Chapter 3

Cryptography

In Chapter 2 we learned that some functions are really hard to compute. This
might seem like terrible news. On the flip side, it enables modern cryptography!

3.1 Encryption
We start with the oldest problem in cryptography: How can we send a secret
message?

Definition 3.1 (Perfect Security). An encryption algorithm has perfect secu-
rity, if the encrypted message reveals no information about the plaintext message
to an attacker, except for the possible mazimum length of the message.

Remarks:

e If an encryption algorithm offers perfect security, any plaintext mes-
sage of the same length could have generated the given ciphertext.

e Sometimes perfect security is also called information-theoretic secu-
rity.

e Is there an algorithm that offers perfect security?

m = plaintext message Alice wants to send to Bob
k = random key known by Alice and Bob, with len(k) = len(m)

¢ = ciphertext, the encrypted message m

def encrypt_otp_Alice(m,k)
Alice sends c=m@®k to Bob # & = XOR

def decrypt_otp_Bob(c, k)
Bob computes m' =c® k

Algorithm 3.2: One Time Pad

45

46 CHAPTER 3. CRYPTOGRAPHY

Remarks:

e In cryptography, it’s always Alice and Bob, with a possible attacker
Eve.

Theorem 3.3. Algorithm 3.2 is correct.
Proof. m' =c®k=(mok)®k=m. O
Theorem 3.4. Algorithm 3.2 has perfect security.

Proof. Given a ciphertext ¢, for every plaintext message m there exists a unique
key k that decrypts ¢ to m, that is m = ¢®k. Therefore, if k is uniformly random,
every plaintext is equally likely and thus, ciphertext ¢ reveals no information
about plaintext m. O

Remarks:

e Algorithm 3.2 only works if the message m has the same length as the
key k. How can we encrypt a message of arbitrary length with a key
of fixed length?

e Block ciphers process messages of arbitrary length by breaking them
into fixed-size blocks and operating on each block.

m,k,c as defined earlier, now with len(k) << len(m)

def encrypt_ECB(m,k)

Split m into r len(k)-sized blocks mi,ma,...,m,
for ¢=1,2,3,...,r:

c=m; Dk
c=c1;¢C;...;¢, # ; stands for concatenation
return c

Algorithm 3.5: Electronic Code Book

Remarks:

e In Algorithm 3.5, blocks of the same plaintext result in the same
ciphertext, because the same key k is reused to encrypt every block.
Furthermore, reusing the same key reveals information about m; and
mo: Suppose you have two messages mi, ms encrypted with the same
key k, resulting in ¢, co. We now have ¢; @co = (m1 ©k) D (me®k) =
my & my. So, reusing the same key k in Algorithm 3.2 is insecure.

But there are better block based encryptions. AES (Advanced En-
cryption Standard) is the current state of the art.

For encryption, Alice and Bob need to agree on a key k first! While
this may be feasible for, e.g., secret agents, it is quite impractical for
everyday usage.

— notebook

3.2. KEY EXCHANGE 47

3.2 Key Exchange
How to agree on a common secret key in public, if you never met before?

Definition 3.6 (Primitive Root). Let p € N be a prime. Then g € N is a — notebook
primitive root of p if the following holds: For everyy € N, with 1 <y < p, there
is an x € N such that g° =y mod p.

p = publicly known large prime number — notebook

g = publicly known primitive Toot of p

def Diffie_ Hellman_Alice():
Pick a random secret key a € {1,2,...,p— 1}
Send k, = ¢* mod p to Bob
Receive k; from Bob
Calculate k = (kp)® mod p

Diffie_Hellman_Bob():

same as Alice, swapping all a,b.

de

h

Algorithm 3.7: Diffie-Hellman Key Exchange
Theorem 3.8. In Algorithm 3.7, Alice and Bob agree on the same key k.

Proof. Everything mod p, we have

k= (k)" = (g")" = g"* = g"" = (¢")" = (ko) = k.

Remarks:

e Algorithm 3.7 does not have perfect security, but instead only com-
putational security.

Definition 3.9 (Computational Security). An algorithm has computational se-
curity, if it is secure against any adversary with polynomial computational re-
sources.

Remarks:

e The definition of security differs from one cryptographic primitive to
another (e.g., encryption, signatures, etc.).

e The computational security of Algorithm 3.7 is based on the difficulty
of the discrete logarithm.

Problem 3.10 (Discrete Logarithm or DL). Given a prime p € N, a primitive
root g of p, and y € N with 1 <y < p, find an x € N such that g* =y mod p.

48 CHAPTER 3. CRYPTOGRAPHY

Problem 3.11 (Decisional Diffie-Hellman or DDH). Given a prime p € N, a
primitive root g of p, and g%, g°, g¢ € N with 1 < g%, g, g° < p, decide if c = a-b.

Lemma 3.12. DDH < DL.

Proof. We just compute the discrete logarithms of g%, g%, ¢¢ to decide if ¢ =
a-b O

Remarks:

e The discrete logarithm assumption states it is infeasible to solve DL
given computationally bounded resources.

e We have no proof that DL is hard, but there is no known efficient
algorithm.

e Conversely, modular exponentiation can be done in polynomial time
using repeated squaring.

e The decisional Diffie-Hellman assumption states it is difficult to solve
DDH.

Lemma 3.13. Algorithm 3.7 is secure against passive adversaries under the
DDH assumption.

Proof. There is a polynomial-time reduction from breaking passive security of
Diffie-Hellman key exchange to violating the DDH assumption. Intuitively, the
additional information obtained for the key k = ¢® by an eavesdropper in
Algorithm 3.7, can be used to distinguish whether ¢ = a-b. We omit the proof as
it is advanced, but similar security proofs will be introduced in Section 3.8. O

Remarks:

e Passive security means that any eavesdropping adversary cannot ex-
tract from the ciphertext significantly more information for the en-
crypted message than someone with access only to the message length.

e What about stronger adversaries?

Definition 3.14 (Man in the Middle Attack). A man in the middle attack is
defined as an adversary Eve deciphering or changing the messages between Alice
and Bob, while Alice and Bob believe they are communicating directly with each
other.

Theorem 3.15. The Diffie-Hellman Key Exchange from Algorithm 3.7 is vul-
nerable to a man in the middle attack.

Proof. Assume that Eve can intercept and relay all messages between Alice and
Bob. That alone does not make it a man in the middle attack, Eve needs to be
able to decipher or change messages without Alice or Bob noticing. Indeed, Eve
can emulate Alice’s and Bob’s behavior to each other, by picking her own o/, V/,
and then agreeing on common keys g*?’, g?¢" with Alice and Bob, respectively.
Thus, Eve can relay all messages between Alice and Bob while deciphering
and (possibly) changing them, while Alice and Bob believe they are securely

communicating with each other. O

— notebook

3.3. PUBLIC KEY CRYPTOGRAPHY 49

Remarks:

e It is a bit like concurrently playing chess with two grandmasters: If
you play white and black respectively, you can essentially let them
play against each other by relaying their moves.

e How do we fix this? One idea is to personally meet in private first,
exchange a common secret key, and then use this key for secure com-
munication. However, having a key already completely defeats the
purpose of a key exchange algorithm.

e Can we do better? Yes, with public key cryptography.

