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1 Quorum Systems

1.1 The Resilience of a Quorum System

a) No such quorum system exists. According to the definition of a quorum system, every two
quorum of a quorum system intersect. So at least one server is part of both quorums. The
fact that all servers of a particular quorum fail, implies that in each other quorum at least
one server fails, namely the one which lies in the intersection. Therefore it is not possible to
achieve a quorum anymore and the quorum system does not work anymore.

b) Just 1 - as soon as 2 servers fail, no quorum survives.

c) Imagine a quorum system in which all quorums overlap exactly in one single node. Each
element of the powerset of the remaining n − 1 nodes joined with this special node is a
quorum. This gives 2n−1 quorums.
Can there be more? No! Consider a set from the powerset of n servers. Its complement
cannot be a quorum as well, as they do not overlap. So, from each such couple, at most one
set can be part of the quorum system. This gives an upper bound of 2n/2 = 2n−1.

1.2 A Quorum System
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Figure 1: Quorum System

a) This quorum system consists of 7 quorums. As work is defined as the minimum (over all
access strategies) expected number of servers in an accessed quorum, this system’s work is 3
(all strategies induce the same work on a system where all quorums are the same size). The
best access strategy consists of uniformly accessing each quorum (you will prove this for a
more general case in exercise 3), so its load is 3/7.



b) Its resilience R(S) = 2. Proof: every node is in exactly 3 quorums, so 2 nodes can be
contained in at most 2 · 3 = 6 < 7 = |S| quorums, thus if no more than 2 nodes fail, there
will be at least 1 quorum without a faulty node. If on the other hand for example the nodes
101, 010 and 111 fail, no other quorum can be achieved; see also exercise 1a).

1.3 S-Uniform Quorum Systems

Definitions:
s-uniform: A quorum system S is s-uniform if every quorum in S has exactly s elements.
Balanced access strategy: An access strategy Z for a quorum system S is balanced if it
satisfies LZ(vi) = L for all vi ∈ V for some value L.

Claim: An s-uniform quorum system S reaches an optimal load with a balanced access strategy,
if such a strategy exists.

a) In an s-uniform quorum system each quorum has exactly s elements, so independently of
which quorum is accessed, s servers have to work. Summed up over all servers we reach
a total load of s, which is the work of the quorum system. As the load induced by an
access strategy is defined as the maximum load on any server, the best strategy is to evenly
distribute this work on all servers.

b) Let V = {v1, v2, ..., vn} be the set of servers and S = {Q1, Q2, ..., Qm} an s-uniform quorum
system on V . Let Z be an access strategy, thus it holds that:

∑
Q∈S PZ(Q) = 1. Further-

more let LZ(vi) =
∑
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Then it holds that:∑
vi∈V

LZ(vi) =
∑
vi∈V

∑
Q∈S;vi∈Q

PZ(Q) =
∑
Q∈S

∑
vi∈Q

PZ(Q)

=
∑
Q∈S

PZ(Q)
∑
vi∈Q

1
∗
=

∑
Q∈S
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The transformation marked with an asterisk uses the uniformity of the quorum system.

To minimize the maximal load on any server, the optimal strategy is to evenly distribute
this load on all servers. Thus if a balanced access strategy exists, this leads to a system load
of s/n.

Note: A balanced access strategy does not exist for example for the following 2-uniform
quorum system: V = {1, 2, 3}, S = {{1, 2}, {1, 3}}. We have min{LZ(2), LZ(3)} < LZ(1) =
1 for any access strategy on this system.

2 Eventual Consistency & Bitcoin

2.1 Delayed Bitcoin

a) It is true that naturally occurring forks of length l decrease exponentially with l, however
this covers naturally occuring blockchain forks only. As there is no information how much
calculation power exists in total, it is always possible a large blockchain fork exists. This may
be the result of a network partition or an attacker secretly running a large mining operation.

This is a general problem with all “open-membership” consensus systems, where the number
of existing consensus nodes is unknown and new nodes may join at any time. As it is always
possible a much larger unknown part of the network exists, it is impossible to have strong
consistency.
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In the Bitcoin world an attack where an attacker is secretly mining a second blockchain to
later revert many blocks is called a 51% attack, because it was thought necessary to have a
majority of the mining power to do so. However later research showed that by using other
weaknesses in Bitcoin it is possible to do such attacks already with about a third of the
mining power.

b) The delay in this case prevents coins from completely vanishing in the case of a fork. Newly
mined coins only exist in the fork containing the block that created them. In case of a
blockchain fork the coins would disappear and transactions spending them would become
invalid as well. It would therefore be possible to taint any number of transactions that are
valid in one fork and not valid in another. Waiting for maturation ensures that it is very
improbable that the coins will later disappear accidentially.

Note that this is however only a protection against someone accidentially sending you money
that disappears with a discontinued fork. The same thing can still happen, if someone with
evil intent double spends the same coins on the other side of the fork. You will not be
able to replay a transaction of a discontinued fork on the new active chain if the old owner
spent them in a different transaction in the meantime. To prevent theft by such an attacker
you need to wait enough time to regard the chance of forks continuing to exist to be small
enough. A common value used is about one hour after a transaction entered a block (∼6
blocks).

