
Chapter 2

Complexity

In Chapter 1 we learned some nifty algorithmic techniques. However, sometimes
we are dealing with a problem where none of these techniques seem to work!
Should we give up? And what do we do after giving up?

2.1 P vs. NP

Definition 2.1 (Computational Problem). A computational problem is de-
fined as a (possibly infinite) set of inputs X and a (possibly empty) set of outputs
Y for each input x ∈ X.

Definition 2.2 (Optimization Problem). In an optimization problem, given
an input x ∈ X and a quality measure function q(x, y), the task is to find an
output y ∈ Y , such that q(x, y) is optimal.

Remarks:

• We have seen several optimization problems in the previous chapter:
What is the maximal value that can be packed into a knapsack? What
is the optimal value of flow in a given network?

• We can also rewrite any linear program (Definition 1.18) as an opti-
mization problem: we define the input to the problem as x = (A, b, c),
the set of admissible outputs as Y = {y|Ay ≤ b}, and the function to
be optimized as f(x, y) = cT y.

Definition 2.3 (Decision Problem). In a decision problem, given an in-
put (x, d) and a quality measure function q(x, y), where x ∈ X and d is a
decision value, the task is to check whether there exists a solution y ∈ Y with
q(x, y) ≥ d. The output of the decision problem is a boolean value.

Remarks:

• Note that we can reformulate any optimization problem as a decision
problem. The corresponding decision problem asks a Yes/No question
about quality of a solution. For example: Can we pack items of total
value 100 into a knapsack? Is there a flow of value at least 5 in a given
network?

19

20 CHAPTER 2. COMPLEXITY

Lemma 2.4. By solving the optimization problem, we find a solution for the
corresponding decision problem.

Proof. Assume we have a decision problem, where we want to verify whether
a problem has a solution of at least quality q. We can then run an algorithm
for the corresponding optimization problem and check whether the solution is
better or worse than q.

Remarks:

• The opposite direction of Lemma 2.4 is usually also possible: if we
have an algorithm for a decision problem, we can run it for many
different decision values in order to determine the optimal value. This
way, we can solve the corresponding optimization problem, but it is
not clear how efficiently. The decision problem is therefore intuitively
simpler than the optimization problem.

• In the first part of this chapter, we will focus on decision problems.

• In the previous chapter, we have discussed a measure for discussing
the running time of algorithms – the time complexity (Definition 1.5).
Algorithms for Knapsack seemed to have exponential time complexity,
while network flow and matching were polynomial.

• When studying the complexity of computers, we are first and foremost
interested in whether a problem can be solved in polynomial time. All
problems that can be solved in polynomial time are considered “easy”,
and grouped together in a class.

Definition 2.5 (Complexity Class P). The complexity class P contains all
decision problems that can be solved in polynomial time, i.e. where we know an
algorithm whose running time is in O(poly(n)), where n is the size of the input.

Remarks:

• There are many problems that belong to class P: sorting, matrix
multiplication, max value in an array, etc.

• In order to show that a problem is in P, we usually give an explicit
algorithm and analyze the running time directly. There is also an
indirect way of showing that a problem is in P: if we can show that
some problem known to be in P can be used to solve our problem.
Then our problem is “at most as difficult” as a problem in P and is
therefore also in P.

Definition 2.6 (Polynomial Reduction). Let A = (xA, qA) and B = (xB , qB)
be two decision problems, and YA, YB denote the two admissible sets for the
respective problems. We say that there exists a polynomial reduction from A to
B, short A ≤ B, if there exist a function r : (XA, YA) → (XB , YB) such that
f(x, y) has quality qA if and only if f(r(x, y)) has quality qB. In addition, there
is an algorithm that can compute r in O(poly(n)), where n is the size of input
A.

Lemma 2.7. Sorting ≤ Max

2.1. P VS. NP 21

Proof. Assume that the maximum value of an array with n values can be com-
puted in polynomial time. We can compute the maximum value iteratively n
times, and thus sort the array in polynomial time.

Remarks:

• We can use polynomial reductions between problems in order to de-
termine classes of problems that have roughly the same difficulty.

Problem 2.8 (Clique). The input is a graph G = (V,E) with n nodes, and an
integer k < n. In the clique (decision) problem we want to know whether
there exists a subset of k nodes in G such that there is an edge between any two
nodes.

Problem 2.9 (Independent Set). The input is a graph G = (V,E) with n
nodes, and an integer k < n. In the independent set problem we want to
know whether there exists a subset of k nodes in G such that there is no edge
between any two nodes in the subset.

Theorem 2.10. Clique ≤ Independent Set and Independent Set ≤ Clique.

Proof. There is a simple function that maps one problem to the other: Let
K = V ×V denote all possible edges in a graph G. Given the graph G = (V,E)
in Clique, remove all edges E of this graph and add all edges in K − E. Then,
all cliques in G will become independent sets in the new graph, and vice versa.
The transformation can be computed in polynomial time.

Problem 2.11 (Vertex Cover). The input is a graph G = (V,E) with n nodes,
and an integer k < n. In the vertex cover problem we want to know whether
there exists a subset S of k nodes in G such that every edge in E has at least
one of its two adjacent nodes in S.

Theorem 2.12. Vertex Cover ≤ Independent Set and Independent Set ≤ Vertex
Cover.

