Systems @ ETH zurich

it
Distributed g:-;‘ .
Computing W% %0

Computer Systems

Exercise Session

Systems @ ETH zurich

s
Distributed g:-;‘ .
Computing W% %0

Last Exercise

Assignment 11

Assignment 1.2a

Systems @ ETH zurich

For each of the following caching networks, compute the social optimum, the pure Nash .
equilibria, the price of anarchy (PoA) as well as the optimistic price of anarchy(OPoA): Distributed gf’.\{-._
Computing WS %%

i.d,=d,=d,=d,=1

@)1 s (@

Solutions:

@ =

Nash Equilibria

1 s (@ O @

©
o

1 3

3 B cost(0110) 2 +1+14+1 9
PoA = — 2 8 =~ ~1.286
7 OPT 2 7
OPoA = 1.

| o

@ =
Q =

Assignment 1.2b

Systems @ ETH zurich
.
ii. The demand is written next to a node. Distributed g;q’,.‘:__
Computing ¥ %%,
1 1.9 1
0.2 0.2

1.9
Solutions: 3 @ @ 1

Nash Equilibria

1.9 C%

0.2 g 02 OPoA=1.

1.9 1 cost(0101) B 1/3-024+14+02+1 68

PoA = - ~ 1.046
¢ OPT 2.16 65

O] =
Lol =
Do

Assignment 1.3

The selfish caching model introduced in the lecture assumed that every peer incurs the same
caching cost. However, this is a simplification of the reality. A peer with little storage space
could experience a much higher caching cost than a peer who has terabytes of free disc space
available. In this exercise, we omit the simplifying assumption and allow variable caching costs
«; for node 7.

What are the Nash Equilibria in the following caching networks given that

. oa, =1, a, =2, a,, = 2,
. ay =3, ay =3/2, ay =37

O— @

dy =1/2 dy =1/3 dw = 1/3

Does any of the above instances have a dominant strategy profile? What is the PoA of each
instance?

Assignment 1.3

Systems @ ETH zurich

{ad “
P o’
' s *

Distributed f .
Computing W %%

I. We have NE = {(101)} and PoA = 1 since social optimum
SO={(101)}

ii. Nash equilibriums NE={(100), (010)} PoA = ;L—Z = 1.43

Dominant strategy profile: None

Assignment 1.5 — PCA classes

Systems @ ETH zurich

Distributed 5 .
Computing W% 5.

. "
'."‘“ v

L

The PoA of a class C is defined as the maximum PoA over all instances in C. Let

o .Af; , be the class of caching networks with n peers, a < a; < b, d; = 1, and each edge has
weight 1,

o W[T(’L b] be the class of networks with n peers, a < d; < b, a; = 1, and each edge has weight

Show that PoA(Af, ;) < L. PoAOWE]) for all n > 0.

[ll
b’a

Assignment 1.5 — PCA classes

Let /™ be an instance of -Aﬁ,.b] that maximizes the PoA

x,y € X two strategies in I,, s.t. PoOA(I") = cost(y)

cost(x)

We construct I™ € Wi

2,1 by setting d; = % for a; from I™

Systems @ ETH zurich

Py

%
Distributed éfq;‘-'
Computing ¥ %%,

We have the same NE in I™ and I™. This is because the cover sets D; (nodes for which we do not

cache if these cache already) stay the same.

For I" a peer jisin D; iff ciej < i

For I™ a peer jisin D; iff ¢;j/a; < 1.

Assignment 1.5 — PCA classes

PoA(I™)

AV

cost(y) 2 i1 (?Jz‘ +(1 - yz)%l)
A " (0 0)
b-ad iy (yz +(1- yz)#)

b . a’z'?=1 (.’177; -+ (1 — .’Bz)%f))

ay i g (o + (1 —y)ci(y))

by (wic + (1 — z)ci(x))
a - cost(y) _ gPoA(In)

T b cost(x) b

(1)

(2)

(3)
(4)

Assignment 2.3

Consistent hashing relies on having k hashing functions {hq, ..., hx_1} that map a node’s unique
name and the object ids to hashes. There are several constructions for these hash functions, the
most common being iterative hashing and salted hashing. In iterative hashing we use a hash
function h and apply it iteratively so that the hashes of an object id o is defined as

B h(o) if =0
hz‘(o) — {h(hi—l(o)) otherwise.

With salted hashing the object id is concatenated with the hash function index 7 resulting in the
following definition

h;i(0) = h(ol7).

Which hashing function derivation is better and why?

=> |terative hashing is computationally more expensive

Systems @ ETH zurich

A
Distributed g:-;‘ .
Computing W% %0

10

Assignment 2.4 — Multiple Skiplists

In the lecture we have seen the simple skip list in which a node is in the root level and promoted
with probability 1/2. We now redefine the promotion so that a node is promoted to a list s if
s is a suffix of the binary representation of the node’s id. At each level [we now have multiple
lists, each defined by a suffix s of length [. The root level is defined as the empty suffix with [.
The first level has two lists p € {0, 1}, the second level has four lists p = {00,01, 10,11} and so
on. We call the resulting network a multi-skiplist.

a) Assuming we have an 8 node network, with ids {000,...,111}, draw the multi-skiplist
graph.

b) What is the minimum degree of a node in the multi-skiplist if we have d levels?

c) What is the maximum number of hops a lookup has to perform?

