Computer Systems

Exercise Session 6

Fault-Tolerance in Distributed Systems

* Problem setup:

e N distributed, trusted nodes

e All-to-all asynchronous messages

e Variable message transmission time
e Messages may be lost

e Some nodes may crash

* One fundamental goal: state replication
* Same sequence of commands in the same order

Fault-Tolerance in Distributed Systems

* One fundamental goal: state replication
* Same sequence of commands in the same order

* For now, only one command
e Repetitions of one command algorithms can solve full state replication

Fault-Tolerance in Distributed Systems

X=2
Server 1
Client 1 .
X= X*2 ’ /
\
X=2
Client 2 Server 2
Xx=x+1—
\

First approaches

Client
Ack

AN)

* Server sends acknowledgement
message
* Reasonable with one client

Server

First approaches

Server 1 J
Client 3
Serializer { Server 2 }
Client 1
Server 3 }
Client 2

Server 4 }

e Choose one server as a Serializer
* Single point of failure

First approaches

Algorithm 15.10 Two-Phase Protocol

Phase 1
1: Client asks all servers for the lock

Phase 2

if client receives lock from every server then

Client sends command reliably to each server, and gives the lock back
else

Clients gives the received locks back

Client waits, and then starts with Phase 1 again
end if

Paxos — main ideas

* Servers hand out tickets
* "Weak lock”, which can be overwritten by a later ticket

* Only requires the majority of servers to agree

* Already ensures that there is at most one accepted command

* Servers notify clients about their stored command
* Client can then switch to supporting this stored command

Main steps of Paxos

* Clients asks for a specific ticket t
* Server only issues ticket t if t is the largest ticket requested so far
* If client receives majority of tickets, it proposes a command

* When a server receives a proposal, if the ticket of the client is still valid, the
server stores the command and notifies the client

* If 2 majority of servers store the command, the client notifies all servers to
execute the command

Client ask for a
specific ticket t

If client receives
majority of tickets, it
proposes a command

If a majority of servers
store the command
the client notifies all
servers to execute the
command

Algorithm 7.13 Paxos

Client (Proposer) Server (Acceptor)

Inatialszaliomy s s S e S T T e e S | S e

c < command to execute Tmax = 0 < largest issued ticket
t =0 < ticket number to try
C=_1 < stored command

Titore = 0 < ticket used to store C

1:t=¢t4+1

10:
14
12:

13:

19:

20:
21:

Ask all servers for ticket ¢

3: if t > Ty, then

4: Vs =it

5. Answer with ok(Tstore, C)
6: end if

B as e e R S e S S S S S R e A

if a majority answers ok then

Pick (Tytore, C) with largest Tyiore
if Tiiore > 0 then
e=C
end if
Send propose(t, ¢) to same
majority
end if
14: if t = Thax then
15: C=c
16: Tetore =1
17: Answer success
18: end if
TS TR oo 00 SR XL N ENC GEVUN AL MRLLAMONS VLRI KN N A L Y

if a majority answers success
then

Send execute(c) to every server
end if

Server only issues
ticket tif tis the
largest ticket
requested so far

When server receives
proposal, if the ticket
is still valid the server
stores the command
and notifies the client

Quiz

* At what point is a command c guaranteed to execute on every
server?

Quiz
* At what point is a command c guaranteed to execute on every

server?

As soon as there is a first proposal(t,c) is chosen(stored on a majority of servers), c will
be guaranteed to execute since every subsequent proposal will be for c.

Intuition behind proof:

Lemma 15.14. We call a message propose(t,c) sent by clients on Line 12 a
proposal for (t,c). A proposal for (t,c) is chosen, if it is stored by a majority
of servers (Line 15). For every issued propose(t',c’) with t' > t holds that
¢ = c, if there was a chosen propose(t,c).

Chose propose(t,c)

At Least one server S was
‘ involved in both proposals!

Chose propose(t’,c’ = ¢)

Intuition behind proof:

Lemma 15.14. We call a message propose(t,c) sent by clients on Line 12 a
proposal for (t,c). A proposal for (t,c) is chosen, if it is stored by a majority
of servers (Line 15). For every issued propose(t',c’) with t' > t holds that
¢ = c, if there was a chosen propose(t,c).

« N « N

propose(t’,c’)
Server S
Client stored
propose(t,c)

A) A)

Quiz

* How many Paxos nodes could crash so that Paxos still works?

Quiz

* How many Paxos nodes could crash so that Paxos still works?

Less than half due to the majority requirements

Quiz

 What do the client nodes need to know about the system for paxos
to work?

Quiz

 What do the client nodes need to know about the system for paxos
to work?

It needs to know the amount total amount of server nodes on the system to decide
whether or not majority is achieved

Paxos

youtube for more intuition(with slight variation in terminology)

https://www.youtube.com/watch?v=d7nAGI_NZPk

Consensus

We want:
* Agreement: all (correct) nodes decide for the same value
* Termination: all (correct) nodes terminate

* Validity: the decision value is the input value of at least one node

Impossibility:
* Consensus cannot be solved deterministically in the asynchronous model.

Question: Does paxos solve consensus?

Randomized Consensus

Easy cases:
* All inputs are equal (all 0 or 1)

* Almost all input values equal

Otherwise:

* Choose a random value locally. — expected time O(2”n) until all agree (once)

Algorithm 16.15 Randomized Consensus (assuming f < n/2)

1 v; € {0.1} < input bit
2: round = 1
3. while true do

4:

@

o 9

° ®

10:

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

Broadcast myValue(v;, round)
Propose

Wait until a majority of myValue messages of current round arrived
if all messages contain the same value v then
Broadcast propose(v, round)
else
Broadcast propose(_L. round)
end if

Vote

Wait until a majority of propose messages of current round arrived
if all messages propose the same value v then
Broadcast myValue(v, round + 1)
Broadcast propose(v, round + 1)
Decide for v and terminate
else if there is at least one proposal for v then
v = v
else
Choose v; randomly, with Pr[y; = 0] = Prly; = 1] =1/2
end if

round = round + 1

22: end while

Quiz

* How many node crashes can randomized consensus handle?