Proof. Given a any independent set S, all other nodes V − S will be a vertex
cover. The nodes in S are not connected to each other by definition, so the
nodes V − S must cover all edges. Likewise, if the nodes V − S cover all edges,
then the nodes S cannot have any edges between them, so S is an independent
set.

If S is a maximal independent set, the vertex cover V −S must be minimal:
If the vertex cover was not minimal, we could find a bigger independent set, so
S was not maximal. And vice versa.

Lemma 2.13. The relation ≤ is transitive, i.e., if A ≤ B and B ≤ C then
A ≤ C.

Proof. Let A,B and C be computational problems, such that A ≤ B and
B ≤ C. Then there exists an algorithm that can reduce problem A to C in
O(poly(poly(n))) = O(poly(n)) time.

22 CHAPTER 2. COMPLEXITY

Remarks:

• Therefore, there are polynomial reductions between Clique and Ver-
tex Cover as well. If you know how to solve one of these problems
in polynomial time, you can solve the other two in polynomial time
as well! Unfortunately, nobody knows whether these problems (and
many others!) are in P.

• Using polynomial reductions, we can define a hierarchy of different
problems.

• Even though we could not find an efficient (polynomial) algorithm
for Knapsack as of now, we can try to see whether a simpler deci-
sion problem can be solved efficiently: Assume a friend (magically)
suggests a solution to a seemingly difficult problem. Can you at least
efficiently verify whether the proposed solution is admissible and gives
the desired result?

Definition 2.14 (NP). The class of non-deterministic polynomial problems
(NP) contains decision problems, for which, given an input x and a possible
solution y, the problem whether q(x, y) has a certain quality can be verified in
time O(poly(n)), where n is the size of the input x.

Remarks:

• The solution y in Definition 2.14 is also called certificate or witness.

• The term “non-deterministic” means that an algorithm is allowed to
use parallelism and randomness. A non-deterministic algorithm can
in parallel evaluate all possible solutions.

• The class NP contains a large set of computational problems. In fact,
it is difficult to imagine a problem not in NP.

Lemma 2.15. Knapsack is in NP.

Proof. For Knapsack, a solution is a set of items. In order for Knapsack to be
in NP, we would be given a set of items and a total value, for example 100.
Verifying whether a given set S of items has a total value of 100 is just a sum.
We also need to make sure that S is admissible. This can be also done in
polynomial time. So Knapsack is in NP.

Lemma 2.16. Clique is in NP.

Proof. Given a graph and a proposed set of k nodes for a clique, we need to
check whether the k proposed nodes are connected. This can be done by going
through the list of all edges and counting the edges between the k nodes. If we
counted k(k − 1)/2 edges, the proposed node set forms a clique.

Lemma 2.17. P ⊆ NP.

Proof. Every problem in P is automatically in NP. For problems in P, we can
assume that the solution is first computed in Definition 2.14.

2.2. NP-HARD 23

Lemma 2.18. Let B be a problem in NP and A be a problem with A ≤ B.
Then, A is also in NP.

Proof. Given an input xA and a solution yA to problem A, there exists a function
r that transforms the pair (xA, yA) to a pair (xB , yB) of problem B. Since B
is in NP, we can verify in polynomial time whether the pair (xB , yB) is a valid
solution for B and therefore also whether (xA, yA) is valid for A. A is in NP,
because r and the verification can be both computed in polynomial time in the
input size of A.

Remarks:

• Observe that all three problems (Clique, Independent Set, Vertex
Cover) are in the class NP, and they seem to be more difficult than the
problems in P. Are there even more difficult problems? Is Knapsack
more difficult? What is the most difficult problem?!

2.2 NP-hard

Definition 2.19 (NP-hard). A decision problem H is called NP-hard, if there
exists a polynomial reduction from every problem in NP to H.

Remarks:

• In other words, an NP-hard problem is at least as difficult as all the
problems in NP.

• NP-hard problems do not necessarily have to be in NP.

• Are there also NP-hard problems in NP?

Definition 2.20 (NP- complete). A decision problem is called NP- complete if
it is NP-hard and it is contained in NP.

Lemma 2.21. Let B be an NP-complete problem and C be a problem for which
exists a polynomial reduction B ≤ C. Then, C is NP-hard.

Proof. Since B is NP-complete, there exists a polynomial reduction from every
problem in NP to B. By using Lemma 2.13, we can show there also exists a
polynomial reduction from every problem in NP to C. Therefore, C is NP-
hard.

Remarks:

• Can we identify such an NP- complete problem? If yes, we could use
polynomial reductions to show that there are many more problems
contained in the NP- complete class. We will postpone this question
to Section 2.3.

• Figure 2.22 visualizes some of the complexity classes and how they are
related to each other. The figure just represents our current knowledge
of how these classes relate to each other. There are still many open
questions in complexity theory that could change the landscape once
an answer is found. Also, there are many more classes.

24 CHAPTER 2. COMPLEXITY

NP

BQP

NP- complete

P

NP-hard

SAT

Graph isomorphism

Multiplication

Discrete logarithm

Forrelation

TSP (optimization)

Figure 2.22: A complexity “pet” zoo: Diagram with different complexity classes
and sample problems inside each class. The boolean satisfiability problem (SAT)
will be introduced in the next section; the optimization version of the travel-
ing salesperson problem (TSP) will be introduced in Section 2.5; the discrete
logarithm and the graph isomorphism problems will be discussed in Chapter 3.

