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1 - Synchronous Reliable Broadcast 28

2 - Quorum Systems 18

3 - Caching in a Directed Network 20

4 - Bitcoin 24

Total 90



1 Synchronous Reliable Broadcast (28 points)

In this task we investigate byzantine agreement based on synchronous reliable broadcast. All
nodes communicate in synchronous rounds. First, the nodes broadcast their input values 0 or 1
reliably (Line 1 to Line 12 of Algorithm 1). Then, the nodes decide on the agreement value.

Algorithm 1 Synchronous Reliable Broadcast + Agreement (code for node u)

1: Broadcast own input bit msg(u)
2: for all received msg(v) do
3: Broadcast echo(u,msg(v))
4: end for
5: for all echo(w,msg(v)) received from at least n− 2f nodes w do
6: if not echoed msg(v) before then
7: Broadcast echo(u,msg(v))
8: end if
9: end for

10: for all echo(w,msg(v)) received from at least n− f nodes w do
11: Accept msg(v)
12: end for
13: Decide on the majority of all accepted values

Note that all messages in the for all loop can be broadcast in parallel. Moreover, byzantine
messages which contradict the protocol will be ignored by the nodes locally. Assume there is
only one Byzantine node (f = 1) and n > 3f . Show that Algorithm 1 satisfies . . .

a) [3] termination

b) [8] agreement



c) [3] all-same-validity

From now on we assume the general case where f > 1 and n > 3f :

d) [4] Does Algorithm 1 solve byzantine agreement for large f , e.g. f > 5?

e) [10] Does Algorithm 1 solve byzantine agreement for f = 2 and n = 7?
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a) Algorithm 1 satisfies termination, because all nodes terminate with a decision after three
communication rounds.

b) The analysis is similar to Algorithm 17.9 from the lecture, where the nodes can agree on
any input value. First observe that all correct nodes will accept all correct input values: due
to synchrony, all correct values will arrive at all correct nodes after the first communication
round, and, therefore, all correct nodes will echo this value; all correct nodes will get n−f
echos and accept the values.

Assume now that the byzantine node broadcasts a value. Each correct node will echo the
respective value in the next round. Observe that the byzantine node can only echo the
same value as it sent to the respective node, otherwise the correct node does not have to
consider this value. Assume now that a correct node has accepted a byzantine value, e.g.
0, then it has received at least n− 2f echos for 0 from correct nodes in the previous two
rounds. Therefore, all other correct nodes will have received n− 2f echos for 0 from these
correct nodes as well, and will have accepted the byzantine value too.

c) Assume that all correct nodes have the same input value, e.g. 1. All nodes will accept
the value 1 from at least n − f nodes. Since the values are binary, the byzantine party
can only make sure that the correct nodes accept the opposite value 0 exactly once. Since
n− f > 2f

d) In the general case, agreement is not satisfied. If it was, Algorithm 1 would solve byzantine
agreement in three rounds. For f > 5 this is a contradiction to the lower bound of f + 1
rounds of Section 17.4 in the lecture.

e) Also for f = 2 Algorithm 1 does not solve byzantine agreement. Observe first that all input
values from the correct nodes will be accepted by all correct nodes (already proven in b)).
A byzantine value does not have to be accepted by all nodes: assume that a byzantine b1
node sends its value to exactly two correct nodes in the first round, we call these nodes c1
and c2. All correct nodes will receive the two echos from c1 and c2 for the value of b1 in
the second round. Note that b1 has to echo the same value that it sent to the respective
node in the second round and can therefore not change the number of echos. This can be
done by the second byzantine node b2. Since a correct node accepts a message if it hears
at least 5 echoes, b2 can send an echo to two other correct nodes (not c1 or c2). These
two nodes, we call them c3 and c4, will hear three echos in the second round and send an
echo themselves. In Line 10, c3 and c4 will receive 5 echos for the value from b1. All other
correct parties will receive less echos (one or four).

Assume now that the input value of c3 and c4 is 0, and the value of all other correct nodes
is 1. The byzantine parties can use the strategy above to make sure that c3 and c4 accept
two additional values 0 from the byzantine nodes, thus deciding on 0. The other correct
nodes will only accept the values of the correct nodes thus deciding on 1.



2 Quorum Systems (18 points)

Consider a quorum system consisting of n = m2 server nodes arranged in a square. In this
square, each quorum consists of a row and the diagonal starting in the leftmost node of the row.
(The quorum in the top row does not have a diagonal anymore.) Two such quorums are shown
in the figure:

Q2

Q1

a) [6] Under a uniform access strategy, what is the resilience of the quorum system? (Please
be precise, if the resilience for example is 2 log n+1, write 2 log n+1 and not just O(log n).)



