
ETH Zürich (D-ITET)

October 8 2020

Laurent Vanbever

nsg.ee.ethz.ch

Automata & languages

A primer on the Theory of Computation

Part 4 out of 5

DFA ≍ NFA

REX
≍

Last week, we showed the

equivalence of DFA, NFA and REX

is equivalent to

We also started to look at

non-regular languages

Pumping lemma If A is a regular language, then

there exist a number p s.t.

Any string in A whose length is at least p

can be divided into three pieces xyz s.t.

xyiz ∈ A, for each i≥0 and

|y| > 0 and

|xy| ≤ p

Pumping lemma If A is a regular language, then

there exist a number p s.t.

Any string in A whose length is at least p

can be divided into three pieces xyz s.t.

xyiz ∈ A, for each i≥0 and

|y| > 0 and

|xy| ≤ p

Wait…

What happens if A is a finite language?!

Pumping lemma If A is a regular language, then

there exist a number p s.t.

As we saw two weeks ago,

all finite languages are regular…

So what's p?

p := len(longest_string) + 1

makes the lemma hold vacuously

Assume that A is regular

To prove that a language A is not regular:

Since A is regular, it must have a pumping length p

Find one string s in A whose length is at least p

For any split s=xyz,

Show that you cannot satisfy all three conditions

Conclude that s cannot be pumped

1

2

3

4

5

Assume that A is regular

To prove that a language A is not regular:

Since A is regular, it must have a pumping length p

Find one string s in A whose length is at least p

For any split s=xyz,

Show that you cannot satisfy all three conditions

Conclude that s cannot be pumped

1

2

3

4

5 A is not regular

{0n1n | n ≥ 0}

Out of the 3 examples we saw last week

the last one is actually regular

{w | w has an equal number of 0s and 1s}

{w | w has an equal number of occurrences of 01 and 10}

L1

L2

L3

how do you show that? You provide a DFA/NFA/REX (you pick)

{w | w has an equal number of occurrences of 01 and 10} L3

Any binary string beginning and ending

with the same digit has an equal number  
of occurrences of the substrings 01 and 10

101 is in L3, not 1010

Key observation

This week is all about

Context-Free Languages

a superset of Regular Languages

CFG’s: Proving Correctness (Alternative proof)

• The recursive nature of CFG’s means that they are especially amenable
to correctness proofs.

• For example let’s consider again our grammar

G = (S Æ e | ab | ba | aSb | bSa | SS)
• We claim that L(G) = L = { x � {a,b}* | na(x) = nb(x) },

where na(x) is the number of a’s in x, and nb(x) is the number of b’s.

• Proof: To prove that L = L(G) is to show both inclusions:
i. L � L(G): Every string in L can be generated by G.
ii. L � L(G): G only generate strings of L.

2/18

CFG’s: Proving Correctness

• The recursive nature of CFG’s means that they are especially amenable
to correctness proofs.

• For example let’s consider again our grammar

G = (S Æ e | ab | ba | aSb | bSa | SS)
• We claim that L(G) = L = { x � {a,b}* | na(x) = nb(x) },

where na(x) is the number of a’s in x, and nb(x) is the number of b’s.

• Proof: To prove that L = L(G) is to show both inclusions:
i. L � L(G): Every string in L can be generated by G.
ii. L � L(G): G only generate strings of L.

Part ii. is easy (see why?), so we’ll concentrate on part i.

2/19

Proving L � L(G)

• L � L(G): Show that every string x with the same number of a’s as b’s
is generated by G. Prove by induction on the length n = |x|.

• Base case: The empty string is derived by S Æ e

• Inductive hypothesis:
Assume that G generates all strings of equal number of a’s and b’s
of (even) length up to n.

Consider any string of length n+2. There are essentially 4 possibilities:
1. awb
2. bwa
3. awa
4. bwb

2/20

Proving L � L(G)

• Inductive hypothesis:

Consider any string of length n+2. There are essentially 4 possibilities:
1. awb
2. bwa
3. awa
4. bwb

Given S �* w, awb and bwa are generated
from w using the rules S Æ aSb and S Æ bSa (induction hypothesis)

2/21

Proving L � L(G)

• Inductive hypothesis:

Now, consider a string like awa. For it to be in L requires that w isn’t in L
as w needs to have 2 more b’s than a’s.

– Split awa as follows: 0𝑎1 … −1𝑎0
where the subscripts after a prefix v of awa denotes 𝑛𝑎 𝑣 − 𝑛𝑏 𝑣

– Think of this as counting starting from 0.
Each a adds 1. Each b subtracts 1. At the end, we should be at 0.

