
Networked Systems Group (NSG)

HS 2020 Prof. L. Vanbever / M. Apostolaki, T. Holterbach, R. Schmid
based on Prof. R. Wattenhofer’s material

Discrete Event Systems
Exercise Sheet 3

1 Pumping Lemma [Exam]

The Pumping Lemma in a Nutshell

Given a language L, assume for contradiction that L is regular and has the pumping length
p. Construct a suitable word w ∈ L with |w| ≥ p (“there exists w ∈ L”) and show that for
all divisions of w into three parts, w = xyz, with |x| ≥ 0, |y| ≥ 1, and |xy| ≤ p, there exists
a pumping exponent i ≥ 0 such that w′ = xyiz /∈ L. If this is the case, L is not regular.

Language L1 can be shown to be non-regular using the pumping lemma. Assume for contradiction
that L1 is regular and let p be the corresponding pumping length. Choose w to be the word
0110p1p. Because w is an element of L1 and has length more than p, the pumping lemma
guarantees that w can be split into three parts, w = xyz, where |xy| ≤ p and for any i ≥ 0,
we have xyiz ∈ L1. In order to obtain the contradiction, we must prove that for every possible
partition into three parts w = xyz where |xy| ≤ p, the word w cannot be pumped. We therefore
consider the various cases.

a) If y starts anywhere within the first three symbols (i.e. 011) of w, deleting y (pumping
with i = 0) creates a word with an illegal prefix (e.g. 1 0p 1p for y = 01).

b) If y consists of only 0s from the second block, the word w′ = xy2z has more 0s than 1s in
the last |w′| − 3 symbols and hence c 6= d.

Note that y cannot contain 1s from the second block because of the requirement |xy| ≤ p.
We have shown that for all possible divisions of w into three parts, the pumped word is not

in L1. Therefore, L1 cannot be regular and we have a contradiction.

Be Careful!

The argumentation above is based on the closure properties of regular languages and only
works in the direction presented. That is, for an operator � ∈ {∪,∩, •}, we have:

If L1 and L2 are regular, then L = L1 � L2 is also regular.

If either L1 or L2 or both are non-regular, we cannot deduce the non-regularity of L or
vice-versa. Moreover, L being regular does not imply that L1 and L2 are regular as well.
This may sound counter-intuitive which is why we give examples for the three operators.

• L = L1 ∪ L2: Let L1 be any non-regular language and L2 its complement. Then
L = Σ∗ is regular.



• L = L1∩L2: Let L1 be any non-regular language and L2 its complement. Then L = ∅
is regular.

• L = L1 • L2: Let L1 = {a∗} (a regular language) and L2 = {ap | p is prime} (a
non-regular language) then L = {aaa∗} is regular.

Hence, to prove that a language Lx is non-regular, you assume it to be regular for contra-
diction. Then you combine it with a regular language Lr to obtain a language L = Lx �Lr.
If L is non-regular, Lx could not have been regular either.

2 Deterministic Finite Automata [Exam]

We could use the systematic transformation scheme presented in the lecture (slide 1/75). Con-
sidering the large number of states, however, this will easily lead to an explosion of states in
the derandomized automaton. Hence, we build the deterministic finite automaton in a step-wise
manner, only creating those states that are actually required: Initially, the automaton requires a
0. Subsequently, only a 1 is accepted. Including the various transitions, this 1 can lead to three
different states, namely states 2, 3, and 4.

{1} {2, 4} {2, 3, 4}0 1

In any of the states 2, 3, and 4, only a 1 is accepted. Assume that the automaton is currently
in state 2, this 1 can lead to states {2, 3, 4} when including all ε-transitions. When in state 3,
the 1 leads to states {2, 3, 4, 5} and finally, when being in state 4, the reachable states given
a 1 are {2, 3, 4}. Hence, a 1 leads from state {2, 3, 4} to state {2, 3, 4, 5}. Repeating the same
process for state {2, 3, 4, 5}, we can see that, again, only a 1 is accepted, which leads to state
{2, 3, 4, 5, 6}. Because the state 6 in the original NFA was an accepting state, {2, 3, 4, 5, 6} is also
accepting in the DFA. From state {2, 3, 4, 5, 6}, an additional 1 will lead to another accepting
state {1, 2, 3, 4, 5, 6}. And from this state, any subsequent 1 returns to state {1, 2, 3, 4, 5, 6} as
well.

{1} {2, 4} {2, 3, 4} {2, 3,
4, 5}

{2, 3, 4,
5, 6}

{1, 2, 3,
4, 5, 6}

0 1 1 1 1
1

What happens if a 0 occurs in the input? This is feasible only when the deterministic state
includes either state 1 or state 6. In state {2, 3, 4, 5, 6}, a 0 necessarily leads to state {4}, whereas
in state {1, 2, 3, 4, 5, 6} a 0 leads to state {2, 4}. In both of these states, the only acceptable input
symbol is a 1 and leads to the state {2, 3, 4}. Hence, the deterministic finite automaton looks
like this:

{1} {2, 4} {2, 3, 4} {2, 3,
4, 5}

{2, 3, 4,
5, 6}

{1, 2, 3,
4, 5, 6}

{4}

0 1 1 1 1

0

1

1

0

2



It can easily be seen, that first the states {4}, {2, 4} and then the states {2, 3, 4, 5, 6}, {1, 2, 3, 4, 5, 6}
can be merged and hence, the automaton can be reduced to the one shown in the next figure.

{1} {2, 4} {2, 3, 4} {2, 3,
4, 5}

{1, 2, 3,
4, 5, 6}

0 1 1 1
1

0

This is not a DFA yet, because the crash state is still missing. The final deterministic automaton
looks like this:

{1} {2, 4} {2, 3, 4} {2, 3,
4, 5}

{1, 2, 3,
4, 5, 6}

A

0

1

1

0

1

0

1

0

1

0

0,1

3 Transforming Automata [Exam]

The regular expression can be obtained from the finite automaton using the transformation
presented in the script on slide 1/85. After ripping out state q2, the corresponding GNFA looks
like this:

s q1 q3 a
ε

1

01∗0

ε

11∗0

0

After also removing state q1, the GNFA looks as follows.

s q3 a
(01∗0)∗1 ε

0 ∪ 11∗0(01∗0)∗1

Eliminating the last state q3 yields the final solution, which is (01∗0)∗1(0 ∪ 11∗0(01∗0)∗1)∗.

Note: Ripping out the interior states in a different order yields a distinct yet equivalent regular
expression. The order q3, q2, q1, for example, results in ((0 ∪ 10∗1)1∗0)∗10∗.

4 Pumping Lemma

Choose w = 1p02p ∈ L. Let w = xyz with |xy| ≤ p and |y| ≥ 1 (pumping lemma). Because of
|xy| ≤ p, xy can only consist of 1s. According to the pumping lemma, we should have xyiz ∈ L
for all i ≥ 0. However, by choosing i = 0 we delete at least one 1 and get a word w′ = 1p−|y|02p

3



with |y| ≥ 1. w′ is not in L since it has fewer 1s than 2s. This means that w is not pumpable
and hence, L(G) is not regular.

Since every regular language is also context-free, we can choose an arbitrary regular language.
For example, we can choose the language L = {0n1, n ≥ 1} which is clearly regular. A context-
free grammar for this language uses only the production S → 0S | 1.

4