3.3 Public Key Cryptography

Definition 3.16 (Public Key Cryptography). A public key cryptography system
uses two keys per participant: A public key k,, to be disseminated to everyone,
and a secret (private) key ks, only known to the owner. A message encrypted
with the public key of the intended receiver can be decrypted only with the corre-
sponding secret key. Also, messages can be digitally signed; a message verifiable
with a public key must have been signed with the corresponding secret key.

Remarks:

e Popular public key cryptosystems include RSA, Elliptic Curve Cryp-
tography, etc.

e We study a public key cryptosystem based on the discrete logarithm
problem.

e In Diffie-Hellman Key Exchange algorithm (Algorithm 3.7), Alice picked
a secret number a and computed a public number k, = ¢* mod p
which Alice sent to Bob. We use the exact same idea in Algorithm
3.17 to generate a pair of public and secret keys (kp, k).

p,g as defined earlier

def generate_key():
Pick a random secret key ks € {1,2,...,p— 1}
kp = g* mod p

return kp, ks

Algorithm 3.17: Key Generation

3.4 Digital Signatures

Definition 3.18 (Digital Signature Scheme). A digital signature scheme is a
triple of algorithms:

50 CHAPTER 3. CRYPTOGRAPHY

e A key generation algorithm that outputs a public/secret key pair ky, ks.

e A signing algorithm that outputs a digital signature o on message m using
a secret key k.

o A wverification algorithm that outputs True if the signature o on the mes-
sage m is valid using the public key k, of the signer, and False otherwise.

A digital signature scheme should be correct, and unforgeable.

Definition 3.19 (Correctness). A signature scheme is correct if the verification
algorithm on input o,m, k, returns True only if o is the output of the signing
algorithm on input m, k.

Definition 3.20 (Unforgeability). A signature scheme is unforgeable if no ad-
versary can produce a valid message-signature pair without receiving it from
external sources.

Remarks:

e All algorithms (key generation, signing, and verification) should be
efficient, i.e., computable in polynomial time.

e Digital signatures offer authentication (the receiver can verify the ori-
gin of the message), integrity (the receiver can verify the message
has not been modified since it was signed), and non-repudiation (the
sender cannot falsely claim that they have not signed the message).

e Widely known signature schemes are ElGamal, Schnorr, and RSA.

p,g,m as defined earlier

h = cryptographic hash function like SHA256
ky k
s,r = the signature sent by Alice

= Alice's public/secret key pair

def sign_Alice(m, k) :
Pick a random z € {1,2,...,p—1}
r=g" modp
s=a-h(m)—ks-r modp—1
return s,r # signature o = (s,7)

def verify Bob(m,s,r, k) :
return 7h(m) == ky, - g° mod p

Algorithm 3.21: ElGamal Digital Signatures

Theorem 3.22. The ElGamal digital signature scheme (Algorithms 3.17, 3.21)
s correct.

3.4. DIGITAL SIGNATURES 51

Proof. The algorithm is correct, meaning that a signature generated by (an
honest) Alice will always be accepted by Bob. That is because,

k; gt = g,.ks ,gr-h(m)fksﬂ‘ _ g7'~k5.+1‘~h(7n)*ks‘7‘ _ gm-h(m) — M) nod P

O

Remarks:

e The random variable x in Line 7 is often called a nonce — a number
only used once.

e Writing “mod p—1” in Line 9 is not a typo. In the exponent, we always
compute modulo p — 1, since that will make sure that values larger
than p — 1 will be truncated because of Fermat’s Little Theorem (see
below, Theorem 3.23).

e The function A() in Line 9 is a so-called cryptographic hash function.

Theorem 3.23 (Fermat’s Little Theorem). Let p be a prime number. Then,
for any x € N: 2P =z mod p. If x is not divisible by p, then =" =1 mod p.

Definition 3.24 (Cryptographic Hash Function). A cryptographic hash func-
tion is a function that maps data of arbitrary size to a bit array of a fizved size
(the hash value or hash). A cryptographic hash function is easy to compute
but hard to invert.

Remarks:

e A hash function is deterministic: the same message always results in
the same hash value.

e Being hard to invert can be formalized:

Definition 3.25 (Collision Resistance). Weak collision resistance: Given an
input x, it is difficult to find a different input ' such that h(z) = h(z'). Strong
collision resistance: It is difficult to find two different values x and x’ such that

h(z) = h(z').

Definition 3.26 (One-Way). A function that is practically infeasible to invert
is called one-way.

Remarks:

e SHA2, SHA3 (Secure Hash Algorithm 2/3), RIPMED, and BLAKE
are some example families of cryptographic hash functions. SHA256
is a specific implementation of the SHA2 construction which outputs
a 256 bit output for arbitrary sized inputs. Earlier constructions like
MD5 or SHA1 are considered broken/weak now.

Lemma 3.27. One-way < strong collision resistance.

52 CHAPTER 3. CRYPTOGRAPHY

Proof. Suppose a hash function h that is not one-way. Now, let us choose some
random value z and compute h(z). Since we can invert h(z), it is highly likely
we get another value 2/, such that @’ # x (collision). That is because a hash
function maps data of arbitrary size to fixed-size values, hence there are many
collisions (but they are typically hard to find). Thus, h is not strong collision
resistant.]

Lemma 3.28. Euxistence of one-way functions = P # NP.

Proof. Suppose there is a function f that is not one-way. We define a decision
problem (defined in Chapter 2) as follows. Given an input (Z,y), decide whether
there is an = with Z a prefix of z, such that f(z) = y. This decision problem
is not in P, otherwise for a given y one can compute in polynomial time an
x such that f(z) = y and thus f would not be one-way. This would be done
by extending the prefix (starting from the empty string) character by character
until we find . This decision problem is in NP, since given (Z,y) as input and x
as a solution, one can check in polynomial time that f(z) =y and Z is a prefix
of z. This means, that we have a decision problem that is in NP but not in P
and thus P # NP. O

Remarks:
e The existence of one-way functions is still an open problem.

Theorem 3.29. ElGamal signatures are unforgeable under the discrete loga-
rithm assumption.

Proof. To forge a signature, a malicious Bob must either find a collision in the
hash function, h(m) = h(m’) mod p—1, or extract Alice’s secret key k. There-
fore, Bob must either break the collision resistance property of the cryptographic
hash function or solve DL. Both problems are assumed to be hard.

Note that Alice must chose an x uniformly at random for each signature,
and make sure no information on x is leaked. Otherwise, security can be com-
promised. In particular, if Alice uses the same nonce z and secret key ks to sign
two different messages, Bob can compute k. O

Remarks:
e Why do we need the cryptographic hash function in Algorithm 3.217

Theorem 3.30. ElGamal signatures without cryptographic hash functions are
vulnerable to existential forgery.

