neq d$.

Note that y cannot contain 1s from the second block because of the requirement $|x y| \leq p$.
We have shown that for all possible divisions of w into three parts, the pumped word is not in L_{1}. Therefore, L_{1} cannot be regular and we have a contradiction.

Be Careful!

The argumentation above is based on the closure properties of regular languages and only works in the direction presented. That is, for an operator $\diamond \in\{\cup, \cap, \bullet\}$, we have:

$$
\text { If } L_{1} \text { and } L_{2} \text { are regular, then } L=L_{1} \diamond L_{2} \text { is also regular. }
$$

If either L_{1} or L_{2} or both are non-regular, we cannot deduce the non-regularity of L or vice-versa. Moreover, L being regular does not imply that L_{1} and L_{2} are regular as well. This may sound counter-intuitive which is why we give examples for the three operators.

- $L=L_{1} \cup L_{2}$: Let L_{1} be any non-regular language and L_{2} its complement. Then $L=\Sigma^{*}$ is regular.
- $L=L_{1} \cap L_{2}$: Let L_{1} be any non-regular language and L_{2} its complement. Then $L=\emptyset$ is regular.
- $L=L_{1} \bullet L_{2}$: Let $L_{1}=\left\{a^{*}\right\}$ (a regular language) and $L_{2}=\left\{a^{p} \mid p\right.$ is prime $\}$ (a non-regular language) then $L=\left\{a a a^{*}\right\}$ is regular.

Hence, to prove that a language L_{x} is non-regular, you assume it to be regular for contradiction. Then you combine it with a regular language L_{r} to obtain a language $L=L_{x} \diamond L_{r}$. If L is non-regular, L_{x} could not have been regular either.

2 Deterministic Finite Automata [Exam]

We could use the systematic transformation scheme presented in the lecture (slide 1/75). Considering the large number of states, however, this will easily lead to an explosion of states in the derandomized automaton. Hence, we build the deterministic finite automaton in a step-wise manner, only creating those states that are actually required: Initially, the automaton requires a 0 . Subsequently, only a 1 is accepted. Including the various transitions, this 1 can lead to three different states, namely states 2,3 , and 4 .

In any of the states 2,3 , and 4 , only a 1 is accepted. Assume that the automaton is currently in state 2 , this 1 can lead to states $\{2,3,4\}$ when including all ε-transitions. When in state 3 , the 1 leads to states $\{2,3,4,5\}$ and finally, when being in state 4 , the reachable states given a 1 are $\{2,3,4\}$. Hence, a 1 leads from state $\{2,3,4\}$ to state $\{2,3,4,5\}$. Repeating the same process for state $\{2,3,4,5\}$, we can see that, again, only a 1 is accepted, which leads to state $\{2,3,4,5,6\}$. Because the state 6 in the original NFA was an accepting state, $\{2,3,4,5,6\}$ is also accepting in the DFA. From state $\{2,3,4,5,6\}$, an additional 1 will lead to another accepting state $\{1,2,3,4,5,6\}$. And from this state, any subsequent 1 returns to state $\{1,2,3,4,5,6\}$ as well.

What happens if a 0 occurs in the input? This is feasible only when the deterministic state includes either state 1 or state 6 . In state $\{2,3,4,5,6\}$, a 0 necessarily leads to state $\{4\}$, whereas in state $\{1,2,3,4,5,6\}$ a 0 leads to state $\{2,4\}$. In both of these states, the only acceptable input symbol is a 1 and leads to the state $\{2,3,4\}$. Hence, the deterministic finite automaton looks like this:

It can easily be seen, that first the states $\{4\},\{2,4\}$ and then the states $\{2,3,4,5,6\},\{1,2,3,4,5,6\}$ can be merged and hence, the automaton can be reduced to the one shown in the next figure.

This is not a DFA yet, because the crash state is still missing. The final deterministic automaton looks like this:

3 Transforming Automata [Exam]

The regular expression can be obtained from the finite automaton using the transformation presented in the script on slide $1 / 85$. After ripping out state q_{2}, the corresponding GNFA looks like this:

After also removing state q_{1}, the GNFA looks as follows.

Eliminating the last state q_{3} yields the final solution, which is $\left(01^{*} 0\right)^{*} 1\left(0 \cup 11^{*} 0\left(01^{*} 0\right)^{*} 1\right)^{*}$.
Note: Ripping out the interior states in a different order yields a distinct yet equivalent regular expression. The order q_{3}, q_{2}, q_{1}, for example, results in $\left(\left(0 \cup 10^{*} 1\right) 1^{*} 0\right)^{*} 10^{*}$.