Somewhere along the string (in w), the counter crosses 0 (more b’s)

2/22

Proving L � L(G)

• Inductive hypothesis:

Somewhere along the string (in w), the counter crosses 0:

0𝑎1 … −1𝑥0 𝑦… −1𝑎0 with 𝑥, 𝑦 ∈ 𝑎, 𝑏

– u and v have an equal number of a’s and b’s and are shorter than n.

– Given S �* u and S �* v, the rule S Æ SS generates awa = uv
(induction hypothesis)

– The same argument applies for strings like bwb

2/23

𝑢

𝑣

Push-Down Automata (PDA)

• Finite automata where the machine interpretation of regular languages.

• Push-Down Automaton are the machine interpretation for grammars.

• The problem of finite automata was that they couldn’t handle languages
that needed some sort of unbounded memory… something that could be
implemented easily by a single (unbounded) integer register!

• Example: To recognize the language L = {0n1n | n ≥ 0}, all you need is to
count how many 0’s you have seen so far…

• Push-Down Automata allow even more than a register: a full stack!

2/9

Recursive Algorithms and Stacks

• A stack allows the following basic operations
– Push, pushing a new element on the top of the stack.
– Pop, removing the top element from the stack (if there is one).
– Peek, checking the top element without removing it.

• General Principle in Programming:
Any recursive algorithm can be turned into a non-recursive one using
a stack and a while-loop which exits only when stack is empty.

2/10

Recursive Algorithms and Stacks

• A stack allows the following basic operations
– Push, pushing a new element on the top of the stack.
– Pop, removing the top element from the stack (if there is one).
– Peek, checking the top element without removing it.

• General Principle in Programming:
Any recursive algorithm can be turned into a non-recursive one using
a stack and a while-loop which exits only when stack is empty.

• It seems that with a stack at our fingertips we can even recognize
palindromes! Yoo-hoo!

– Palindromes are generated by the grammar S Æ H | aSa | bSb.
– Let’s simplify for the moment and look at S Æ # | aSa | bSb.

2/11

From CFG’s to Stack Machines

• The CFG S Æ # | aSa | bSb describes palindromes containing exactly 1 #.

• Question: Using a stack, how can we recognize such strings?

2/12

PDA’s à la Sipser

• To aid analysis, theoretical stack machines restrict the allowable
operations. Each text-book author has his/her own version.

• Sipser’s machines are especially simple:
– Push/Pop rolled into a single operation: replace top stack symbol.
– In particular, replacing top by H is a pop.

• No intrinsic way to test for empty stack.
– Instead often push a special symbol (“$”) as the very first operation!

• Epsilon’s used to increase functionality
– result in default nondeterministic machines.

2/13

Sipser’s PDA Version

If at state p and next input is x and top stack is y,
then go to state q and replace y by z on stack.

– x = H: ignore input, don’t read
– y = H: ignore top of stack and push z
– z = H: pop y

In addition, push “$” initially to detect the empty stack.

2/14

p q
x, y Æz

PDA: Formal Definition

• Definition: A pushdown automaton (PDA) is a 6-tuple
M = (Q, S, G, G, q0, F):
– Q, S, and q0, and F are defined as for an FA.
– G is the stack alphabet.
– G is as follows:

Given a state p, an input symbol x and a stack symbol y,
G(p,x,y) returns all (q,z) where q is a target state and
z a stack replacement for y.

2/15

)(Σ:δ εεε GuoGuu QPQ

PDA Exercises

• Draw the PDA {aibjck | i,j,k t 0 and i=j or i=k}

• Draw the PDA for L = {x � {a,e}* | na(x) = 2ne(x)}

2/16

Model Robustness

• The class of regular languages was quite robust
– Allows multiple ways for defining languages (automaton vs. regexp)
– Slight perturbations of model do not change result (non-determinism)

• The class of context free languages is also robust:
you can use either PDA’s or CFG’s to describe the languages in the class.

• However, it is less robust than regular languages when it comes to slight
perturbations of the model:

– Smaller classes
– Right-linear grammars
– Deterministic PDA’s

– Larger classes
– Context Sensitive Grammars

2/17

Right Linear Grammars vs. Regular Languages

• The DFA above can be simulated by the grammar
– x Æ 0x | 1y
– y Æ 0x | 1z
– z Æ 0x | 1z | H

• Definition: A right-linear grammar is a CFG such that every production is
of the form A Æ uB, or A Æ u where u is a terminal string, and A,B are
variables.

2/18

0

1

0

0

1

1

x y z

Right Linear Grammars vs. Regular Languages

• Theorem: If M = (Q, S, G, q0, F) is an NFA then there is a right-linear
grammar G(M) which generates the same language as M.

