
Distributed
 Computing

HS 2022 Prof. R. Wattenhofer
Benjamin Estermann

Computational Thinking

Sample Solutions to Exercise 1

1 Towers of Hanoi

Let us first look at an easy problem: we want to move a tower of size 1 (a.k.a. only the smallest → notebook

disk) to a final rod given a helping rod. The smallest disk we can always move onto any rod (it
can never be placed on a smaller one).

Now let us look at the case where we have a tower of more than one disk, let’s say n disks. The
largest disk has to go to the very bottom of the final tower, otherwise we would place it later on a
smaller disk. To do this, we need to move the entire tower to the helping rod (using the final rod
as auxiliary structure). Then, the largest disk can be moved to the free final rod. Now we need
to move the remaining tower from the helping rod to the final rod. This tower has n− 1 disks, so
we can use recursion and do the same trick again (the largest disk that has already been placed
on the bottom of the final rod will not influence the rest of the game in any way!). For moving
this tower of n− 1 disks, the former helping rod will act as our new starting rod, and the former
starting rod will act as our new helping rod.

2 Nim Game

Part 1

In principle Nim is a game with recursive nature. Let’s assume we have a function is won(n) that → notebook

tells us if the next player to move can win the game with n sticks. For example in our game nim(1)
would return True since the starting player takes the last stick, and the other player cannot move
and loses. Similarly, nim(3) is won by taking all three sticks. However, nim(2) is always lost: the
only options are taking one stick or halving the stack, which leaves the other player to play on
one stick left. We already know that the starting player wins on one stick. Thus playing on two
sticks always loses (against optimal play).

This gives us the recursive idea to play Nim: we check all available options given to us:
removing 1, removing 3, halving an even stack. If any option makes the then starting player lose,
we can win by creating this situation, thus returning True. If all options make the new starting
player win, we will lose and return False.

Moreover, we can use dynamic programming to solve this problem faster. We store all interme-
diate results nim(n) that we already computed. Now we only need to look at those results instead
of invoking recursive calls. The solution implementation shows both the dynamic programming
version and the recursive variant. If you want, play with increasing values of n to see the difference
in speed!

Part 2

The idea for this game is very similar to the first variant. We check every possible move in any of
the three piles and if we find at least one move that makes the new starting player lose, we return
True, otherwise we return False.

https://colab.research.google.com/drive/1l0LoYjd6ZK3F2NRW4Wa9pNKlZQjKbhCz#scrollTo=XC_NDjcAPHj9&line=1&uniqifier=1
https://colab.research.google.com/drive/1l0LoYjd6ZK3F2NRW4Wa9pNKlZQjKbhCz#scrollTo=8n7zF_xfpg7R&line=5&uniqifier=1

	Towers of Hanoi
	Nim Game