Proof. Let s,7 be a valid signature on message m. Then, (s',7') = (sr,72) is — notebook

a valid signature on message m’ = rm/2 (as long a s either m or r is even),
because
B o = (gke) g = g ke L g emerky) ke k) _
bgt =) g =g"" g =g =

g™ = (gw)r'"t _ (7,2)7"'/2 _ (,r./)m/ mod p.

3.4. DIGITAL SIGNATURES 53

Remarks:

o Existential forgery is the creation of at least one message-signature
pair (m, s), when m was never signed by Alice.

Craig Wright used Satoshi Nakamoto’s key in Bitcoin and signed a
random message attempting to impersonate the famous creator of
Bitcoin. However, when Wright was asked to sign “I am Satoshi”
he could not deliver!

Similarly to digital signatures, message authentication codes are used
to ensure a message received by Bob is indeed sent by Alice. However,
MACs are symmetric, i.e., they are generated and verified using the
same secret key.

Definition 3.31 (Message Authentication Code or MAC). A message authen-
tication code is a bitstring that accompanies a message. It can be used to verify
the authenticity of the ciphertext in combination with a secret authentication
key kq (different from k) shared by the two parties.

Remarks:

e Eve should not be able to change the encrypted message and/or the
MAC, and get Bob to believe that Alice sent the encrypted message.

Algorithm 3.32 shows a hash based MAC construction.

m,kp,c as defined earlier

k, = key to authenticate c

def encrypt_then MAC(m, ky, ko) :
¢ = encrypt(m, kp)
a = h(kq;c)

return c,a

Algorithm 3.32: Hash Based Message Authentication Code

Remarks:
e Bob accepts a message ¢ only if he calculates h(kgy;c) = a.

e With some hash functions (e.g., SHA2), it is easy to append data to
the message without knowing the key and obtain another valid MAC.
To avoid these attacks, in practice we use h(kq; h(kq;c)).

e Now Alice and Bob can securely communicate over the insecure com-
munication channels of the internet, due to the known public keys.

e But how does Bob know that Alice’s public key really belongs to
Alice? What if it is really Eve’s key? Quoting Peter Steiner: “On the
Internet, nobody knows you’re a dog.”

54 CHAPTER 3. CRYPTOGRAPHY

3.5 Public Key Infrastructure

“Love all, trust a few.” — William Shakespeare

What can we do, unless we personally meet with everyone to exchange our
public keys? The answer is trusting a few, in order to trust many.

Remarks:

e Let’s say that you don’t know Alice, but both Alice and you know
Doris. If you trust Doris, then Doris can verify Alice’s public key for
you. In the future, you can ask Alice to vouch for her friends as well,
etc.

Trust is not limited to real persons though, especially since Alice and
Doris are represented by their keys. How do you know that you give
your credit card information to a shopping website, and not some
infamous Nigerian princess Eve? You probably don’t know the owner
of the shopping website personally.

Definition 3.33 (Public Key Infrastructure or PKI). Public Key Infrastructure
(PKI) binds public keys with respective identities of entities, like people and
organizations. People and companies can register themselves with a certificate
authority.

Definition 3.34 (Certificate Authority or CA). A certificate authority is an
entity whose public key is stored in your hardware device, operating system, or
browser by the respective vendor like Apple, Google, Microsoft, Mozilla, Ubuntu,
etc.

Remarks:

e A certificate is an assertion that a known real world person, with a
physical postal address, a URL, etc. is represented by a given public
key, and has access to the corresponding secret key.

You can accept a public key if a certificate to that effect is signed by
a CA whose public key is stored in your device.

e CA’s whose public keys are stored in your device are also called root
CA’s. Sometimes, there are intermediate CA’s whose certificates are
signed by root CA’s, and who can sign many other end-user certifi-
cates. This enables scaling, but also introduces vulnerabilities.

e If a CA’s secret key is compromised by a malicious actor, they can
sign themselves a certificate saying that they are someone else (say,
Google), and then impersonate Google to innocent browsers which
trust this CA. A CA’s key can be revoked if this happens, or CA’s
keys can have shorter expiry times.

Another problem is that your own set of root certificates might be
compromised, e.g., if malicious software replaces your browser’s root
certificates with fakes.

3.6. TRANSPORT LAYER SECURITY 55

3.6 Transport Layer Security

To communicate securely over the internet, we simply combine the crypto-
graphic primitives we learned so far!

Remarks:

e Alice and Bob don’t want Eve to be able to read their messages.
Therefore, they encrypt their messages using block based encryption
(see Section 3.1).

e For the encryption algorithm, they need to agree on a secret key using
a key exchange protocol (see Section 3.2).

e When Alice receives a message, how can she be sure that the message
hasn’t been modified on the way from Bob to her? Alice and Bob
use message authentication (see Section 3.4) to ensure integrity of the
communication.

e Let’s assume that Alice hasn’t met Bob in person before. How can she
be sure that she is really communicating with Bob and not with Eve?
She would ask Bob to authenticate himself (see Sections 3.4, 3.5).

Protocol 3.35 (Transport Layer Security, TLS). TLS is a network protocol
in which a client and a server exchange information in order to communicate
in a secure way. Common features include a bulk encryption algorithm, a key

exchange protocol, a message authentication algorithm, and lastly, the authen-
tication of the server to the client.

Remarks:
e TLS is the successor of Secure Sockets Layer (SSL).

o HTTPS (Hypertext Transfer Protocol Secure) is not a protocol on its
own, but rather denotes the usage of HT'TP via TLS or SSL.

3.7 Public Key Encryption

Public key or asymmetric encryption schemes allow users to send encrypted
messages directly.

Definition 3.36. A public key encryption scheme is a triple of algorithms:
o A key generation algorithm that outputs a public/secret key pair ky, ks.

o An encryption algorithm that outputs the encryption ¢ of a message m
using the receiver’s public key k.

o A decryption algorithm that outputs the message m using the secret key
ks.

56 CHAPTER 3. CRYPTOGRAPHY

Remarks:

e The key generation algorithm for ElGamal encryption scheme is the
same as in ElGamal signatures (Algorithm 3.17).

#p,g,m,ky ks as defined earlier

def encrypt(m,kp):
Pick a random nonce z € {1,2,...,p— 1}
¢1 =g mod p
c2 =m-k, mod p

return cy,cp # encryption c = ((t]A(tg)

def decrypt(cy,ca, ks):
m =cy- c’fi'(pfz) mod p

return m’

Algorithm 3.37: ElGamal Encryption Algorithm
Theorem 3.38. ElGamal encryption scheme (Algorithms 3.17, 3.37) is correct.

Proof. Alice can recover the message: m’ = (32~c’1€5'(p72) = (m . lsl‘,) Lg=ke(=2) =
m- (k;)Vl = m. The last step uses Theorem 3.23. O

3.8 Security of PK Encryption

For each scheme studied so far, we have seen that they are correct. But are
they secure? How do we know that there is no simple attack on a public-key
encryption scheme?

Remarks:

e In cryptography, there are two popular ways to prove a scheme is
secure: simulation-based security and game-based security. In this
section we will focus on game-based security. In Section 3.10 we will
discuss simulation-based security.

e There are various game-based security models for asymmetric public-
key encryption schemes, most prominently the IND-CPA model.

