
Distributed
 Computing

HS 2020 Prof. R. Wattenhofer

Computational Thinking

Sample Solutions to Exercise 7 (Hashing)

1 Robin Hood Probing

a) Suppose a collision happens and the two objects have probe sequence lengths (psl) i and j.
No matter which object we choose to keep in the bucket, the other object will travel the
same length in its probing sequence from that point on, denoted k, since the next empty
bucket is the same for both objects. Therefore, the sum of the probe sequence length will
remain the same and equal to i+ j + k. Thus, the expected value of the psl does not change
with the Robin Hood modification.

b) Every time we have two colliding objects, we move the one with the shorter psl. Since linear
probing suffers from primary clustering, both object from this point on will need the same
number of probes to find an empty bucket. Thus, the longest psl cannot be longer since we
started with the shorter psl.

c) Similarly to the previous question, it is easy to see that the shortest psl will be larger
compared to the hashing with linear probing. Thus, the variance decreases. More formally,
suppose we have two colliding objects k1 and k2 and their corresponding probing sequence
length (in collision) are i and j, respectively, where i < j. Then we have three possibilities:

• i < j < E(psl): If we move k1 then the variance will decrease more than in the case we
moved k2.

• i < E(psl) < j: If we move k1 we decrease the variance, while if we move k2 we increase
it.

• E(psl) < i < j: If we move k1 we increase the variance less than if we move k2.

Thus, in any case, moving the object with the smallest probing sequence position is beneficial
towards decreasing the variance of the psl.

2 Hashing with Probing: Deletion

a) Suppose we had a collision when inserting k2 as the bucket h1(k2) was taken by k1, so k2
was inserted in h2(k2). If we do the naive removal of k1 and later search for k2, the search
function finds the bucket h1(k2) is empty and returns before finding k2.

b) If we delete an object, we mark the bucket with a special flag. We can insert new keys in
flagged buckets normally (like in empty buckets). The search operation stops when we find
an empty bucket that is not flagged.

c) Although the table might be almost empty, we still have to go through the entire probing
sequence we used to insert the objects. Thus, the search operation can be very inefficient.
At the worst case we have to go through the entire table.

d) Instead of flagging buckets after removal, we do the following to delete a key: locate the
key k you want to delete in some bucket b. Then do another linear probing through buckets
b + 1, b + 2, . . . until you find either an empty bucket or a bucket c where some key k′ was
placed with the first probe: c = h1(k′). Then, delete k and shift backwards by one bucket
all the keys between b + 1 and c− 1. Mark c− 1 as empty.

This works if we use Robin Hood insert from the previous exercise. Otherwise, if there is a
key in bucket c, there might be some keys that ”jumped over” c that we need to shift too. In
this case, we probe until the first empty bucket and shift all keys except those placed with
the first probe (but using Robin Hood insert should be simpler).

3 Not Quite Universal Hashing

Consider two keys k1 = (0, . . . , 0) and k2 = (1, 1, 0, . . . , 0). Then ha(k1) = 0 for all a, and
ha(k2) = 0 ⇔ a1 + a2 ≡ 0 mod m. Since we assume a1, a2 > 0, this means a2 = m − a1. There
are m − 1 possible values of a1, each associated with a unique a2 where ha(k2) = 0. Hence,
Pr[ha(k1) = ha(k2)] = 1

m−1 > 1
m .

2

	Robin Hood Probing
	Hashing with Probing: Deletion
	Not Quite Universal Hashing