• Proof:
– Variables are the states: V = Q
– Start symbol is start state: S = q0

– Same alphabet of terminals S
– A transition q1Æa Æq2 becomes the production q1Æaq2

– For each transition, q1Æaq2 where q2 is an accept state,
add q1Æa to the grammar

• Homework: Show that the reverse holds. Right-linear grammar can be
converted to a FSA. This implies that RL ≈ Right-linear CFL.

2/19

Right Linear Grammars vs. Regular Languages

• Theorem: If M = (Q, S, G, q0, F) is an NFA then there is a right-linear
grammar G(M) which generates the same language as M.

• Proof:
– Variables are the states: V = Q
– Start symbol is start state: S = q0

– Same alphabet of terminals S
– A transition q1Æa Æq2 becomes the production q1Æaq2

– For each transition, q1Æaq2 where q2 is an accept state,
add q1Æa to the grammar

• Homework: Show that the reverse holds. Right-linear grammar can be
converted to a FSA. This implies that RL ≈ Right-linear CFL.

• Question: Can every CFG be converted into a right-linear grammar?

2/20

Chomsky Normal Form

• Chomsky came up with an especially simple type of context free
grammars which is able to capture all context free languages,
the Chomsky normal form (CNF).

• Chomsky's grammatical form is particularly useful when one wants to
prove certain facts about context free languages. This is because
assuming a much more restrictive kind of grammar can often make it
easier to prove that the generated language has whatever property you
are interested in.

• Noam Chomsky, linguist at MIT, creator of the
Chomsky hierarchy, a classification of formal
languages. Chomsky is also widely known for his
left-wing political views and his criticism of the
foreign policy of U.S. government.

2/21

Chomsky Normal Form

• Definition: A CFG is said to be in Chomsky Normal Form
if every rule in the grammar has one of the following forms:

– SÆ H (H for epsilon’s sake only)
– AÆ BC (dyadic variable productions)
– AÆ a (unit terminal productions)

where S is the start variable, A,B,C are variables and a is a terminal.

• Thus epsilons may only appear on the right hand side of the start symbol
and other rights are either 2 variables or a single terminal.

2/22

CFG Æ CNF

• Converting a general grammar into Chomsky Normal Form works in
four steps:

1. Ensure that the start variable doesn't appear on the right hand side
of any rule.

2. Remove all epsilon productions, except from start variable.

3. Remove unit variable productions of the form AÆ B where A and B
are variables.

4. Add variables and dyadic variable rules to replace any longer non-
dyadic or non-variable productions

2/23

CFG Æ CNF: Example

𝑆 → 𝜀 𝑎 𝑏 𝑎𝑆𝑎 𝑏𝑆𝑏

1. No start variable on right hand side
𝑆′ → 𝑆
𝑆 → 𝜀 𝑎 𝑏|𝑎𝑆𝑎|𝑏𝑆𝑏

2. Only start state is allowed to have H
𝑆′ → 𝑆|𝜀
𝑆 → 𝜀 𝑎 𝑏 𝑎𝑆𝑎 𝑏𝑆𝑏|𝑎𝑎|𝑏𝑏

3. Remove unit variable productions of the form AÆ B.
𝑆′ → 𝑆 𝜀 𝑎 𝑏 𝑎𝑆𝑎 𝑏𝑆𝑏 𝑎𝑎|𝑏𝑏
𝑆 → 𝑎 𝑏 𝑎𝑆𝑎 𝑏𝑆𝑏 𝑎𝑎|𝑏𝑏

2/24

CFG Æ CNF: Example continued

𝑆′ → 𝑆 𝜀 𝑎 𝑏 𝑎𝑆𝑎 𝑏𝑆𝑏 𝑎𝑎|𝑏𝑏
𝑆 → 𝑎 𝑏 𝑎𝑆𝑎 𝑏𝑆𝑏 𝑎𝑎|𝑏𝑏

4. Add variables and dyadic variable rules to replace any longer
productions.

𝑆′ → 𝜀|𝑎 𝑏 𝑎𝑆𝑎 𝑏𝑆𝑏 𝑎𝑎|𝑏𝑏|𝐴𝐵|𝐶𝐷|𝐴𝐴|𝐶𝐶
𝑆 → 𝑎 𝑏 𝑎𝑆𝑎 𝑏𝑆𝑏 𝑎𝑎|𝑏𝑏|𝐴𝐵|𝐶𝐷|𝐴𝐴|𝐶𝐶
𝐴 → 𝑎
B → 𝑆𝐴
C → 𝑏
𝐷 → 𝑆𝐶

2/25

CFG Æ PDA

• CFG’s can be converted into PDA’s.