Definition 3.39 (Indistinguishability under Chosen Plaintext Attack or IND-
CPA). Consider the following game between an adversary (trying to break the
security) and a challenger (challenging the adversary), where the adversary is
a probabilistic polynomially-bounded algorithm.

1. The challenger generates a key pair (ks, kp) based on a security parameter
n (e.g., a key size in bits), and publishes k, to the adversary, while kg
remains secret.

3.8. SECURITY OF PK ENCRYPTION 57
2. The adversary performs O(poly(n)) computations (encryptions or other
operations).

3. The adversary sends two distinct plaintexts of his choice mg,my (mg #
my) to the challenger.

4. The challenger selects a bit b € {0,1} uniformly at random and sends the
challenge ciphertext ¢ = encrypt(ky,,my) to the adversary.

&

. The adversary performs any number of additional computations.

[SY

. Finally, the adversary outputs a guess for the value of b.

An encryption scheme is IND-CPA secure if any probabilistic polynomial time
adversary has only a negligible “advantage” over random guessing.

Remarks:
e A negligible “advantage” wins above game with probability % +e.

e Intuitively, an encryption scheme is IND-CPA secure if the adversary
does not learn any additional information on how to decrypt a mes-
sage.

o IND-CPA security is equivalent to semantic security, where an adver-
sary that sees the ciphertext has no advantage against an adversary
that does not see the ciphertext.

e Does IND-CPA security hold for deterministic encryption schemes?

Theorem 3.40. All deterministic public-key encryption schemes fail IND-CPA
security.

Proof. Consider any deterministic encryption scheme. The adversary can always
win the IND-CPA game: First, the adversary picks two messages mg, m; and
encrypts them to cg and c¢; respectively using the public key &,. Then, when the
adversary receives the ciphertext ¢ from the challenger, she simply compares ¢
to ¢p and ¢y and always outputs the correct bit! O

Remarks:

e For instance, the traditional RSA encryption scheme fails IND-CPA
security as it is deterministic. To prove RSA security, RSA-OAEP is
used.

e Therefore, only randomized encryption schemes are of interest, like
ElGamal.

Theorem 3.41. ElGamal is secure in the IND-CPA model under the DDH
assumption.

Proof. We will show that if ElGamal is not IND-CPA secure, then the DDH
assumption does not hold (DDH < IND-CPA ElGamal). In particular, given
an adversary A that gains a non-negligible advantage ¢ over random guessing
in the IND-CPA game, we can construct an adversary (efficient algorithm) B

58 CHAPTER 3. CRYPTOGRAPHY

that given g%, g%, g¢ € N with 1 < g%, ¢°, ¢° < p, can decide if ¢ = a - b (DDH)
with probability 1/2 +e.

To that end, algorithm B feeds (g,p, g*) as input to algorithm A (g* is the
public key for A). When the adversary sends the two messages mg, m; to the
challenger, algorithm B (posing as the challenger) chooses b randomly from
{0,1} and returns to A the ciphertext ¢ = (g°,g¢ - mp). Algorithm A then
returns a value b'. If b = V', algorithm B returns True, else False.

In case g%, g% g° is a DDH tuple, i.e., a-b = ¢, we expect algorithm A to
produce the correct output with a good probability, i.e., at least with advantage
e. Therefore, adversary B will guess correctly with probability at least 1/2 + ¢.
On the other hand, if g%, ¢, ¢° is a random tuple, then the ciphertext will have
an unpredictable structure and thus adversary A will return the correct value
with probability 1/2 (random guess). Therefore, adversary B can distinguish
between the DDH tuple and the random tuple with at least a non-negligible
advantage €, which violates the DDH assumption. O

Remarks:

e What about stronger notions of game-based security? There are two
widely used models, Indistinguishability under Chosen Ciphertext At-
tack (IND-CCA) and Indistinguishability under Adaptive Chosen Ci-
phertext Attack (IND-CCA2).

Both IND-CCA and IND-CCA2 are defined similarly to IND-CPA,
but in addition the adversary is given access to a decryption oracle
which decrypts arbitrary ciphertexts at the adversary’s request.

In IND-CCA the adversary can query the decryption oracle only until
he receives the challenge. On the contrary, in IND-CCA2, the adver-
sary can also query the decryption oracle after he has received the
challenge — but he cannot query the challenge for decryption.

Definition 3.42 (IND-CCA). Same as IND-CPA (Definintion 3.39) except
step 2 which is replaced by “The adversary performs O(poly(n)) computations
or queries to the decryption oracle”.

Definition 3.43 (IND-CCA2). Same as IND-CPA (Definintion 3.42) except
step 5 which is replaced by “The adversary performs any number of additional
computations or queries to the decryption oracle”.

Theorem 3.44. ElGamal is not secure in the IND-CCA2 model.

Proof. Consider the following scenario: The adversary sends the challenger the
two messages mg, my and receives the ciphertext ¢ which corresponds to the en-
cryption of one of the messages my,. Then, the adversary picks a random message
m and queries the decryption oracle with the ciphertext ¢’ = ¢-encrypt(ky, m).
The decryption oracle cannot refuse to respond to the query since the input
is different to the challenge, and returns my, - m. Next, the adversary simply
removes m and recovers the challenge message. O

3.8. SECURITY OF PK ENCRYPTION 59

Remarks:
e IND-CCA security of ElGamal is an open problem.

e The reason ElGamal is not IND-CCA2 secure is that it is multiplica-
tively homomorphic.

e Any homomorphic encryption scheme is not IND-CCA2 secure.

Definition 3.45 (Homomorphic Encryption Schemes). An encryption scheme
is said to be homomorphic under an operation * if E(myxmg) = E(m1)*E(ms).

Remarks:
e In other words, we can dicrectly compute with encrypted datal

e my *mg and E(mq) x E(ms) indicates that ciphertexts and messages
can both be operated upon using the same operation. This depends on
the representation of ciphertexts, and is not always precisely defined.
In the case of ElGamal encryption’s homomorphism, we use pair-
wise vector multiplication to multiply ciphertexts: E(mq) - E(m2) =
(c11,¢12) - (0217022)1‘-

Lemma 3.46. ElGamal encryption scheme (Algorithms 3.17, 3.37) is homo-
morphic under modular multiplication.

Proof. We refer the encryption of message m with public key &, large prime p,
generator g, and a random nonce = as E(m) = (c1,¢2) = (¢%,m - kj))

E(m1) - E(mz) = (" ,m1 - kp') - (972, ma - kl'f?)T

= (g2, (ma - ma)ky T72) = E(my - mg)

Remarks:

e Not every public encryption scheme is homomorphic under all op-
erations. If an encryption scheme is homomorphic only under some
operations, it’s called a partial homomorphic encryption scheme. For
example, we have:

— Modular multiplication: ElGamal cryptosystem, RSA cryptosys-
tem.
— Modular addition: Benaloh cryptosystem, Pallier cryptosystem.
— XOR operations: Goldwasser—Micali cryptosystem.
e There are fully homomorphic encryption schemes that support all pos-

sible functions, like Craig Gentry’s lattice-based cryptosystem.

e Homomorphic encryption is used in electronic voting schemes to sum
up encrypted votes.

e A close cryptographic notion to homomorphism is malleability.