• It is generally believed that there are some problems which are in NP
but not in P. Or simply:

Conjecture 2.23. P �= NP.

Remarks:

• The P versus NP question is one of the most important open scientific
problems. There were many proof attempts, however, so far, without
success.

• Another open question is whether quantum computers will allow to
solve all difficult problems efficiently.

Definition 2.24 (BQP). A decision problem is in the class of bounded-error
quantum polynomial time (BQP) problems, if it can be solved on a quantum
computer in polynomial time and if for any input the probability to compute the
wrong answer is at most 1/3.

2.3. BOOLEAN FORMULAS 25

Remarks:

• It is known that some problems from NP are also in BQP.

• The relation between the class of NP- complete problems and problems
from BQP is unknown.

• It has been shown that there is a problem in BQP that is not in NP
– the forrelation problem. In this problem, the question is whether a
boolean function correlates to a Fourier transform of another boolean
function. This result implies that only a quantum computer could
solve (or even just verify) Forrelation efficiently.

2.3 Boolean Formulas

Definition 2.25 (Boolean Formula). Let x = (x1, . . . , xn) be a vector of boolean
variables (True/False, respectively 1/0). A boolean formula f consists of
boolean variables and logical operations AND, OR and NOT. In particular, f
maps a given assignment of variables to True or False (equivalently, 1 or 0).
We say that a boolean formula is satisfiable if there exists an assignment of
variables x, such that f(x) = 1. We will call xi and its negation ¬xi literals.
Literals that are all connected by a logical AND (OR) operation we will call an
AND-clause (OR-clause).

Definition 2.26 (Conjunctive Normal Form CNF). A boolean formula f is
in conjunctive normal form (CNF), if it consists of OR-clauses that are
connected by an AND operation. A CNF formula is satisfiable, if there is an
assignment of variables such that all OR-clauses of the formula are satisfied.

Remarks:

• Any boolean formula can be written as CNF.

Problem 2.27 (SAT). In the boolean satisfiability problem (SAT), the task is
to determine whether a given CNF formula is satisfiable.

Problem 2.28 (3-SAT). 3-SAT is a special case of SAT, where the given for-
mula is a CNF that has exactly three literals in each OR-clause.

Theorem 2.29. SAT is in NP.

Proof. Assume we are given an arbitrary boolean formula and an assignment
of its variables that acts as a solution. We need to verify in polynomial time
whether the given assignment is True. Since the input (formula and assignment)
has the size of the boolean formula, the verification can be done efficiently.

Remarks:

• Intuitively, SAT seems difficult to solve. With n variables, there are
2n possible assignments. If only one assignment satisfies the boolean
formula, we are trying to find a needle in a haystack.

26 CHAPTER 2. COMPLEXITY

• The satisfiability problem with DNF (disjunctive normal form) for-
mulas, on the other hand, is in P. In a DNF formula, the operations
AND and OR are swapped. Therefore, only one AND-clause has to be
satisfied in order to satisfy the whole formula. To do so, it is sufficient
to verify that there is an AND-clause that contains no variable in its
negated and non-negated form.

• Note that CNF ≤ DNF is not true. While every CNF can be expressed
as DNF, the DNF may be exponentially bigger than the CNF, so the
reduction function r in Definition 2.6 is not polynomial.

Theorem 2.30 (Cook/Levin Theorem). SAT is NP- complete.

Proof. The proof of this theorem is beyond the scope of this script and hence
omitted here. The theorem is usually proven by using an alternative definition of
NP- completeness via non-deterministic Turing machines. Using this definition
one can show that it is possible to encode a Turing Machine as a SAT formula
in polynomial time.

Lemma 2.31. 3-SAT is NP- complete.

Proof. Observe that 3-SAT ≤ SAT holds since 3-SAT is a special case of SAT,
and therefore, according to Lemma 2.18, 3-SAT is in NP. The other direction
also holds, that is SAT ≤ 3-SAT: In order to show this, OR-clauses that contain
more than three literals need to be split into smaller clauses, while clauses with
less literals need to be filled up. Here, we will only consider some small examples.
A clause with two literals (x1∨x2) can simply be replaced by (x1∨x2∨y)∧(x1∨
x2 ∨¬ y), where y is a new variable. A clause of four literals (x1 ∨ x2 ∨ x3 ∨ x4)
we can rewrite as (x1 ∨ x2 ∨ z) ∧ (x3 ∨ x4 ∨ ¬ z), where z is a new variable.

Remarks:

• Not all instances of SAT are hard. In 2-SAT, every clause contains
exactly two literals. In contrast to 3-SAT, a solution of 2-SAT can be
found in polynomial time.

• In order to show that some of the previously introduced problems
(e.g. Clique or Vertex Cover) are also NP- complete, we will search for
polynomial-time reductions from SAT (or 3-SAT) to these problems.

Theorem 2.32. Clique is NP-hard.