11

Assignment 2.4 — Multiple Skiplists

O O
- Nodes have a constant
O O _ degree of 2 * (d + 1)
G O O O . Maximum number of hops
o))
0 0 O 0
c .
O O

12

Systems @ ETH zurich

s
Distributed g:-;‘ .
Computing W% %0

Chapter 25

Advanced Blockchain

Selfish Mining

Systems @ ETH zurich
Should we always directly publish a mined block? |

1o “
’.a"
() %

Distributed (
Computing W% %0

Selfish miners don’t release
their blocks immediately

BNA - Instead keeps secret and

continues to mine next block

. Goal: Hoping to get more
*a d reward (multiple block)

Problem: sometimes useless
work on grandchildren

14

Selfish Mining

When selfish miner is two blocks
in advance and a new public
block is published, the selfish
miner releases both its two
blocks, so they do not become
worthless

Probability that Systems @ ETH zuro
selfish miner finds

new block (share of Distributed (3
computing power) Computing ¥ %

““ v

Probability that
altruistic miner finds
new block

15

Selfish Mining

. o = ratio of computing power of a selfish miner

vy = share of the altruistic mining power the selfish
miner can reach when seeing a new block

Selfish Miner Reward:

a(l — a)?(da+v(1 — 2a)) — o?
l1-a(l+(2 - o))

Systems @ ETH zurich

Distributed {’ﬁ:-;"-'
Computing ¥ %%

16

DAG-Blockchain

In a regular
blockchain this fork
would be

considered useless

Systems @ ETH zurich

Distributed 5;-:'.-
Solve problem of wasted Computing ¥ %%.00
resources on fork

Instead of one predecessor, a
block can reference multiple
parent blocks (hashes)

Cycles are not possible, as that
would require referencing a
block whose hash is not yet
known.

In a DAG-blockchain this block can
reference a fork (we introduce an
ordering to ensure conflicting

transactions don’t violate our
constraints)

17

DAG-Blockchain

- Blocks now can have multiple parents. To
aid ordering the blocks, a tree (solid lines),

v —__ i.e. one designated parent per block, is

, marked.
X y=y

* /4\ - Parent Order of b, having DAG-parents x, y:
/ X <y < “Starting from common ancestor z

y of x and y, the subtree starting just below z
\, that contains x, restricted to ancestors of b,
is larger than the analogously defined
subtree for y.”

18

DAG-Blockchain

not an

ancestor of
b

Algorithm 25.12 DAG-Blockchain Ordering

1: We totally order all dag-ancestors of block b as <; as follows:
2: Initialize <; as empty

3: for all dag-parents p of b, in their parent order do

4: Compute <, (recursively)

5: Remove from <, any blocks already included in <

6: Append <, at the end of <

7: end for

8: Append block b at the end of <,

19

>

/ Systems @ ETH zurich

4
Distributed f‘-,-»“-
Computing W %%

Ethereum

- Allows to run arbitrary computer programs in the block chain

- Different types of transactions:
1. Simple transaction (Send some ETH from Alice to Bob)

2. Smart Contract creation transaction (employing smart contract into the Ethereum
blockchain)

3. Smart Contract execution transaction (executing specific functions of the smart
contract)

20

Proof-of-Stake

Systems @ ETH zunch

. . . . P
Awarding block rewards proportionally to the economic stake in the system Distributed ‘:i..;.

-

Computing ¥ %5

1. Chain-based proof of stake
1. Lottery where accounts are selected with probability according to their stake
2. Winner of the lottery can extend the blockchain by one block and earn a reward

2. BFT based proof of stake
1. Lottery where accounts are selected with probability according to their stake

2. Winner suggests block but a committee votes whether to accept the block into
the chain

21

Systems @ ETH zurich

s
Distributed g:-;‘ .
Computing W% %0

Chapter 26

Advanced Agreement

Prerequisite: Signatures

Systems @ ETH zunch

7
Distributed (oot o

’

- Nodes can sign messages such that they can not be forged Computing e %%,

- Even byzantine nodes can not forge signatures

- This enables us to “trust” forwarded messages, i.e. even if a Byzantine node
forwards messages by a correct node, it cannot change the contents of the

correct node’s message.
- For information on how this is implemented, look up public-key cryptography.

Notation: msg,,: Message signed by n.

23

System Model ey

“-

1dd -
Distributed é:;‘-
phses O

Goal: state replications. Clients send request r, Computing ¥& %5
n=3f+1
- Primary p: Node that
currently acts as serializer,
ordering the commands

- Backup b: Node that
currently is not a primary

« View v: A node in view v
considers v mod n to be
primary

- Sequence numbers:S:
Unigue number assigned to
commands by which they
are ordered.

and servers execute them all in the same order

24

PBFT (Practical Byzantine Fault Tolerance)

Agreement Protocol

Ensures agreement.