60 CHAPTER 3. CRYPTOGRAPHY

Definition 3.47 (Malleability). An encryption scheme is malleable if, given
the encryption ¢ of a message m, one can generate another ciphertext ¢’ which
decrypts to a related message m' = f(m), where f is a known function, without
knowing or learning m.

Lemma 3.48. ElGamal encryption scheme is malleable.
Proof. An attacker can change (c1,¢2) to (c1,ch) where ¢ = z-¢; mod p. With
everything mod p

m =cy-sP2=(z-m-s5) - 2=z-m-s"T=z-m

Resulting in a valid encryption of z - m. O

Remarks:

e Malleability and indistinguishability are closely related. For instance
IND-CCAZ2 is equivalent to non-malleability under the same attack.

e What other problems can we solve using crypto? The answer is sur-
prisingly many! In the next sections we will discuss some of the most
exciting cryptographic primitives beyond TLS.

3.9 Commitment Schemes

Suppose Alice and Bob want to play XOR over the telephone. Both choose a
random bit. If the chosen bits are the same, Alice wins; if they are different,
Bob wins. They do not trust each other, therefore they need a scheme that
ensures an unbiased result that is verifiable by both parties. For this purpose
they can use so-called commitment schemes.

Remarks:

e In a commitment scheme, Alice locks (commits) her bit in a box and
gives the box to Bob. Bob reveals his bit, and only then Alice provides
Bob with the key to open the box to reveal her bit.

e Commitment schemes are the digital analog of a safe.

Definition 3.49 (Commitment Scheme). A commitment scheme is a two-phase
interactive protocol between Alice, the sender, and Bob, the receiver. A commit-
ment scheme must be correct, binding and hiding.

e Commit phase: Alice commits to a message m by producing a public
commitment ¢ and a secret decommitment d. Alice sends ¢ to Bob.

e Reveal phase: Alice sends m and d to Bob. Bob verifies that the message
m corresponds to the commitment c.

Definition 3.50 (Hiding). A commitment scheme is hiding if Bob cannot ex-
tract any information about the committed message before the reveal phase.

Definition 3.51 (Binding). A commitment scheme is binding if Alice cannot
change her commitment.

Definition 3.52 (Correctness). If both Alice and Bob follow the protocol, then
Bob always returns True in the reveal phase.

3.9. COMMITMENT SCHEMES 61

Remarks:

e Is there a simple way to create a commitment scheme? How about
using hash functions?

m,h as defined earlier

n = security parameter

def commit_Alice(m):
Pick a random n-bit string r
Send ¢ = h(r;m) to Bob

def reveal_Bob(c,m,r): # Bob receives m,r from Alice

return ¢ == h(r;m)

Algorithm 3.53: A Simple Commitment

Theorem 3.54. Any cryptographic hash function can produce a (computation-
ally binding and computationally hiding) commitment scheme.

Proof. Algorithm 3.53 demonstrates how to extract a commitment scheme from
a cryptographic hash function. The probability that some random r’,m’ exist
such that h(r';m’) = h(r;m) is 27™. To find such an r’,m’ is infeasible for a
computationally bounded Alice, hence the commitment scheme is computation-
ally binding. The scheme is also computationally hiding, but we omit the proof
because it is complex. O

Remarks:

e What if Alice or/and Bob are computationally unbounded?

p,g,m,n as defined earlier
#y = a random value in {1,2,..., p—1}

x with y=g* mod p %s unknown

def commit_Alice(m):
Pick a random r € {1,2,...,p— 1}
c=¢g™-y" modp
Send ¢ to Bob

def reveal_Bob(m,c,7): # Bob receives m,c,r from Alice

7

return ¢ == g™ -y” mod p

Algorithm 3.55: Pedersen Commitment

62 CHAPTER 3. CRYPTOGRAPHY

Theorem 3.56. Pedersen commitments are correct.

Proof. Given m,c,r,y, Bob can verify ¢ = ¢"" - y” mod p. Thus, the Pedersen

commitment scheme is correct. O
Theorem 3.57. Pedersen commitments are perfectly hiding.

Proof. Given a commitment ¢, every message m is equally likely to be the
committed message to c¢. That is because given m,r and any m’, there exists r’
such that g™ -y™ = g™ -y™ mod p, specifically m’ +z - = m+z-r mod p—1,
where y = ¢® mod p. O

Theorem 3.58. Pedersen commitments are computationally binding.

Proof. Towards contradiction, suppose Pedersen commitments are not compu-
tationally binding. This means that a “polynomial” Alice can successfully com-
pute two pairs m,r and m’,r’ such that (everything modulo p)

m ’V‘/

gy =g" -y
o g" (p=2) . yr(pr) g™ gt =gm (p—2) 4y7‘(p72) g™y

’

o gm+m’(p72) _yT+7‘(p72) _ gm’+7n'(p72) .yT,+r(p72)
o ngrm/(P*Z) . (yf)(pfl) — <gm/)(p71) ,yr#r(ﬁﬂ)

PN gm+m'(p72) _ yTLFT(pr)

Then, Alice can compute (using the extended Euclidean Algorithm) the multi-
plicative inverse of r' + r(p — 2), i.e., Alice can find a z such that z(r' + r(p —
2)) =1 mod p — 1. Consequently, Alice can compute the discrete logarithm
log, y = & = z(m+m/(p—2)) since g#mtm (P=2) =y mod p. But this contra-
dicts the discrete logarithm assumption, therefore such an adversary does not
exist. O

Remarks:

e If Alice sends both ¢,r as a commitment to Bob, Pedersen commit-
ments can be perfectly binding and computationally hiding.

e But why compromise at all? Ideally, we want a perfectly hiding and
perfectly binding commitment scheme.

Theorem 3.59. A commitment scheme can either be perfectly binding or per-
fectly hiding but not both.

Proof. Given a commitment ¢, a computationally unbounded adversary can
simply generate the commitments for every m until finding one that outputs c.
In a perfectly binding scheme ¢ uniquely identifies m. Hence, the scheme is not
perfectly hiding. O

Remarks:

e Commitment schemes have important applications in several cryp-
tographic protocols, such as zero-knowledge proofs, and multiparty
computation.

3.10. ZERO-KNOWLEDGE PROOFS 63

3.10 Zero-Knowledge Proofs

Peggy and Victor play Where’s Waldo. Can Peggy prove she found Waldo
without revealing Waldo’s location to Victor?

Remarks:

e In the physical world, Peggy can cover the picture with a large piece
of cardboard that has a small, Waldo-shaped hole in its center. She
can then place the cardboard such that only Waldo is visible through
the hole and therefore prove to Victor she has found Waldo without
revealing any information regarding Waldo’s location.

In Zero-Knowledge Proofs (ZKP), the prover, Peggy, wants to con-
vince the verifier, Victor, of the knowledge of a secret without reveal-
ing any information about the secret to Victor.