We want to use our quorum system for a locking service. At any time, a client can ask an
arbitrary quorum for a lock (as soon as possible). Each node in the quorum will then answer
with the earliest 10 second interval the node has not sent to any client. The client waits for
an answer from all nodes in its quorum, and chooses the latest 10 second interval in this set of
answers. We assume that all nodes and clients are completely reliable and fast. We also assume
that messages are asynchronous but fast.

b) [6] Show that this locking system is not correct, as it may happen that two clients get
the lock for the very same time.

Let us adapt the locking system: When a quorum node u receives a request by a client c, the
quorum node u first answers the client c (as before), and then exchanges its answer with the
other nodes of the quorum the client c queried (all nodes of the quorum send a message to all
nodes of the quorum). In particular, node u waits with answering a next client until it knows
what every node of the quorum answered to client c.

c) [6] Is the locking system now correct?
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a) Given that there are m quorums and each quorum overlaps with each other in one node,
it is enough that m/2 nodes overlapping two different quorums fail for all the quorums to
fail. Therefore, the resilience of the system is R = dm/2e − 1.

b) We can illustrate why this locking system is not correct with a simple example. If one
quorum is locked and two clients access two other different quorums at approximately
the same time, they will receive the same time notifications. More specifically, they will
get from the free nodes the current time as the next available time and from the nodes
overlapping with the locked quorum the time the lock is released. Then, they will both
access the system at the time the lock is release, producing a collision, which shows that
this locking system is not correct.

c) The new adapted locking system will not work either. To see why we need to consider the
case where two clients c1 and c2 access the same quorum at the same time or almost the
same time. In this case, when c2 access a node u1 that has been firstly accessed by client
c1, the node u1 will wait for a notification from all other nodes containing the answer that
they gave to c1 before answering to c2. However, a node u2 that was firstly accessed by
c2 will wait for the answer of all other nodes to c2 before answering c1. In this way, u1
will not answer c2 until it receives the notification from u2, but in turn u2 will not send
this notification because it will wait for u1 to notify his answer to c2, which produces a
deadlock. This shows that this locking system is not correct.



3 Caching in a Directed Network (20 points)

Recall the selfish caching game on graphs with constant demand 1. The cost of node v is 1 if v
caches the file, and cv←u if v does not cache, where cv←u is the shortest path length from v to
a caching node u. If no accessible node caches the file, then node v incurs a cost +∞.

In this exam question, we are interested in finding a Nash Equilibrium algorithm of the selfish
caching game for directed graphs.

Consider the following example with the distance between two adjacent nodes of the outer square
equal to 3

4 and cv←e = 5
4 for v ∈ {a, b, c, d}.

a b

cd

e

a) [5] What are all the pure Nash Equilibria in this example?

b) [7] Give one mixed Nash Equilibrium in this example.



[continue b)]

c) [4] Can you flip the direction of a single edge of the graph so that the network has only
one pure Nash Equilibrium?

d) [4] Find a directed graph that does not have any pure Nash Equilibrium.
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Solution

a) As the central node e has no neighbor, it has to cache the file. An outer node will cache the
file if and only if its outer neighbor does not cache it, since any other node has a distance
larger than 1. Thus, the two possible pure NE are when (a, c, e) or (b, d, e) are caching.

b) Node e still caches with probability 1, but all other nodes have a mixed strategy. Indeed,
if an outer node has a deterministic strategy, every other node would follow their best
response, and it would not be a mixed NE anymore. Let us consider an outer node caching
with probability p. Since its predecessor should get the same payoff whether it caches or
not, we know that p has to satisfy :

1 = p
3

4
+ (1− p)5

4

which gives p = 1
2 . This is true for all nodes, and thus each outer node caches with

probability 1
2 .

c) • The social optimum is reached for the two pure NE. The cost is given by 3+2× 3
4 = 9

2 .

• The worst NE is the mixed one. The expected cost is given by 1+
∑

v∈{a,b,c,d} E[cost(v)]
which is equal to 5.

Thus, the Price of Anarchy is given by :

PoA =
Cost(NE )

Cost(SO)
=

10

9

d) We can flip the edge (a, d) and make the graph acyclic. Thus the decision of each node
does not impact the strategy of any node it has access to, and knowing the strategy of
those node it can access yields a unique best response. So (b, d, e) is the only NE of this
graph.

e) We can take this example :

a b

c

with a distance 3
4 between two nodes.

It is impossible to have two or more nodes caching at the same time, since one of them
would want to change its strategy as its parent caches. Also, it is impossible to have only
one node caching, as one of the other nodes would be at distance 3

2 and would better cache
the file. Finally, it is impossible that no node is caching as any node would change its
decision to avoid the +∞ cost.



4 Bitcoin (24 points)

Background: In Bitcoin, every node has its own clock. We assume that the clock skew of honest
miners is at most 1 hour. Every block contains a timestamp specified by the miner who mined
that block. A newly mined block is accepted only if its timestamp is strictly greater than the
median timestamp of the previous 11 blocks, and less than node local time+2 hours (timestamp
bounding consensus rule).