Uses serializing primary to reach
agreement on command order. Always
ensures agreement, but only ensures
progress if primary s correct.

View Change Protocol

Ensures progress.

Completes a change of view, i.e. selecting
a new primary, if the current one is
suspected to be faulty, while ensuring the
state remains synchronized.

PBFT — Agreement Protocol

request : pre-prepare prepare : commit . reply

(Ta C)c : (’U, S? T? TLO)TLO : (U’ S’T’ n’i)ni : (’U, S) ln”i)'ni : (T, ni)ni
(client ¢ }
(primary p\, -
backup 14 y ——
backup n2 }
(backuo) |
&backup n3 | :

PBFT — request

request
(T’ C) c

client ¢

primary p

Why do backups confirm request?

otherwise client could only send request to backups and not primary. Then
backups would trigger a view change without the primary being faulty

PBFT — pre-prepare

pre-prepare }
(v, s, r, no)n0 5
cllent c

primary p

backup n,

backup n2

backup ns

Why pre-prepare necessary?
all backups get sequence number and current view identifier.

PBFT — prepare

prepare
('U, S, T, ni)'n,,,:

—
2
<
—

- Why prepare messages necessary?

« after each node got enough prepare messages, it knows that the request has been
propagated through the system and no other request with that sequence number can ever
be executed

- Why exactly 2f prepare messages needed before commit?

« because then, 2f+1 messages from different nodes have been received in total (pre-
prepare message from primary and 2f prepare messages from backups). If two nodes have
such a prepared certificate for a command, this means that in those two sets of 2f+1
messages/nodes, at least one correct message/node must overlap. Thus, the two
commands must be the same.

PBFT — commit

commit
(Ua S, g)"i

e

222
-«

>N

backup ns

- Why commit necessary?

- we have to know that enough nodes have the prepared certificate and will
also execute the command. So we check that by issuing commit messages.

- Why do we wait for 2f+1 commit messages?

- Same as before, we want 2f+1 nodes so we have a correct node in every
intersection

PBFT — reply

client ¢

primary p

backup n4

backup no

backup ns

- Why reply necessary?
- client needs to know that command got executed

- Why does client have to wait for f+17
« because then at least one correct node executed command

PBFT — view change

what if the primary turns out to be byzantine?

Idea: if the faulty timers in nodes expire, nodes start a view change, to
switch to the new primary

new primary needs to know which requests have been executed
gather from 2f+1 nodes the prepared certificates

What does new primary do?

PBFT — view change backups

Algorithm 25.22 PBFT View Change Protocol: View Change Phase

Code for backup b in view v whose faulty-timer has expired:

1: stop accepting pre-prepare/prepare/commit-messages for v

let Py be the set of all prepared-certificates that b has collected since the
system was started

3: send view-change(v + 1, Py, b); to all nodes

o

if faulty timer expires, they send view-change message (v+1, set of all prepared
certificates, own name) to all nodes and stop accepting messages for view v

PBFT — view change primary

Algorithm 25.23 PBFT View Change Protocol: New View Phase - Primary

Code for primary p of view v + 1:

1: accept 2f + 1 view-change-messages (including possibly p’s own) in a set
V (this is the new-view-certificate)

2: let O be a set of pre-prepare(v + 1,s,r,p), for all pairs (s,r) where at
least one prepared-certificate for (s,r) exists in V
3: let s¥ _ be the highest sequence number for which O contains a

pre-prepare-message

4: add to O a message pre-prepare(v + 1,s’,null,p), for every sequence
number s’ < 5% for which O does not contain a pre-prepare-message
send new-view(v + 1,V, 0, p), to all nodes

6: start processing requests for view v+1 according to Algorithm[25.12]starting

. - <V
from sequence number s+ 1

« accept 2f+1 view change messages

 add a null message for every sequence number that has not been used in the set
of prepare messages, so that we have a complete set to continue with

« send new-view message that contains all the prepare message so that all nodes
are on the same page

- start working as primary

ot

PBFT — view change

- what if new primary is also byzantine?

Algorithm 25.24 PBFT View Change Protocol: New View Phase - Backup

>

7

8:

9
10:
11:

Code for backup b of view v+ 1 if b’s local view is v < v+ 1:

: accept new-view(v + 1,V,0,p),

stop accepting pre-prepare-/prepare-/commit-messages for v// in case
b has not run Algorithm [25.22| for v+ 1 yet
set local view to v+ 1
if p is primary of v + 1 then
if O was correctly constructed from) according to Algorithm
Lines |2 and 4] then
respond to all pre-prepare-messages in O as in the agreement protocol,

starting from Algorithm

start accepting messages for view v + 1

else
trigger view change to v + 2 using Algorithm
end if
end if

Backups check that O is
constructed correctly
from V and also time how
long the new primary
takes for the view
change. If anything goes
wrong, another view
change is triggered.