Definition 3.60 (Zero-Knowledge Proof). A pair of probabilistic polynomial
time interactive programs P,V is a zero-knowledge proof if the the following
properties are satisfied:

o Completeness: If the statement is true, then an honest verifier V will
be convinced by an honest prover P.

o Soundness: If the statement is false, a cheating prover P cannot convince
the honest verifier V' that it is true, except with negligible probability.

o Zero-knowledge: If the statement is true, no verifier V' learns anything
beyond the statement being true.

Remarks:

e Soundness concerns the security of the verifier, and zero-knowledge
the security of the prover.

e Examples of ZKPs are the Hamiltonian cycle (Problem 2.60) for a
large graph, or the Schnorr protocol (also known as X—protocol).

n = security parameter

G = large graph

def ZKP_HamiltonianCycle(G):
repeat n times:

Peggy creates graph H, isomorphic to G

Peggy commits to H # using a commitment scheme

Victor tosses a coin ¢ = [heads, tails]

if ¢ == heads:
Victor asks Peggy for the G — H mapping
Peggy returns the mapping and the decommitment of H

Victor verifies the mapping and the commitment

64 CHAPTER 3. CRYPTOGRAPHY

else:
Victor asks Peggy for the Hamiltonian cycle
Peggy returns the decommitment of the cycle only

Victor verifies the cycle and the commitment

Algorithm 3.61: Hamiltonian Cycle ZKP

Remarks:

e A graph H is isomorphic to G if H is just like G except that all the
nodes (and edges) have random names. Think of G as a “symmetric-
looking” graph, e.g., every node in G has the same number of neigh-
bors.

e If ¢ is tails, the commitment should allow Victor to verify the cycle.
This can be done by, for example, committing to every edge (or lack
thereof) separately. Then, Victor only decommits the edges that form
the cycle.

Theorem 3.62. Algorithm 3.61 is complete.

Proof. If Peggy knows a Hamiltonian cycle in G, she can easily satisfy Victor’s
demand in both cases. In case ¢ is heads, Peggy returns the isomorphism (the
renaming of G’s nodes in H) and reveals the H she committed to. In case ¢
is tails, Peggy can easily construct and return a Hamiltonian cycle in H by
applying the isomorphism to the cycle in G. O

Theorem 3.63. Algorithm 3.61 is sound.

Proof. If Peggy does not know the information, she can guess which question
Victor will ask and generate either a graph H isomorphic to G (in which she
does not know a Hamiltonian cycle) or a Hamiltonian cycle for an unrelated
graph H'. If she does not know a Hamiltonian cycle for G she cannot do both.
Therefore, Peggy’s chance of fooling Victor is 27", where n is the number of
rounds the protocol is repeated. O

Theorem 3.64. Algorithm 3.61 is zero-knowledge, if the commitment is perfectly-
hiding.

Proof. The main idea is that Peggy’s answers do not reveal the original Hamil-
tonian cycle in G. In each round, Victor only learns H’s isomorphism to G
or that there exists a Hamiltonian cycle in the commited graph. Thus, the in-
formation remains unknown since Victor would need both answers for a single
round to discover the cycle in G. But how can we be sure that that Victor
learns absolutely nothing?

To prove zero-knowledge, we can show that the whole transcript that Victor
sees can be generated by Victor himself without the help of Peggy. For each
round, if ¢ is heads, Victor can generate a commitment of a isomorphism of G
and then simply reveal it. If ¢ is tails, Victor can generate a commitment of a
fully connected graph and reveal a Hamiltonian cycle. The transcript generated
by Victor is indistinguishable from the transcript that is produced by interacting

3

3.10. ZERO-KNOWLEDGE PROOFS 65

with Peggy (provided that commitments are perfectly-hiding). In other words,
the transcript that was produced by interacting with Peggy helps Victor just as
much as the transcript generated by himself. Since the same transcript can be
generated without even knowing the Hamiltonian cycle of G, the real transcript
seen by Victor cannot contain any information on the Hamiltonian cycle in

G. O

Remarks:

e For all realistic purposes, it is infeasible to break the soundness of a
zero-knowledge proof with a reasonable number of rounds.

e One classic three-round protocol that exhibits the properties of a zero-
knowledge proof is the Schnorr protocol.

e In Schnorr’s protocol, Peggy wants to prove to Victor she knows , the
discrete logarithm of a publicly known value y = ¢ mod p without
revealing any information about z.

g,p,x,y as defined earlier

def ZKP_Schnorr():
Peggy picks a random r € {1,2,...,p— 1}
Peggy sends t=g¢” mod p to Victor
Victor picks a random challenge c € {1,2,...,p—1}
Victor sends ¢ to Peggy
Peggy sends to Victor u=r+z-¢ modp—1

Victor verifies ¢g“ ==1¢-y° mod p

Algorithm 3.65: Schnorr ZKP
Theorem 3.66. Algorithm 3.65 is complete.

Proof. If both Peggy and Victor are honest, we have g* = ¢g"*#¢ = g" - (¢%)°
t-y° mod p.

[l

Theorem 3.67. Algorithm 3.65 is zero-knowledge.

Proof. Victor can generate an indistinguishable communication transcript from
the actual communication transcript, without Peggy’s help, as follows: Given
9,p,y, Victor randomly picks ¢/, v’ € {1,2,...,p— 1}, and outputs (¢',¢,u’) =
(g -y "=, c,u). Note that t/-y* = g -y~ P~y = gv'- (y*')P~1 = g’ 50
the verification holds. The communication transcript between Peggy and Victor
is (t,c,u) = (¢",¢,r + x - ¢), where r,c € {1,2,...,p — 1} are randomly picked.
Thus, the two transcripts are indistinguishable. By the same reason as in the
previous example, the transcript seen by Victor cannot contain any information
about the discrete logarithm of g*. O

66 CHAPTER 3. CRYPTOGRAPHY

Remarks:
e Proving soundness for Algorithm 3.65 is complicated and omitted.

e The analysis of Algorithm 3.65 is very subtle, when the challenge
space is very big (not polynomial). In particular, the protocol is zero-
knowledge only when the verifier is honest. This and many other
subtleties pose the main challenge for the mathematically precise def-
inition of zero-knowledge.

e Can we design non-interactive zero-knowledge proofs?

e The Fiat-Shamir heuristic is a technique for converting an interac-
tive proof of knowledge into a non-interactive proof of knowledge by
replacing the challenge with the outcome of a known cryptographic
hash function. For instance, the non-interactive version of Schnorr
ZKP protocol is the following: Peggy generates ¢ = ¢g® mod p and
uses a cryptographic hash function h to calculate the challenge h(t).
Peggy, then, calculates the proof of knowledge w = r + z - h(t) and
makes t,u public. As a result Peggy can calculate the challenge on
her own while anyone can verify the proof.

Fiat-Shamir enables the creation of digital signature schemes from an
interactive zero-knowledge proof.

3.11 Threshold Secret Sharing

How does a company share its vault passcode among its board of directors so
that at least half of them have to agree to opening the vault?

