
Computer Systems
Exercise Session 6

Fault-Tolerance in Distributed Systems

• Problem setup:

• N distributed, trusted nodes
• All-to-all asynchronous messages
• Variable message transmission time
• Messages may be lost
• Some nodes may crash

• One fundamental goal: state replication
• Same sequence of commands in the same order

Fault-Tolerance in Distributed Systems

• One fundamental goal: state replication
• Same sequence of commands in the same order

• For now, only one command
• Repetitions of one command algorithms can solve full state replication

x = 2
Server 1
x = x * 2
x = x + 1

x = 2
Server 2
x = x + 1
x = x * 2

Client 2
x = x + 1

Client 1

x = x * 2

x = 5

x = 6

Fault-Tolerance in Distributed Systems

First approaches

Client Server

C

Ack

• Server sends acknowledgement
message

• Reasonable with one client

First approaches

Client 1

Server 1

• Choose one server as a Serializer
• Single point of failure

Server 2

Server 3

Server 4

Client 3

Client 2

Serializer

First approaches

Paxos – main ideas

• Servers hand out tickets
• ”Weak lock”, which can be overwritten by a later ticket

• Only requires the majority of servers to agree
• Already ensures that there is at most one accepted command

• Servers notify clients about their stored command
• Client can then switch to supporting this stored command

Main steps of Paxos

• Clients asks for a specific ticket t

• Server only issues ticket t if t is the largest ticket requested so far

• If client receives majority of tickets, it proposes a command

• When a server receives a proposal, if the ticket of the client is still valid, the
server stores the command and notifies the client

• If a majority of servers store the command, the client notifies all servers to
execute the command

Client ask for a
specific ticket t

Server only issues
ticket t if t is the
largest ticket
requested so far

If client receives
majority of tickets, it
proposes a command

When server receives
proposal, if the ticket
is still valid the server
stores the command
and notifies the client

If a majority of servers
store the command
the client notifies all
servers to execute the
command

Quiz

• At what point is a command c guaranteed to execute on every
server?

Quiz

• At what point is a command c guaranteed to execute on every
server?

As soon as there is a first proposal(t,c) is chosen(stored on a majority of servers), c will
be guaranteed to execute since every subsequent proposal will be for c.

Intuition behind proof:

Chose propose(t,c)

Chose propose(t’,c’ != c)

At Least one server S was
involved in both proposals!

Intuition behind proof:

Client
Server S

stored
propose(t,c)

propose(t’,c’)

Quiz

• How many Paxos nodes could crash so that Paxos still works?

Quiz

• How many Paxos nodes could crash so that Paxos still works?

Less than half due to the majority requirements

Quiz

• What do the client nodes need to know about the system for paxos
to work?

Quiz

• What do the client nodes need to know about the system for paxos
to work?

It needs to know the amount total amount of server nodes on the system to decide
whether or not majority is achieved

Paxos

youtube for more intuition(with slight variation in terminology)

https://www.youtube.com/watch?v=d7nAGI_NZPk

Consensus

We want:

• Agreement: all (correct) nodes decide for the same value

• Termination: all (correct) nodes terminate

• Validity: the decision value is the input value of at least one node

Impossibility:

• Consensus cannot be solved deterministically in the asynchronous model.

Question: Does paxos solve consensus?

Randomized Consensus

Easy cases:

• All inputs are equal (all 0 or 1)

• Almost all input values equal

Otherwise:

• Choose a random value locally. → expected time O(2^n) until all agree (once)

Quiz

• How many node crashes can randomized consensus handle?

Quiz

• How many node crashes can randomized consensus handle?

f < n/2 due to majority

Shared coin

Shared coin

• This algorithm implements shared coin for f < n/3, study proof in the
script!

• Important tools for distributed proofs:
○ Global state : Configuration = per node state + in flight messages

• Step : Transition : i.e arrival of a message
• Execution: Full tree of all possible orderings of transitions
• A configuration is bivalent if the outcome is undecided, otherwise

univalent
• A critical configuration is a configuration that is bivalent and all nodes

are univalent

A N1 N2 N3 Bask(1)T0
T0 + 0.5

ask 2

ok(0,null)

ok(0,null)

T0 + 1
propose(1,a)

success
reject