Proof. We will prove that Clique is NP-hard by using Lemma 2.21 and showing
the reduction SAT ≤ Clique. We therefore will model a boolean formula as a
graph. Given a boolean formula as a CNF, we construct a graph G as follows:
Each OR-clause of the form (¬x1 ∨ x2 ∨ x3) in the boolean formula forms a
cluster of 3 nodes. Each literal from the clause corresponds to a node in the
cluster. In the sample clause, we label the corresponding three nodes ¬x1, x2

and x3. The nodes inside the same cluster will not be connected. We will
also not connect nodes that represent the same variable in a negated and non-
negated state, i.e. x and ¬x will not be connected. Each other pair of nodes in
G we connect by an edge. Note that is construction is polynomial in the size of
the boolean formula.

2.3. BOOLEAN FORMULAS 27

Next, we show that a given boolean formula of k OR-clauses is satisfiable if
and only if the corresponding graph G has a clique of size k. Let us first assume
that a given boolean formula is satisfiable, that is, there is an assignment of
x, such that in each clause there is a literal that evaluates to True. Select one
such variable from each of the k clauses. Note that in the graph G, all these
variables will be connected. This is because the corresponding nodes are all in
different clusters and because nodes with labels x and ¬x cannot both be True
in the boolean assignment. Therefore, these k nodes form a clique in G.

Now assume that there exists a clique of size k in G. Note that this clique
cannot contain nodes from the same cluster, as such nodes would not be con-
nected. By definition of G, the clique will also not contain nodes with labels x
and ¬x. Therefore, the clique of size k will have exactly one node from each
cluster, and each variable will be represented in either its negated or its non-
negated form. By setting the values of the node labels to True, we will receive
an assignment of variables that satisfies the corresponding boolean formula.

Remarks:

• Note that the opposite direction, Clique ≤ SAT, does not directly
follow from above proof. Not all graphs G can be reached with the
construction. In order to show Clique ≤ SAT, one would have to
show that every graph G can be transformed into a boolean formula
in polynomial time.

• In Lemma 2.16, we showed that Clique is in NP. Therefore, Clique is
also NP- complete.

• Also Independent Set and Vertex Cover are NP- complete, since there
are reductions in both directions between Clique and these problems,
which we have shown in Theorem 2.10 and Theorem 2.12.

• In other words, all these problems are the most difficult problems in
NP. If you could solve one of them in polynomial time, you could solve
all problems in NP!

• What about Knapsack? We need yet another problem.

Problem 2.33 (Subset Sum). Given a number s ∈ N and a set of n natural
numbers x1, . . . , xn, does there exist a subset of these numbers that has a sum
of s.

Theorem 2.34. Subset Sum is NP- complete.

Proof. It is easy to verify whether a given subset of elements has the desired sum
s. Therefore, Subset Sum is in NP. In order to show that Subset Sum is NP-
hard, the reduction 3-SAT ≤ Subset Sum is used. This reduction is non-trivial
and will be omitted in this script.

Theorem 2.35. The Knapsack (decision) problem is NP-complete.

Proof. Subset Sum is a special case of Knapsack: let the natural numbers be
items with values x1, . . . , xn and weights x1, . . . , xn, and let the knapsack have
capacity s. If items of value s can be packed into the knapsack, then the cor-
responding items form a subset of sum s. Therefore, Subset Sum ≤ Knapsack.

28 CHAPTER 2. COMPLEXITY

Since Subset Sum is NP- complete, Knapsack has to be NP-hard. In Lemma 2.15,
we already showed that Knapsack is in NP.

Remarks:

• In fact, thousands of interesting problems in many different areas are
NP- complete: Achromatic Number, Battleship, Cut, Dominating Set,
Equivalence Deletion, . . . , Super Mario Bros, Tetris, . . . , Zoe.

• Figure 2.36 below shows the reductions of NP- complete problems that
we discuss in this chapter.

Independent Set Vertex Cover

SAT

3-SATCircuit-SATClique

Subset Sum

Knapsack

≤

≤

≤

Figure 2.36: Reductions between NP- complete problems

2.4 Boolean Circuits

Definition 2.37 (Boolean Circuit). Let n,m ∈ N. A boolean circuit is a di-
rected acyclic graph (DAG) with n boolean input nodes and m output nodes.
The input nodes have no incoming edges, while the output nodes have no out-
going edges. The nodes of the graph that are not input nodes represent logical
operations (AND, OR, NOT) and are called gate nodes. We will label the
corresponding nodes ∧,∨ and ¬. Each NOT gate has in-degree 1. The in- and
out- degrees of the other gates do not have to be bounded. We further define the
size of the circuit to be its total number of gates, and the depth of the circuit
to be the length of the longest (directed) path from an input to an output node.

A boolean circuit C represents a mapping C : {0, 1}n
→ {0, 1}m. The value
of an input node is the value of the corresponding input bit of C. The value
of each other gate is determined recursively by applying the logic operation that
this gate represents to the values received through incoming edges. The output
of the boolean circuit are the values of all output nodes.

2.4. BOOLEAN CIRCUITS 29

Remarks:

• Boolean circuits provide a nice tool for understanding the complexity
of computation. They are limited in computation power, yet may help
to answer the P �= NP conjecture.

• In the literature, it is often assumed that AND and OR gates have a
bounded number of input values, or that the circuit has a bounded
depth.

• In the following, we will consider boolean circuits that have only one
output value (True or False).

