
Computer Systems
Exercise Session

1

Last Exercise
Assignment 11

2

Assignment 1.2a

3

Solutions:

Nash Equilibria

3

Assignment 1.2b

4

Solutions:

Nash Equilibria

Assignment 1.3

Assignment 1.3

6

i. We have NE = {(101)} and PoA = 1 since social optimum
SO={(101)}

ii. Nash equilibriums NE={(100), (010)} PoA = !"#$ = 1.43

Dominant strategy profile: None

7

Assignment 1.5 – PCA classes

8

Assignment 1.5 – PCA classes

9

Assignment 1.5 – PCA classes

Assignment 2.3

10

=> Iterative hashing is computationally more expensive

11

Assignment 2.4 – Multiple Skiplists

12

Assignment 2.4 – Multiple Skiplists

• Nodes have a constant
degree of 2 * (d + 1)

• Maximum number of hops
for lookup O(log(n))

Chapter 25
Advanced Blockchain

13

Should we always directly publish a mined block?

Selfish Mining

14

• Selfish miners don’t release
their blocks immediately

• Instead keeps secret and
continues to mine next block

• Goal: Hoping to get more
reward (multiple block)

• Problem: sometimes useless
work on grandchildren

Selfish Mining

15

Probability that
altruistic miner finds
new block

Probability that
selfish miner finds
new block (share of
computing power)

When selfish miner is two blocks
in advance and a new public
block is published, the selfish
miner releases both its two
blocks, so they do not become
worthless

Selfish Mining

16

Probability that
altruistic miner finds
new block

Probability that
selfish miner finds
new block (share of
computing power)• α = ratio of computing power of a selfish miner

• γ = share of the altruistic mining power the selfish
miner can reach when seeing a new block

Selfish Miner Reward:

DAG-Blockchain

17

In a regular
blockchain this fork
would be
considered useless

In a DAG-blockchain this block can
reference a fork (we introduce an
ordering to ensure conflicting
transactions don’t violate our
constraints)

• Solve problem of wasted
resources on fork

• Instead of one predecessor, a
block can reference multiple
parent blocks (hashes)

• Cycles are not possible, as that
would require referencing a
block whose hash is not yet
known.

• Blocks now can have multiple parents. To
aid ordering the blocks, a tree (solid lines),
i.e. one designated parent per block, is
marked.

• Parent Order of b, having DAG-parents x, y:
x < y ⟺ “Starting from common ancestor z
of x and y, the subtree starting just below z
that contains x, restricted to ancestors of b,
is larger than the analogously defined
subtree for y.”

18

DAG-Blockchain

19

DAG-Blockchain

Ethereum

20

• Allows to run arbitrary computer programs in the block chain

• Different types of transactions:
1. Simple transaction (Send some ETH from Alice to Bob)
2. Smart Contract creation transaction (employing smart contract into the Ethereum

blockchain)
3. Smart Contract execution transaction (executing specific functions of the smart

contract)

Proof-of-Stake

21

Awarding block rewards proportionally to the economic stake in the system

1. Chain-based proof of stake
1. Lottery where accounts are selected with probability according to their stake
2. Winner of the lottery can extend the blockchain by one block and earn a reward

2. BFT based proof of stake
1. Lottery where accounts are selected with probability according to their stake
2. Winner suggests block but a committee votes whether to accept the block into

the chain

Chapter 26
Advanced Agreement

22

• Nodes can sign messages such that they can not be forged
• Even byzantine nodes can not forge signatures
• This enables us to “trust” forwarded messages, i.e. even if a Byzantine node

forwards messages by a correct node, it cannot change the contents of the
correct node’s message.

• For information on how this is implemented, look up public-key cryptography.

Notation: msgn: Message signed by n.

Prerequisite: Signatures

23

Goal: state replications. Clients send request r,

and servers execute them all in the same order

System Model

24

b bbp

v

n = 3f + 1
• Primary p: Node that

currently acts as serializer,
ordering the commands

• Backup b: Node that
currently is not a primary

• View v: A node in view v
considers v mod n to be
primary

• Sequence number s: s:
Unique number assigned to
commands by which they
are ordered.

PBFT (Practical Byzantine Fault Tolerance)

25

PBFT – Agreement Protocol

• Why do backups confirm request?
• otherwise client could only send request to backups and not primary. Then

backups would trigger a view change without the primary being faulty

PBFT – request

Why pre-prepare necessary?
• all backups get sequence number and current view identifier.

PBFT – pre-prepare

PBFT – prepare

• Why prepare messages necessary?
• after each node got enough prepare messages, it knows that the request has been

propagated through the system and no other request with that sequence number can ever
be executed

• Why exactly 2f prepare messages needed before commit?
• because then, 2f+1 messages from different nodes have been received in total (pre-

prepare message from primary and 2f prepare messages from backups). If two nodes have
such a prepared certificate for a command, this means that in those two sets of 2f+1
messages/nodes, at least one correct message/node must overlap. Thus, the two
commands must be the same.

• Why commit necessary?
• we have to know that enough nodes have the prepared certificate and will

also execute the command. So we check that by issuing commit messages.
• Why do we wait for 2f+1 commit messages?

• Same as before, we want 2f+1 nodes so we have a correct node in every
intersection

PBFT – commit

• Why reply necessary?
• client needs to know that command got executed

• Why does client have to wait for f+1?
• because then at least one correct node executed command

PBFT – reply

• what if the primary turns out to be byzantine?
• Idea: if the faulty timers in nodes expire, nodes start a view change, to

switch to the new primary
• new primary needs to know which requests have been executed

• gather from 2f+1 nodes the prepared certificates

• What does new primary do?

PBFT – view change

• What do backups exactly do?

if faulty timer expires, they send view-change message (v+1, set of all prepared
certificates, own name) to all nodes and stop accepting messages for view v

PBFT – view change backups

• accept 2f+1 view change messages
• add a null message for every sequence number that has not been used in the set

of prepare messages, so that we have a complete set to continue with
• send new-view message that contains all the prepare message so that all nodes

are on the same page
• start working as primary

PBFT – view change primary

• what if new primary is also byzantine?

Backups check that O is
constructed correctly
from V and also time how
long the new primary
takes for the view
change. If anything goes
wrong, another view
change is triggered.

PBFT – view change