Definition 3.68 (Threshold Secret Sharing). Let t,n € N with 1 <t <n. An
algorithm that distributes a secret among n participants such that t participants
need to collaborate to recover the secret is called a (t,n)-threshold secret sharing
scheme.

s = secret real number to be shared
#t = threshold number of participants to recover the secret

#mn = total number of participants

def distribute(s,t,n):

Generate t —1 random aq,...,a;—1 € R

Obtain a polynomial f(z)= s+ a1z +...+ a1t~}
Generate n distinct z1,...,z, € R\ {0}

Send (z;, f(z;)) to participant P;

def recover(z = [xo,21,..., %,y = [f(20), f(21),..., f(@e)]):
[= lagrange(x,y)
return f(0)

— notebook

3.12. MULTIPARTY COMPUTATION 67

Algorithm 3.69: Shamir’s (t,n) Secret Sharing Scheme
Theorem 3.70. Algorithm 3.69 is correct.

Proof. Any t shares will result in the reconstruction of the same polynomial,
hence the secret will be revealed. O

Theorem 3.71. Algorithm 3.69 has perfect security.

Proof. A polynomial of degree t —1 can be defined only by ¢ or more points. So,
any subset ¢ — 1 of the n shares cannot reconstruct a polynomial of degree ¢ — 1.
Given less than ¢ shares, all polynomials of degree t — 1 are equally likely; thus
any adversary, even with unbounded computational resources, cannot deduce
any information about the secret if they have less than ¢ shares. O

Remarks:

e Note that for numerical reasons, in practice modulo p arithmetic is
used instead of real numbers.

e What happens if a participant is malicious? Suppose during recov-
ery, one of the ¢ contributing participants publishes a wrong share
(2}, f(x})). The t — 1 honest participants are blocked from the secret
while the malicious participant is able to reconstruct it. To prevent
this, we employ wverifiable secret sharing schemes.

Definition 3.72 (Verifiable Secret Sharing or VSS). An algorithm that achieves
threshold secret sharing and ensures that the secret can be reconstructed even if
a participant is malicious is called verifiable secret sharing.

Remarks:

e Typically, a secret sharing scheme is verifiable if auxiliary information
is included that allows participants to verify their shares as consistent.

e VSS protocols guarantee the secret’s reconstruction even if the dis-
tributor of the secret (the dealer) is malicious.

e So far, we assumed a dealer knows the secret and all the shares. How-
ever, we want to avoid trusted third parties and distribute trust. A
strong cryptographic notion towards this direction is multiparty com-
putation.

3.12 Multiparty Computation

Alice, Bob, and Carol are interested in computing the sum of their income
without revealing to each other their individual income.

— notebook

68 CHAPTER 3. CRYPTOGRAPHY

a,b,c = Alice's, Bob's and Carol's income

def Sum_MPCQ):
Alice picks a large random number r
Alice sends to Bob m; =a+1r
Bob sends to Carol mg =b+my
Carol sends to Alice m3 =c+mo
Alice computes s=m3—7
Alice shares s with Bob and Carol

Algorithm 3.73: Computation of the Sum of 3 Parties’ Income

Theorem 3.74. Algorithm 5.73 is correct, meaning the output is the desired
sum.

Proof. The output of the algorithm is mg —r =c+mg—r=c+b+my —r =
c+b+atr—r=a+b+c i

Theorem 3.75. Algorithm 3.73 keeps the inputs secret.

Proof. Bob receives r + a, hence no information is revealed concerning Alice’s
income as long as r is large enough. In addition, both Carol and Alice cannot
deduce any information about the individual incomes as they are obfuscated. [J

Remarks:
e Algorithm 3.73 is an example of secure 3-party computation.

e The generalization of this problem to multiple parties is known as
multiparty computation.

Definition 3.76 (Multiparty Computation or MPC). An algorithm that al-

lows m parties to jointly compute a function f(x1,2,...,2,) over their inputs
T1,Ta,..., T, while keeping these inputs secret achieves secure multiparty com-
putation.

Remarks:

e Formal security proofs in MPC protocols are conducted in the re-
al/ideal world paradigm.

Definition 3.77. The real/ideal world paradigm states two worlds: In the ideal
world, there is an incorruptible trusted third party who gathers the participants’
inputs, computes the function, and returns the appropriate outputs. In contrast,
in the real world, the parties exchange messages with each other. A protocol is
secure if one can learn no more about each participant’s private inputs in the
real world than one could learn in the ideal world.

3.12. MULTIPARTY COMPUTATION 69

Remarks:

e In Algorithm 3.73, we assume all participants are honest. But what
if some participants are malicious?

e In MPC, the computation is often based on secret sharing of all the
inputs and zero-knowledge proofs for a potentially malicious partici-
pant. Then, the majority of honest parties can assure that bad be-
havior is detected and the computation continues with the dishonest
party eliminated or her input revealed.

Chapter Notes

In 1974, Ralph Merkle designed Merkle Puzzles [15], the first key exchange
scheme which works over an insecure channel. In Merkle Puzzles, the eaves-
dropper Eve’s computation power can be at most quadric to Alice’s and Bob’s
computational power. This quadratic difference is not enough to guarantee
security in practical cryptographic applications. In 1976, Diffie and Hellman in-
troduced a practically secure key exchange scheme over an insecure channel [6].

Diffie Hellman key exchange [6], Schnorr zero-knowledge proofs [19], ElGa-
mal signature and encryption schemes [7] all rely on the hardness of the discrete
logarithm problem [3]. So far we have been conveniently vague in our choice
of a group, but the discrete logarithm problem is solvable in polynomial-time
when we choose an inappropriate group. To avoid this, we can select a group
that contains a large subgroup. For example, if p = 2¢+ 1 and ¢ is prime, there
is a subgroup of size ¢, called the quadratic residues of p, which is often used in
practice.

Another frequently employed hard problem is integer factorization [12]. The
RSA cryptosystem [18], developed in 1977 at MIT by Ron Rivest, Adi Shamir,
and Leonard Adleman, depends on integer factorization. RSA was also the first
public-key encryption scheme that could both encrypt and sign messages.

A trapdoor one-way function is a function that is easy to compute, difficult
to invert without the trapdoor (some extra information), and easy to invert with
a trapdoor [6, 25]. The factorization of a product of two large primes, used in
RSA, is a trapdoor function. While selecting and verifying two large primes and
multiplying them is easy, factoring the resulting product is (as far as known)
difficult. However, if one of the prime numbers is given as a trapdoor, then
it is easy to compute the other prime number. There are no known trapdoor
one-way functions based on the difficulty of discrete logarithms (either modulo
a prime or in a group defined over an elliptic curve), because there is no known
“trapdoor” information about the group that enables the efficient computation
of discrete logarithms. In general, a digital signature scheme can be built by
any trapdoor one-way function in the random oracle model [14].

A random oracle [1] is a function that produces a random output for each
query it receives. It must be consistent with its replies: if a query is repeated, the
random oracle must return the same answer. Hash functions are often modeled
in cryptographic proofs as random oracles. If a scheme is secure assuming the
adversary views some hash function as a random oracle, it is said to be secure
in the random oracle model.

