
Computer Engineering and
Networks Laboratory

Computer Engineering Group (TEC)

HS 2019 Prof. L. Thiele / X.He

Discrete Event Systems
Solution to Exercise Sheet 7

1 Comparison of Finite Automata

Here are two simple finite automata:

y_A=0

A

u=0

x_A=0

y_A=1

u=0

u=1

u=1

x_A=1

y_B=1

B

u=0

x_B=0

y_B=0

u=1

u=1

u=0

x_B=1

For each, we have a one bit encoding for the states (xA and xB), one binary output (yA and
yB), and one common binary input (u). We want to verify whether or not these two automata
are equivalent. This can be done through the following steps:

a) Express the characteristic function of the transition relation for both automaton, ψr(x, x′, u).

b) Express the joint transition function, ψf .
Reminder: ψf (xA, x

′
A, xB , x

′
B) = (∃u : ψA(xA, x

′
A, u) · ψB(xB , x

′
B , u)).

c) Express the characteristic function of the reachable states, ψX(xA, xB).

d) Express the characteristic function of the reachable output, ψY (yA, yB).

e) Are the two automata equivalent? Hint: Evaluate, for example, ψY (0, 1).

a) ψA(xA, x
′
A, u) = xAx′Au+ xAx

′
Au+ xAx

′
Au+ xAx′Au

ψB(xB , x
′
B , u) = xBx′Bu+ xBx

′
Bu+ xBx

′
Bu+ xBx′Bu

b) ψf (xA, x
′
A, xB , x

′
B) = (xAx

′
A + xAx

′
A) · (xBx′B + xBx′B)+

(xAx′A + xAx′A) · (xBx′B + xBx
′
B)

= xAx
′
AxBx

′
B + xAx

′
AxBx

′
B + xAx

′
AxBx

′
B + xAx

′
AxBx

′
B+

xAx′AxBx
′
B + xAx′AxBx

′
B + xAx′AxBx

′
B + xAx′AxBx

′
B

c) Computation of the reachable states is performed incrementally. Starts with the initial
state of the system ψX0

(xA, xB) = xAxB and then add the successors until reaching a
fix-point,

ψX1
(x′A, x

′
B) = ψX0

(x′A, x
′
B) + (∃(xA, xB) : ψX0

(xA, xB) · ψf (xA, x
′
A, xB , x

′
B))

= x′Ax
′
B + x′Ax

′
B + x′Ax

′
B

= x′Ax
′
B + x′Ax

′
B

ψX2(x′A, x
′
B) = x′Ax

′
B + x′Ax

′
B + x′Ax

′
B + x′Ax

′
B

ψX3(x′A, x
′
B) = x′Ax

′
B + x′Ax

′
B + x′Ax

′
B + x′Ax

′
B = ψX2 → the fix-point is reached!

⇒ ψX(xA, xB) = xAxB + xAxB + xAxB + xAxB

d) Here you first need to express the output function of each automaton, that is the feasible
combinations of states and outputs,
ψgA = xAyA + xAyA and ψgB = xByB + xByB

Then the reachable outputs are the combination of the reachable states and the outputs
functions, that is,
ψY (yA, yB) = (∃(xA, xB) : ψX · ψgA · ψgB)

= yAyB + yAyB + yAyB + yAyB

e) From the reachable output function, we see that these automata are not equivalent. Indeed,
there exists a reachable output admissible (ψY ((yA, yB) = (0, 1)) = 1) for which yA 6= yB .

Another way of saying looking at it: ψY · (yA 6= yB) 6= 0,

where (yA 6= yB) = yAyB + yAyB .

2

2 Temporal Logic

a) We consider the following automaton. The property a is true on the colored states (0 and
3).

For each of the following CTL formula, list all the states for which it holds true.

(i) EF a

(ii) EG a

(iii) EX AX a

(iv) EF (a AND EX NOT(a))

(i) Q = {0, 1, 2, 3}
(ii) Q = {0, 3}

(iii) (AX a) holds for {2, 3}, thus Q = {1, 2}
(iv) (a AND EX NOT(a)) is true for states where a is true and there exists a direct successor

for which it is not. Only state 0 satisfy this (from it you can transition to 1, where a
does not hold). Moreover, state 0 is reachable for all states in this automaton (”from
all states there exists a path going through 0 at some point”) Hence
Q = {0, 1, 2, 3}

b) Given the transition function ψf (q, q′) and the characteristic function ψZ(q) for a set Z,
write a small pseudo-code which returns the characteristic function of ψAFZ(q). It can be
expressed as symbolic boolean functions, like xAx

′
AxBx

′
B + xAx

′
AxBx

′
B .

Hint: To do this, simply use the classic boolean operators AND, OR, NOT and ! =. You
can also use the operator PRE(Q, f), which returns the predecessor of the set Q by the
transition function f . That is,

PRE(Q, f) = {q′ : ∃q, ψf (q′, q) · ψQ(q) = 1}

Hint: It can be useful to reformulate AFZ as another CTL formula.

Here, the trick is to remember that AF Z ≡ NOT(EG NOT(Z)). Hence, one can compute
the function for EG NOT(Z) quite easily (following the procedure given in the lecture) and
take the negation in the end. A possible pseudo-code doing this is the following,

Require: ψZ , ψf . Equivalence in term of sets:

current = NOT(ψZ); . X0

next = current AND ψPRE(current,f); . X1 = X0 ∩ Pre(X0, f)
while next ! = current do . Xi ! = Xi−1

current = next;
next = current AND ψPRE(current,f); . Xi = Xi−1 ∩ Pre(Xi−1, f)

end while . Xf |= EG NOT(Z)
return ψAFZ =NOT(current); . Xf |= AF Z = NOT(EG NOT(Z))

3