Problem 2.38 (Circuit-SAT). Let C : {0, 1}n
→ {0, 1} be a boolean circuit
with only one output value. In Circuit-SAT, the task is to determine whether
a given circuit C has an input vector z ∈ {0, 1}n, such that C(z) = 1.

Theorem 2.39. Circuit-SAT is in NP.

Proof. We will start by showing that Circuit-SAT is in NP by applying Lemma 2.18
and showing that Circuit-SAT ≤ SAT. We therefore need to construct a boolean
formula that represents the gates of the given circuit. First, we introduce a new
variable gi representing gate i for each gate of the circuit. We next differentiate
between the three possible gates: If gj is a NOT gate of gate gi, then we add
the clauses (gi ∧ ¬ gj) ∨ (¬ gi ∧ gj) to the formula. If gk is an AND gate with
inputs from two gates, gi and gj , we add the following clauses to the formula:
(gk ∧ gi ∧ gj) ∨ (¬ gk ∧ gi ∧ ¬ gj) ∨ (¬ gk ∧ ¬ gi ∧ gj) ∨ (¬ gk ∧ ¬ gi ∧ ¬ gj).
In the last case, if gk is an OR gate with inputs from gi and gj , we add
(gk ∧ gi ∧ gj) ∨ (gk ∧ gi ∧ ¬ gj) ∨ (gk ∧ ¬ gi ∧ gj) ∨ (¬ gk ∧ ¬ gi ∧ ¬ gj) to the
formula. Observe that an AND or an OR gate with k inputs can be replaced
by k − 1 gates with two inputs by increasing the depth of the circuit.

Therefore, a boolean formula is satisfiable if and only if the corresponding
circuit evaluates to 1. The construction was polynomial in the input size, and
the resulting boolean formula can be transformed into a CNF, hence Circuit-
SAT is in NP.

Theorem 2.40. Circuit-SAT is NP- complete.

Proof. In the previous theorem we have shown that Circuit-SAT is in NP. In
order to show that Circuit-SAT is NP-hard, we will reduce SAT to Circuit-SAT,
i.e. SAT ≤ Circuit-SAT. Let each variable of the boolean formula be an input to
the circuit. For each negated variable, we can add a NOT gate. Then, for each
clause in the formula, we add an AND gate that has all variables from the clause
as input to the gate. And, finally, we add one OR gate that has values from
all AND gates as its input. This gives a polynomial construction of a boolean
formula as a circuit thus showing that Circuit-SAT is NP- complete.

Problem 2.41 (Minimum Circuit Size Problem or MCSP). Given a boolean
function f : {0, 1}n
→ {0, 1}, the task of the Minimum Circuit Size Prob-
lem (MCSP) is to determine whether f can be represented by a boolean circuit
of size s, i.e. a circuit with s gates.

30 CHAPTER 2. COMPLEXITY

Remarks:

• There are several approaches of how boolean formulas can be simpli-
fied. Often the laws from boolean algebra are applied (Distributive
law, Idempotent law, Identity law, Complement law, DeMorgan’s law,
Karnaugh maps). These minimization rules however do not guarantee
that the resulting boolean formula uses the minimum number of gates.

• How difficult is MCSP?

Theorem 2.42. MCSP is in NP.

Proof. We will first show that for every n, there exists a boolean function f :
{0, 1}n
→ {0, 1} which cannot be computed by a circuit of size 2n/(4n). Note
that there exist 22

n

possible functions f . Each circuit of size s with in-degree 2
can be represented by at most 3s log s bits. Assume for contradiction that every
boolean function can be represented by a circuit of size s = 2n/(4n). There
exist at most 23s log s such circuits. Observe that

23s log s = 23·2
n/(4n) log(3·2n/(4n)) ≤ 23n·2

n/(4n) < 22
n

holds, meaning that not all functions can be computed by a circuit of size
s = 2n/(4n).

The first part showed that the input to MCSP is at least of size 2n/(4n). In
order for MCSP to be in NP, we would have to efficiently check that the circuit
has the desired size s and that it computes a given boolean function. Since the
truth table of the given boolean function has size (n + 1)2n, it is possible to
compute the truth table for the given circuit in a time that is polynomial in the
input size.

Remarks:

• Is MCSP also NP-hard? As of now, there is no answer to this question.
In fact, there is evidence that this result might be difficult to establish.

• Some complexity classes are defined with respect to boolean circuits.

Definition 2.43 (Class AC0). The class AC0 contains all decision problems that
can be decided by a family of circuits {Cn}, where Cn has a constant depth and
the size of the circuit is polynomial in n.

Remarks:

• Note that we need to consider a circuit family, because the input size
of each circuit is fixed, while the input to a problem can vary.

• Note that we do not allow the boolean circuits to save output bits or
use recursive operations.

• There exist many other classes based on the boolean circuits: The class
NC0 is defined in the same way as AC0, but the number of incoming
edges to the AND and the OR gate is restricted to only two edges.
Both classes can be extended to versions that allow a non-constant
depth of the circuit: ACi and NCi have depth O(

logi n
)
.

2.5. SOLVING HARD PROBLEMS 31

2.5 Solving Hard Problems

We have seen that many important computational problems are known to be
NP-hard. So what do we do if we encounter such a hard problem?

Remarks:

• We will now consider optimization problems instead of decision prob-
lems. This often makes sense in practice, where you usually want to
find the best solution to some problem, instead of just deciding if the
problem has a solution with a specific cost.