The protocol tries to keep an expected block interval (time between two blocks) of 10 minutes.
To achieve this, the mining difficulty parameter is adjusted every 2016 blocks (∼ 2 weeks). Let’s
call this 2016 consecutive blocks a period. The difficulty adjustment is based on how long it took
to mine the period. More precisely:

new difficulty = old difficulty · expected time

elapsed time

where:
• expected time = 2016× 10× 60 seconds

• elapsed time = max timestamp(period)−min timestamp(period)

a) [4] If more miners enter the Bitcoin ecosystem during a period, does the difficulty para-
meter for the next period increase or decrease?

b) [4] If there was no upper bound on an accepted block’s timestamp, how could an adver-
sarial miner affect the difficulty parameter?

Assume an attacker manages to make timestamps in 4032 consecutive blocks look like this:

[t0, t0 + 1, t0 + 2, ..., t0 + 2014, t1︸ ︷︷ ︸
2016 blocks (period1)

, t0 + 2016, t0 + 2017, ..., t0 + 4030, t2︸ ︷︷ ︸
2016 blocks (period2)

]

where:
• t0 = time snapshot at some arbitrary moment

• t0 + 1 = t0 plus 1 second

• t1 = t0 + (2016× 10× 60) seconds

• t2 = t0 + 2× (2016× 10× 60) seconds



c) [4] In this attack, what happens to the difficulty parameter at the end of period2?

d) [3] Did the max timestamp(period2) drift far from “real time”?

e) [3] Did the min timestamp(period2) drift far from “real time”?

f) [3] Why wouldn’t the attacker set t1 to just be t0 + 2015?

g) [3] Why is this kind of attack not a big cause for concern?
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a) If more miners enter the ecosystem, blocks are generated faster than 1 block per 10 minutes.
This will cause elapsed time to go smaller than expected time, and thus difficulty will
increase.

b) An adversarial miner could add a far-future-timestamp to one of his blocks, and this
would cause elapsed time to be much larger than expected time, and that would lower
the difficulty considerably.

c) At the end of t2, we have elapsed time ≈ 2 × expected time. This causes difficulty to
decrease approximately by a factor of 2.

Additional note on difficulty adjustment (not expected in an answer): Bitcoin has
safeguards to ensure that difficulty cannot go up or down by more than a factor of 4. But
a 50% reduction of difficulty is also quite bad. If this continues for a few more periods,
Bitcoin mining will become unreasonably easy (the opposite of difficult), and that’s not a
good thing.

Additional note on the attack (not expected in an answer): To execute this attack,
we need a period where the lowest time is as close to t0 as allowed and the highest time
is t2. Without loss of generality, we can assume that at the start of the first period, the
timestamp is t0 and it is the “correct time.” To get t2 into this period, we need to have
some block that has a timestamp that is t0 + 2 × (2016 × 10 × 60). All nodes will reject
this block because it’s too far out in the future (the upper bound is Network time + 2
hours). So, breaching the upper bound on the timestamps is a not possible. Breaching the
lower bound, on the other hand, can be done with 2 periods. Note that the timestamp of a
block is valid if it is greater than the median of the last 11 timestamps. In the first period,
it’s possible to keep all but the last timestamp as close to t0 as possible without violating
the timestamp bounding consensus rule by incrementing each block’s timestamp by just 1
second. The last timestamp of the period (t1) is set to the “correct time” to ensure that
t1− t0 ≈ expected time so that difficulty doesn’t increase at the end of the first period. In
the second period, we again start as close to t0 as possible (t0 + 2016) without violating
the timestamp bounding consensus rule because the median of many timestamps close to
t0 and one t1 is still closer to t0. Now that we are in the actual time range above t1, we
can get to t2 in this time period without going too far into the future. This gets us both
t0 + ε and t2 in the same time period - this pulling the time warp attack.

d) No. max timestamp(period2) is close to “real time”. max timestamp(period2) is t2, which
is t0 + 2× (2016× 10× 60), is 2 periods after t0. As difficulty of mining has not changed
till the end of t2, “real time” would have also advanced to around the same time.

e) Yes. min timestamp(period2) has drifted far from “real time”. The attacker did this by
manipulating the timestamps of period1 such that the median of the last 11 timestamps
never increases too much. This way, period2’s timestamps start closer to t0 rather than t1
(which it would, in the absence of this attack).

f) t1 has to be t0 + (2016 × 10 × 60) to avoid difficulty going up at the end of period1. The
objective of the attack is to bring down the difficulty.

g) To force timestamps to all be a known low value requires that more than 50% miners are
acting together for a substantial amount of time. If this were true, we have other larger
problems like double-spending attacks to worry about. Additionally, this attack would be
visible in public, and miners could be incentivized by timelocked transactions that reward
them if they advanced the time to the right values.
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