• In “NFA Æ REX” it was useful to consider GNFA’s as a middle stage.
Similarly, it’s useful to consider Generalized PDA’s here.

• A Generalized PDA (GPDA) is like a PDA, except it allows the top stack
symbol to be replaced by a whole string, not just a single character
or the empty string. It is easy to convert a GPDA’s back to PDA’s by
changing each compound push into a sequence of simple pushes.

2/26

CFG Æ GPDA Recipe

1. Push the marker symbol $ and the start symbol S on the stack.

2. Repeat the following steps forever

a. If the top of the stack is the variable symbol A, nondeterministically select a
rule of A, and substitute A by the string on the right-hand-side of the rule.

b. If the top of the stack is a terminal symbol a, then read the next symbol from
the input and compare it to a. If they match, continue. If they do not match
reject this branch of the execution.

c. If the top of the stack is the symbol $, enter the accept state.
(Note that if the input was not yet empty, the PDA will still reject this branch
of the execution.)

2/27

CFG Æ GPDA Æ PDA: Example

• S Æ aTb | b
• T Æ Ta | H

2/28

q1 q2 q3q0
H, HÆ $ H, HÆ S H, $Æ H

H, SÆH
H, SÆa
H, SÆb
a, aÆH
b, bÆH

q6 q7
H, HÆ S

q4 q5
H, HÆ S

H, SÆa H, HÆ a H, SÆb H, HÆ b

CFG Æ PDA: Now you try!

• Convert the grammar SÆ H |a | b | aSa | bSb

2/29

PDA Æ CFG

• To convert PDA’s to CFG’s we’ll need to simulate the stack inside the
productions.

• Unfortunately, in contrast to our previous transitions, this is not quite as
constructive. We will therefore only state the theorem.

• Theorem: For each push-down automation there is a context-free
grammar which accepts the same language.

• Corollary: PDA ≈ CFG.

2/30

Context Sensitive Grammars

• An even more general form of grammars exists.
In general, a non-context free grammar is one in which whole mixed
variable/terminal substrings are replaced at a time.
For example with S = {a,b,c} consider:

• When length of LHS always d length of RHS (plus some other minor
restrictions), these general grammars are called context sensitive.

2/31

S Æ H | ASBC
A Æ a
CB Æ BC

aB Æ ab
bB Æ bb
bC Æ bc
cC Æ cc

What language is
generated by this non-
context-free grammar?

Are all languages context-free?

• Design a CFG (or PDA) for the following languages:

• L = { w � {0,1,2}* | there are k 0’s, k 1’s, and k 2’s for k t 0 }

• L = { w � {0,1,2}* | with |0| = |1| or |0| = |2| or |1| = |2| }

• L = { 0k1k2k | k t 0 }

2/32

Tandem Pumping

• Analogous to regular languages there is a pumping lemma for context
free languages. The idea is that you can pump a context free language
at two places (but not more).

• Theorem: Given a context free language L, there is a number p
(tandem-pumping number) such that any string in L of length t p is
tandem-pumpable within a substring of length p. In particular, for all
w � L with |w| t p we we can write:
– w = uvxyz
– |vy| t 1 (pumpable areas are non-empty)
– |vxy| d p (pumping inside length-p portion)
– uvixyiz � L for all i t 0 (tandem-pump v and y)

• If there is no such p the language is not context-free.

2/33

Proving Non-Context Freeness: Example

• L ={1n0n 1n0n | n is non-negative }

• Let’s try w = 1p0p1p0p. Clearly w � L and |w| t p.

• With |vxy| d p, there are only three places where the “sliding window”
vxy could be:

• In all three cases, pumping up such a case would only change the number
of 0s and 1s in that part and not in the other two parts; this violates the
language definition.

2/34

 I III
1…10…01…10…0

 II

Proving Non-Context Freeness: You try!

• L = { x=y+z | x, y, and z are binary bit-strings satisfying the equation }

• The hard part is to come up with a word which cannot be pumped,
such as…

1p+1=1p+10p

• Applying the tandem pumping lemma is “easy”

2/35

 I
1p+1=1p+10p

II

Transducers

• Definition: A finite state transducer (FST) is a type of finite automaton
whose output is a string and not just accept or reject.

• Each transition of an FST is labeled with two symbols, one designating the
input symbol for that transition (as for automata), and the other
designating the output symbol.
– We allow H as output symbol if no symbol should be added to the string.

• The figure on the right shows an example of
a FST operating on the input alphabet {0,1,2}
and the output alphabet {0,1}

• Exercise: Can you design a transducer that produces the inverted bit-
string of the input string (e.g. 01001 Æ 10110)?

2/36