• So how can we approach a hard problem in practice? So far, we have
mostly considered exact algorithms.

Definition 2.44 (Exact Algorithm). An exact algorithm always returns the
optimal solution to the problem.

Remarks:

• We have seen that for NP- complete problems we do not know if there
is an exact algorithm with polynomial running time.

• Even when the worst-case running time of an algorithm is exponen-
tial, one can often use tricks to considerably reduce this running time
in practice, e.g. by using look-ahead or pruning techniques as in Def-
inition 1.9.

• What if we also accept weaker-than-optimal solutions, but instead, we
require our algorithm to always have a reasonable running time?

Definition 2.45 (Heuristic). A heuristic is an algorithm that is guaranteed to
have a polynomial running time, at the cost of returning a suboptimal solution.

Remarks:

• One example for a heuristic is our greedy algorithm for Knapsack,
Algorithm 1.8.

• Good heuristics are usually based on insights into the structure or
the behavior of the problem. Some heuristics are known to usually
provide good solutions in practice.

• However, while heuristics are often good on some inputs, they may
return very weak solutions on other inputs.

• In general, it is better to have algorithms which provide guarantees
that they always return a solution which is reasonably close to the
optimum. We want to understand algorithms with such guarantees.

32 CHAPTER 2. COMPLEXITY

2.6 Vertex Cover Approximation

Let us first revisit the optimization version of Vertex Cover: we want to find a
vertex cover S ⊆ V in an input graph G = (V,E), with |S| as small as possible.
Can we come up with an algorithm where we can prove that the size of the
returned vertex cover is always “reasonably close” to the optimum?

Remarks:

• A natural approach is the greedy method of Algorithm 2.46.

1 def VertexCover_Greedy_Naive(G):

2 S = ∅
3 while E �= ∅:
4 select an arbitrary edge (u, v) ∈ E

5 S = S ∪ {u}
6 remove all edges from E that are adjacent to u

7 return S

Algorithm 2.46: Naive greedy algorithm for Vertex Cover.

Lemma 2.47. Algorithm 2.46 returns a vertex cover.

Proof. An edge from E is only removed when one of its adjacent nodes is in-
cluded in the set S.

Remarks:

• However, the size of this vertex cover can be very far from the optimal
size.

Theorem 2.48. The size |S| of the vertex cover returned by Algorithm 2.46
can be an n− 1 factor larger than the optimum.

Proof. Consider a “star” graph with n nodes and n−1 edges, where n−1 distinct
leaf nodes u1, u2, ..., un−1 are connected by an edge to the same center node
v. Whenever Algorithm 2.46 selects an edge (ui, v) in this graph, it can happen
that it always chooses the leaf node ui. In this case, the algorithm only removes
a single edge (ui, v) in each step, and the algorithm lasts for n− 1 iterations of
the loop. In the end, the algorithm returns the vertex cover S = {u1, ..., un−1},
which consists of n− 1 nodes.

On the other hand, the set {v} is an optimal vertex cover of cost c∗ = 1 in

this graph, so we have |S|
c∗ = n− 1.

2.6. VERTEX COVER APPROXIMATION 33

Remarks:

• It is a natural idea to try to improve Algorithm 2.46 with a clever tie-
breaking rule: for example, to always select the higher-degree adjacent
node of the chosen edge, or the highest-degree node altogether among
the available nodes. This solves the star. However, there are more
complicated counterexamples which show that even in this case, the
solution we obtain can be a log n factor worse than the optimum.

• However, there is a slightly different greedy approach that provides
much better guarantees.

1 def VertexCover_Greedy(G):

2 S = ∅
3 while E �= ∅:
4 select an arbitrary edge (u, v) ∈ E

5 S = S ∪ {u, v}
6 remove all edges from E that are adjacent to u or v

7 return S

Algorithm 2.49: Greedy algorithm for Vertex Cover.

Theorem 2.50. Algorithm 2.49 always returns a vertex cover with |S| ≤ 2 · c∗.
Proof. Algorithm 2.49 returns a correct vertex cover: an edge is only removed
from E if at least one of its adjacent nodes is inserted into S.

Assume that the algorithm runs for c iterations of the main loop, i.e. it
selects c different edges (ui, vi), and inserts both adjacent nodes ui and vi of
these edges into S for i ∈ {1, ..., c}. Note that none of these edges (ui, vi) share
a node, because all edges adjacent to either ui or vi are removed when (ui, vi) is
selected (in graph theory, they refer to such a set of edges as a matching). This
means that in the optimal vertex cover S∗, each vertex can only be adjacent to
at most one of the edges (ui, vi); thus in order to cover all the edges (ui, vi), we
already need at least c nodes. As a result, we get that c∗ = |S∗| ≥ c.

On the other hand, our algorithm returns a vertex cover of size |S| = 2 · c,
so we have |S| = 2 · c ≤ 2 · c∗.

Remarks:

• In a graph of n
2 independent edges, the solution returned by Algorithm

2.49 is indeed 2 times worse than the optimum, so our analysis is tight.

• This algorithm was somewhat counter-intuitive; one might expect Al-
gorithm 2.46 to be more efficient. However, as we have seen, Algorithm
2.49 is always at most a factor 2 away from the optimum c∗, while
Algorithm 2.46 can be an (n− 1)-factor away.