70 BIBLIOGRAPHY

Secure digital signature schemes are unforgeable. There are several versions
of unforgeability. For instance, Schnorr signatures, a modification of ElGamal
signatures, are existentially unforgeable against adaptively chosen message at-
tacks (EUF-CMA) [20]. In the adaptively chosen message attack, the adversary
wants to forge a signature for a particular public key (without access to the
corresponding secret key) and has access to a signing oracle, which receives
messages and returns valid signatures under the public key in question. The
proof that Schnorr digital signatures are EUF-CMA is based on the proof that
the Schnorr zero-knowledge proof is sound.

Zero-knowledge proofs are a complex cryptographic primitive; formally defin-
ing zero-knowledge proofs was a delicate task that took 15 years of research [2,
10]. Ome key application for zero-knowledge proofs is in user identification
schemes. Another recent one is in cryptocurrencies, such as Monero [23].

The concept of information-theoretically secure communication was intro-
duced in 1949 by American mathematician Claude Shannon, the inventor of
information theory, who used it to prove that the one-time pad system was se-
cure [22]. Secret sharing schemes are information theoretically secure. Verifiable
secret sharing was first introduced in 1985 by Benny Chor, Shafi Goldwasser,
Silvio Micali and Baruch Awerbuch [5]. Thereafter, Feldman introduced a prac-
tical verifiable secret sharing protocol [9] which is based on Shamir’s secret
sharing scheme [21] combined with a homomorphic encryption scheme. Veri-
fiable secret sharing is important for secure multiparty computation to handle
active adversaries.

Multiparty computation (MPC) was formally introduced as secure two-party
computation (2PC) in 1982 for the so-called Millionaires’ Problem, a specific
problem which is a Boolean predicate, and in general, for any feasible com-
putation, in 1986 by Andrew Yao [24, 26]. MPC protocols often employ a
cryptographic primitive called oblivious transfer.

An oblivious transfer protocol, originally introduced by Rabin in 1981 [17],
allows a sender to transfer one of potentially many pieces of information to a
receiver, while remaining oblivious as to what piece of information (if any) has
been transferred. Oblivious transfer is complete for MPC [11], that is, given
an implementation of oblivious transfer it is possible to securely evaluate any
polynomial time computable function without any additional primitive! An “I1-
out-of-n” oblivious transfer protocol [8, 16, 13] is a generalization of oblivious
transfer where a receiver gets exactly one database element without the server
(sender) getting to know which element was queried, and without the receiver
knowing anything about the other elements that were not retrieved. A weaker
version of “l-out-of-n” oblivious transfer, where only the sender should not know
which element was retrieved, is known as Private Information Retrieval [4].

This chapter was written in collaboration with Zeta Avarikioti, Tejaswi
Nadahalli, Ard Kastrati, and Klaus-Tycho Foerster.

Bibliography
[1] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A

paradigm for designing efficient protocols. In Proceedings of the 1st ACM
conference on Computer and communications security, pages 62-73, 1993.

BIBLIOGRAPHY 71 72 BIBLIOGRAPHY

[2] Manuel Blum, Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. [16] Moni Naor and Benny Pinkas. Oblivious polynomial evaluation. SIAM
Noninteractive zero-knowledge. STAM Journal on Computing, 20(6):1084— Journal on Computing, 35(5):1254-1281, 2006.
1118, 1991.
' [17] Michael O Rabin. How to exchange secrets with oblivious transfer.
[3] Dan Boneh. The decision diffie-hellman problem. In International Algo- . . .
rithmic Number Theory Symposium, pages 48-63. Springer, 1998. [18] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for ob-
taining digital signatures and public-key cryptosystems. Communications
[4] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private of the ACM, 21(2):120-126, 1978.
information retrieval. In Proceedings of IEEE 36th Annual Foundations of
Computer Science, pages 41-50. IEEE, 1995. [19] Claus-Peter Schnorr. Efficient identification and signatures for smart cards.
In Conference on the Theory and Application of Cryptology, pages 239-252.
[5] Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awerbuch. Veri- Springer, 1989.
fiable secret sharing and achieving simultaneity in the presence of faults. In)))))
26th Annual Symposium on Foundations of Computer Science (sfcs 1985), [20] Yannick Seurin. On the exact security of schnorr-type signatures in the
pages 383-395. IEEE, 1985. random oracle model. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques, pages 554-571. Springer,
[6] Whitfield Diffie and Martin Hellman. New directions in cryptography. 2012.
IEEE transactions on Information Theory, 22(6):644-654, 1976.
[21] Adi Shamir. How to share a secret. Communications of the ACM,
[7] Taher ElGamal. A public key cryptosystem and a signature scheme 22(11):612-613, 1979.
based on discrete logarithms. IEEE transactions on information theory,
31(4):469-472, 1985. [22] Claude Elwood Shannon. Communication in the presence of noise. Pro-
ceedings of the IRE, 37(1):10-21, 1949.
[8] Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized pro-
tocol for signing contracts. Communications of the ACM, 28(6):637-647, [23] Nicolas van Saberhagen. Monero whitepaper. Technical report, 2013.
1985.
[24] Andrew C Yao. Protocols for secure computations. In 23rd annual sympo-
[9] Paul Feldman. A practical scheme for non-interactive verifiable secret shar- sium on foundations of computer science (sfes 1982), pages 160-164. IEEE,
ing. In 28th Annual Symposium on Foundations of Computer Science (sfcs 1982.
1987), pages 427-438. IEEE, 1987.
[25] Andrew C Yao. Theory and application of trapdoor functions. In 23rd
[10] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield noth- Annual Symposium on Foundations of Computer Science (SFCS 1982),
ing but their validity and a methodology of cryptographic protocol design. pages 80-91. IEEE, 1982.
In Providing Sound Foundations for Cryptography: On the Work of Shafi
Goldwasser and Silvio Micali, pages 285-306. 2019. [26] Andrew Chi-Chih Yao. How to generate and exchange secrets. In 27th

Annual Symposium on Foundations of Computer Science (sfcs 1986), pages
[11] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptogra- 162-167. IEEE, 1986.
phy on oblivious transfer—efficiently. In Annual international cryptology
conference, pages 572-591. Springer, 2008.

[12] Thorsten Kleinjung, Kazumaro Aoki, Jens Franke, Arjen K Lenstra, Em-
manuel Thomé, Joppe W Bos, Pierrick Gaudry, Alexander Kruppa, Peter L
Montgomery, Dag Arne Osvik, et al. Factorization of a 768-bit rsa modulus.
In Annual Cryptology Conference, pages 333-350. Springer, 2010.

[13] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Ef-
ficient batched oblivious prf with applications to private set intersection.
In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pages 818-829, 2016.

[14] Leslie Lamport. Constructing digital signatures from a one-way function.
Technical report, 1979.

[15] Ralph C Merkle. Secure communications over insecure channels. Commu-
nications of the ACM, 21(4):294-299, 1978.