2.2 Double Spending
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Figure 2: Random Bitcoin network

a) Figure 2 depicts the final situation. 7 nodes have seen T first and 5 nodes have seen T ′ first.
The 5 nodes at the edge cut between the green and the red cut have seen both transactions.

b) Each node has 1/12 of all computational resources, hence the probability of T being con-
firmed is 7/12 ≈ 58%, while T ′ has a 5/12 ≈ 42% chance of being confirmed. The higher
connectivity from the first node seeing T resulted in the transaction spreading faster, in-
creasing the probability of winning the doublespend.

c) The first node that sees T ′ now has 20% of the computational resources. T ′ therefore has a
probability to win of 2/10+1/11·8/10·4 ≈ 49%. The distribution of computational resources
in the network therefore matters. The goal of an attacker is to spread the transaction that
she wants to have confirmed to a majority of the computational resources, which may not
be the same as spreading it to a majority of nodes.

2.3 The Transaction Graph

a) See Figure 3.

b) See red outputs in Figure 3.
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Figure 3: Transaction Graph. The red outputs are UTXOs.

c) Fully spending an output simplifies the bookkeeping considerably as an output can only be
in two possible states: spent or unspent. This means that it is easy to detect conflicts,
because two transactions spending the same output are conflicts. If we were to partially
spend outputs, allowing multiple transactions to spend the same output until the coins on
that output were completely spent, then the conflicts become more complicated. Assume an
output with value 1 bitcoin. When partially spending outputs we could create 3 transactions
claiming 0.5 bitcoins from that output, two of them are valid and the third will be invalid,
but there are 3 possible combinations that are valid. So the simple answer is: it makes con-
flicts evident and reduces combinations for conflicts. The number of possible combinations
increases rapidly with the number of transactions.

There are many points in the Bitcoin software where this would complicates things. A
miner needs to construct a valid block from the known transactions, however this becomes
more difficult if arbitrary combinations of transactions suddenly conflict with each other.
Furthermore with complex conflicts attackers can create a situation where most nodes do
not agree on the transactions which will be in the next block. However nodes are optimized
to quickly be able to forward new blocks which look “expected”. If the nodes do not agree at
least loosely on the transactions to be committed in the next block, the propagation delays
become much larger as many transactions need to be retransmitted, which finally results in
smaller total transaction processing capability.

Note: As you might have realized the flow of money can be nicely followed with the transaction
data from the Bitcoin blockchain. If some hacker steals your valuable coins, you can watch him
buy things with it and see where the vendors are spending this money too! For this reason it is
often possible to “buy” larger amounts of Bitcoin with less Bitcoin. The larger amount you can
“buy” has very likely been involved in some crime and is being tracked by the police, thus the
owner is eager to exchange them for other coins. Look for “Bitcoin doubling” in your favorite list
of darknet services!

2.4 Bitcoin Script

a) Transactions are instantly finalized, so the large confirmation delay of the blockchain is
irrelevant. Only the signatures of both parties are needed, then the money has effectively
changed the owner. Furthermore no transaction fees have to be paid to miners for replacing
a transaction.

b) Without the opening transaction A could just spend the money with a transaction without
a timelock to a different address owned by himself. Requiring both signatures prevents this
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and gives security to B. In this construction B can trust that the funds will be available after
the first timelock runs out.

Note that if B wants to access the funds earlier, it is still possible for A and B together to
sign a transaction which directly executes the latest state. As long as both agree it is thus
not necessary to wait for the timelocks. The timelocks are only necessary to ensure the last
state in case there is disagreement.

c) A “kickoff” transaction can be introduced after the opening. Only the opening is executed
(i.e., sent to the blockchain) at the beginning to secure the funds. Now transactions can be
replaced and if someone wants to close the channel he can execute the kickoff. This starts
the timers on the subsequent transactions. See Figure 4 for the new transactions.

In detail the protocol is the following.

Setup:

(a) A creates all transactions of the setup (opening, kickoff and first state).

(b) A sends these together with signatures for the kickoff and first state to B.

(c) B signs the kickoff and first state and sends the signatures to A.

(d) A signs the opening transaction and executes it on the blockchain.

Updating:

(a) A creates a new transaction spending the kickoff output with a lower timelock.

(b) A signs it and sends it to B.

(c) B sends his signature to A.

After the update both have a signed version of the new state and can terminate the channel
in this state.

Closing:

(a) A or B proposes a settlement transaction that directly spends the locked-in funds in
the opening output.

(b) The other party signs and sends it to the blockchain.

This is the cooperative closing case. If some dispute happens, either of the two parties can
always send the kickoff and latest state to the blockchain.
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Figure 4: A “payment channel”. A and B both have to sign to spend the output in the middle.
The upper transaction can only be committed starting from blockheight 100, the lower one starting
from blockheight 90.
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