• Algorithms that are proven to always be within an α factor from the
optimum are called approximation algorithms. Theorem 2.50 shows
that Algorithm 2.49 is a 2-approximation algorithm for Vertex Cover.

34 CHAPTER 2. COMPLEXITY

• For our formal definition of this notion, we assume a minimization
problem.

Definition 2.51 (Approximation Algorithm). We say that an algorithm A is
an α-approximation algorithm if for every possible input of the problem, it
returns a solution with a cost of at most α ·c∗, where c∗ is the cost of the optimal
solution (the one with minimal cost).

Remarks:

• The definition is similar for maximization problems. In this case, we
denote the value of the optimal solution (the one with highest value)
by v∗. For an approximation algorithm, we require that the returned
solution always has a value of at least v∗/α.

• This section only considers approximations algorithms that run in
polynomial time. That is exactly the point of these algorithms: to
find a reasonably good solution without having an unreasonably high
running time.

Definition 2.52. We say that a problem is α-approximable if there exists a
polynomial-time algorithm A that is an α-approximation algorithm for the prob-
lem.

Remarks:

• In general, α can be any constant value with α > 1, or it can also be
a function of n (the size of the input), e.g. α = log n or α = n3/4.

• In many cases, we can already get some approximability results from
the most trivial algorithms. Independent Set naturally has v∗ ≤ n,
since we can find a solution of value 1 by simply outputting a set that
consists of an arbitrary single node. This shows that Independent Set
is (at least) n-approximable.

• This allows us to classify hard problems, based on how well their
optimum solution can be approximated. E.g. the complexity class of
problems that are α-approximable for some constant α is called APX.
Since Theorem 2.50 has α = 2, Vertex Cover is in APX.

• For Vertex Cover, there is currently no 2−ε approximation algorithm
known for any ε > 0, so the algorithm above is indeed the best we
have. Also, it is proven that no approximation better than 1.3606 is
possible at all unless P = NP. This means that unless P = NP, we are
unable to approximate the best solution of this problem arbitrarily
well (in polynomial time).

2.7 Bin Packing Approximation

Let us now look at some other problems that are α-approximable to some con-
stant α. We continue with the bin packing problem, which is similar to Knap-
sack.

2.7. BIN PACKING APPROXIMATION 35

Problem 2.53 (Bin Packing). We have a set of n items of size x1, ..., xn, and → notebook

an unlimited number of available bins, each having a capacity of B. A set of
items fits into a bin if its total size is at most B. Our goal is to put all of the
items into bins, using the smallest possible number of bins.

Remarks:

• You can easily imagine immediate applications of this, e.g. packing
files on disks.

• In case of this problem, c∗ denotes the number of bins that are used
in the optimal solution.

• In Bin Packing, a simple greedy heuristic already allows us to obtain
a 2-approximation.

1 def FirstFit(items, B):

2 for each item in items:

3 place item in the first bin where it still fits

4 if item does not fit into any bin:

5 open a new bin, and insert item into the new bin

Algorithm 2.54: First Fit algorithm for Bin Packing.

Lemma 2.55. In Algorithm 2.54, at most 1 bin is filled at most half.

Proof. Assume that there are at least 2 bins b1 and b2 that are filled at most
half. This means that b1 still has free space of at least B

2 , and b2 only contains

items of size xi ≤ B
2 . However, in this case, the items sorted into b2 would also

fit into b1. This contradicts the First Fit algorithm, which only opens a new bin
when the next item does not fit into any of the previous bins.

Theorem 2.56. Algorithm 2.54 is a 2-approximation.

Proof. Assume that the First Fit algorithm uses m bins. Due to Lemma 2.55,
at least m−1 of these bins are filled to a capacity of more than B

2 . This implies

n∑

i=1

xi > (m− 1) · B
2
.

On the other hand, we know that

c∗ ≥
∑n

i=1 xi

B
,

since all the items have to be sorted into a bin, and every bin can only take at
most B. The two inequalities imply

B · c∗ > (m− 1) · B
2
,

and thus
2 · c∗ > m− 1.

Since c∗ and m are integers, this implies 2 · c∗ ≥ m, proving our claim.

36 CHAPTER 2. COMPLEXITY

Remarks:

• One can even improve on this algorithm by first sorting the elements
in decreasing order, and then applying the same First Fit rule. With
only a slightly more detailed analysis, one can show that this improved
algorithm achieves an approximation ratio of 1.5.

• Can we get a better approximation ratio than 1.5? Unfortunately not,
unless we have P = NP. One can show that getting a better than 1.5
approximation is already an NP-hard problem.

• To prove this, we present a reduction to Partition.

Problem 2.57 (Partition). In the Partition Problem, given a set of n items
of positive size x1, ..., xn, we want to decide if we can partition them into two
groups such that the total sum is equal in the two groups.

Remarks:

• Partition is a special case of Subset Sum where s = 1
2 ·∑n

i=1 xi.

• It is known that this special case is still NP- complete.

Theorem 2.58. Subset Sum ≤ Partition.

Proof. The reduction is not too complex, but a bit boring, so we do not discuss
it here.

Theorem 2.59. It is NP-hard to solve Bin Packing with an α-approximation
ratio for any constant α < 3

2 .