Quiz
* How many node crashes can randomized consensus handle?

f < n/2 due to majority

Shared coin

Algorithm 16.22 Shared Coin (code for node u)

1: Choose local coin ¢, = 0 with probability 1/n, else ¢, = 1
Broadcast myCoin(c,)

1o

3: Wait for n — f coins and store them in the local coin set C,,

4: Broadcast mySet(C,,)

5: Wait for n — f coin sets

6: if at least one coin is 0 among all coins in the coin sets then
7: return ()

8: else

9: return 1

10: end if

Shared coin

* This algorithm implements shared coin for f < n/3, study proof in the
script!

e Important tools for distributed proofs:

o Global state : Configuration = per node state + in flight messages

e Step : Transition : i.e arrival of a message

e Execution: Full tree of all possible orderings of transitions

e A configuration is bivalent if the outcome is undecided, otherwise
univalent

e A critical configuration is a configuration that is bivalent and all nodes
are univalent

1.1 An Asynchronous Riddle

A hangman summons his 100 prisoners, announcing that they may meet to plan a strategy, but
will then be put in isolated cells, with no communication. He explains that he has set up a switch
room that contains a single switch. Also, the switch is not connected to anything, but a prisoner
entering the room may see whether the switch is on or off (because the switch is up or down).
Every once in a while the hangman will let one arbitrary prisoner into the switch room. The
prisoner may throw the switch (on to off, or vice versa), or leave the switch unchanged. Nobody
but the prisoners will ever enter the switch room. The hangman promises to let any prisoner
enter the room from time to time, arbitrarily often. That is, eventually, each prisoner has been
in the room at least once, twice, a thousand times or any number you want. At any time, any
prisoner may declare “We have all visited the switch room at least once”. If the claim is correct,
all prisoners will be released. If the claim is wrong, the hangman will execute his job (on all the
prisoners). Which strategy would you choose...

a) ...if the hangman tells them, that the switch is off at the beginning?

b) ...if they don’t know anything about the initial state of the switch?

2.1 Consensus with Edge Failures

In the lecture we only discussed node failures, but we always assumed that edges (links) never
fail. Let us now study the opposite case: Assume that all nodes work correctly, but up to f
edges may fail.

Analogously to node failures, edges may fail at any point during the execution. We say that
a failed edge does not forward any message anymore, and remains failed until the algorithm
terminates. Assume that an edge always simultaneously fails completely, i.e., no message can be
exchanged over that edge anymore in either direction.

We assume that the network is initially fully connected, i.e., there is an edge between every
pair of nodes. Our goal is to solve consensus in such a way, that all nodes know the decision.

a) What is the smallest f such that consensus might become impossible? (Which edges fail
in the worst-case)

b) What is the largest f such that consensus might still be possible? (Which edges fail in the
best-case)

c) Assume that you have a setup which guarantees you that the nodes always remain con-
nected, but possibly many edges might fail. A very simple algorithm for consensus is the
following: Every node learns the initial value of all nodes, and then decides locally. How
much time might this algorithm require?

Assume that a message takes at most 1 time unit from one node to a direct neighbor.

1.2 Paxos

You decide to use Paxos for a system with 3 servers (acceptors), which we call Ny. N3, N3. There
are two clients (proposers) A and B. The implementation of the acceptors is exactly as defined
in the script, see Algorithm 7.13. We extended the code of the proposers, such that they now
use explicit timeouts. The algorithm is described below, note in particular Lines 2-4 and 12-14.

Algorithm 1 Paxos proposer algorithm with timeouts

/* Execute a command on the Paxos servers.
* N.N': The Paxos servers to contact.

¢: The command to exexcute.

* 4: The timeout between multiple attempts.
* t: The first ticket number to try.

* Returns: ¢', the command that was executed on the servers. Note that ¢/ might be

* another command than c. if another client already successfully executed a command.

*/
/

suggestValue(Node N, Node N’, command ¢, Timeout 4, TicketNumber ¢) {

L U
1: Ask N, N’ for ticket ¢

ERE T .y ca o oo e ot A s M AT A o A S8 e st
2: Wait for 4 seconds

3: if within these § seconds, either N or N’ has not replied with ok then
4: return suggestValue(N, N’ ¢, 4.1+ 2)

5 else
6: Pick (Tiore, C) with largest Tyore
70 if Tiore > 0 then

8 c=C

9: end if

10: Send propose(t. c) to N, N’

11: end if

) o O
12: Wait for 4 seconds

13: if within these § seconds, either NV or N’ has not replied with success then
14: return suggestValue(N, N, ¢, 6.1+ 2)

15: else

16: Send execute(c) to every server

17: return c

18: end if

a) Assume that two users try to execute a command. One user calls suggestValue(N;, Na,
a, 1. 1) on A at time T}, and a second user calls suggestValue(N,, Nj. b. 2, 2) on B at
time Ty + 0.5sec.

Draw a timeline containing all transmitted messages! We assume that processing times on
nodes can be neglected (i.e. is zero). and that all messages arrive within less than ().5sec.

sk(1) N1 N2 N3 B

a
To \ aSk 2
— | - TO+05

R
———————
ok(0,null) <<::::\\\\\\\\\\\
ak(0,null)
opose(1,a) .
TO + 1 —_reject

SuUcCCess