4 Regular and Context-Free Languages

a) Sometimes, even simple grammars can produce tricky languages. We can interpret the 1 s and 2s of the second production rule as opening and closing brackets. Hence, $L(G)$ consists of all correct bracket terms where at least one 0 must be in each bracket.

Choose $w=1^{p} 02^{p} \in L(G)$. Let $w=x y z$ with $|x y| \leq p$ and $|y| \geq 1$ (pumping lemma). Because of $|x y| \leq p, x y$ can only consist of 1 s. According to the pumping lemma, we should have $x y^{i} z \in L$ for all $i \geq 0$. However, by choosing $i=0$ we delete at least one 1 and get a word $w^{\prime}=1^{p-|y|} 02^{p}$ with $|y| \geq 1$. w^{\prime} is not in L since it has fewer 1 s than 2 s . This means that w is not pumpable and hence, $L(G)$ is not regular.
b) Since every regular language is also context-free, we can choose an arbitrary regular language. For example, we can choose the language $L=\left\{0^{n} 1, n \geq 1\right\}$ which is clearly regular. A context-free grammar for this language uses only the production $S \rightarrow 0 S \mid 1$.

5 Context-Free Grammars

a) An example for a grammar G producing the language L_{1} is $G=(V, \Sigma, R, S)$ with

$$
\begin{aligned}
V & =\{X, A\} \\
\Sigma & =\{0,1\} \\
R & =\left\{\begin{array}{c}
X \rightarrow X A X \mid A \\
A \rightarrow 0 \mid 1
\end{array}\right\} \\
S & =X
\end{aligned}
$$

Note: The language is regular!
b) A rather natural grammar generating L_{2} uses the following productions:

$$
\begin{aligned}
& S \rightarrow A 1 A \\
& A \rightarrow A 1|1 A| A 01|0 A 1| 01 A|A 10| 1 A 0|10 A| \varepsilon
\end{aligned}
$$

Another slightly more complicated solution yielding simpler productions looks as follows:

$$
\begin{aligned}
& S \rightarrow A 1 A \\
& A \rightarrow A A|1 A 0| 0 A 1|1| \varepsilon
\end{aligned}
$$

The idea of both grammars is to first ensure that there is at least one 1 more and then have a production that generates all possible strings with the same number of 0 s and 1 s or further 1 s at arbitrary places.

6 Ambiguity

a) $\varepsilon, 0,00,(),(0), 0(),() 0,000$
b) It is ambiguous, because the word 00 has two different leftmost derivations.

$$
\begin{array}{rlrl}
S & \rightarrow S A & S & \rightarrow S A \\
& \rightarrow A & & \rightarrow S A A \\
& \rightarrow A A & & \rightarrow A A \\
& \rightarrow 0 A & & \rightarrow 0 A \\
& \rightarrow 00 & & \rightarrow 00
\end{array}
$$

It can also be seen by taking a look at these two derivation trees that both belong to the word 00 :

Because the two derivation trees are structurewise different, the word 00 can be derived ambiguously from G.

Ambiguity of Grammars

Definition: A string s is derived ambiguously in a context-free grammar G if it has two or more different leftmost/rightmost derivations (or two structurewise different derivation trees). Grammar G is ambiguous if it generates some string ambiguously.
A leftmost/rightmost derivation replaces in every step the leftmost/rightmost variable.
Example: The grammar with the productions ' $S \rightarrow S \cdot S|S+S| a$ ' is ambiguous since the string $s=a \cdot a+a$ has two different leftmost derivations.

$$
\begin{array}{rlrl}
S & \rightarrow S \cdot S & S & \rightarrow S+S \\
& \rightarrow a \cdot S & & \rightarrow S \cdot S+S \\
& \rightarrow a \cdot S+S & & \rightarrow a \cdot S+S \\
& \rightarrow a \cdot a+S & & \rightarrow a \cdot a+S \\
& \rightarrow a \cdot a+a & & \rightarrow a \cdot a+a
\end{array}
$$

Intuitively, the derivation on the left corresponds to the arithmetic expression $a \cdot(a+a)$ because we first derive a product and then substitute one factor by a sum while the derivation on the right corresponds to $(a \cdot a)+a$ because we first have a sum and then substitute one summand by a product.
The productions of an equivalent non-ambiguous grammar are $A \rightarrow S+a|S \cdot a| a$.