Proof. Given an input of Partition with integers x1, ..., xn, we convert it into
a Bin Packing problem: we consider items of size x1, ..., xn, and we define
B = 1

2 ·∑n
i=1 xi.

If the original Partition problem is solvable, then this Bin Packing problem
can also be solved with 2 bins. In this case, an α-approximation algorithm with
α < 3

2 must always return a solution with m ≤ c∗ · α < 2 · 3
2 = 3 bins; since m

is an integer, this means a solution with m = 2 bins.

On the other hand, if the items cannot be partitioned into two sets of size
B, then the algorithm can only return a solution with m ≥ 3 bins.

Hence an α-approximation algorithm for Bin Packing would also solve Par-
tition in polynomial time: we can just solve the converted Bin Packing problem,
and if m = 2, then output ‘Yes’, whereas if m ≥ 3, then output ‘No’.

Remarks:

• Thus, Bin Packing is a problem that can be approximated to some
constant α = 1.5, but not arbitrarily well, i.e. not for any α > 1.

2.8. TSP APPROXIMATION 37

2.8 TSP Approximation

Let us now consider another natural graph question.

Problem 2.60 (Hamiltonian Cycle). The input is a graph G = (V,E). In the
Hamiltonian cycle problem we want to know whether there exists a cycle in
G which contains each node of the graph exactly once.

Remarks:

• Hamiltonian cycle was among the first problems that were shown to
be NP- complete.

• In practice, cities often have different distances between each other.

Problem 2.61 (Traveling Salesperson or TSP). The input is a clique graph → notebook

G = (V,E) (there is an edge between any two nodes of G), with positive edge
weights, i.e. a function d : E → R+. The goal of TSP is to find a Hamiltonian
cycle in G where the total weight of the edges contained in the cycle is minimal.

Theorem 2.62. In general graphs, TSP is NP-hard to approximate to any
constant factor α.

Proof. We provide a reduction to Hamiltonian Cycle, which is NP-complete.
Assume that we have an α-approximation algorithm for TSP. Given an input

graph G = (V,E) for Hamiltonian Cycle, we turn this into an instance of TSP
on V . For each pair of nodes u and v, we define the weight of edge (u, v) in the
TSP in the following way:

• if (u, v) ∈ E, then we assign d(u, v) = 1 in the TSP,

• if (u, v) /∈ E, then we assign d(u, v) = α · n+ 1 in the TSP.

If the initial graph had a Hamiltonian cycle, then the resulting TSP has a
cycle of total weight n as the optimal solution. In this case, our approximation
algorithm is guaranteed to return a solution of cost at most α · n. On the
other hand, if there was no Hamiltonian cycle in the original graph, then the
optimal TSP cycle must contain at least one edge of weight α · n+ 1, and thus
c∗ ≥ α · n+ 1.

Hence an α-approximation returns a solution of cost at most α·n if and only if
the original graph had a Hamiltonian cycle; thus running such an approximation
algorithm allows us to solve the Hamiltonian cycle problem. This shows that
finding a polynomial-time α-approximation of TSP for any constant α is NP-
hard.

Remarks:

• This means that in case of general TSP, the best we can hope for is
an approximation ratio that depends on n.

• On the other hand, there is a special case of the problem that does
allow a constant-factor approximation.

Problem 2.63 (Metric TSP). In Metric TSP, the distances between any three
nodes v1, v2, v3 must satisfy the triangle-inequality: d(v1, v2) ≤ d(v1, v3) +
d(v3, v2).

38 CHAPTER 2. COMPLEXITY

Remarks:

• Note that the triangle inequality is a very realistic assumption in many
real-world applications.

• This is another possible approach to solving hard problems in practice:
maybe we can show that our actual problems are restricted to only
a special case of the original problem, and that this special case is
computationally more tractable.

• A Metric TSP already has a 2-approximation algorithm.

1 def Tree_Based_TSP(G)

2 find a Minimum Spanning Tree T in G

3 form a sequence of nodes P0 by traversing all nodes of T

4 simplify P0 to P by only keeping the first occurrence of

each node↪→

5 return P

Algorithm 2.64: Tree-based approximation for TSP.

Remarks:

• The Minimum Spanning Tree (MST) is, intuitively speaking, the sub-
set of edges with smallest total weight which already connects the
whole graph, i.e. there is a path between any two nodes through
these edges. An MST in a graph can easily be found in polynomial
time with some simple algorithms.

Theorem 2.65. Algorithm 2.64 is a 2-approximation.

Proof. See also Figure 2.66. Let t∗ denote the total cost of the MST. Note that
if we delete a single edge from any Hamiltonian cycle, we get a spanning tree, so
t∗ must be smaller than the cost of any Hamiltonian cycle. This implies t∗ ≤ c∗.

Now consider the cost of the Hamiltonian cycle returned by Algorithm 2.64.
Since the traversal visits each edge of the spanning tree exactly twice, the total
cost of P0 is 2 · t∗. By only keeping the first occurrence of each node in P0, we
create “shortcuts”: whenever we delete a node from P0, we only shorten our
tour due to the triangle inequality. As such, for the total costs we have

cost(P) ≤ cost(P0) = 2 · t∗ ≤ 2 · c∗.

Remarks:

• Being slightly more clever even allows a 1.5-approximation.

• For TSP, it is often reasonable to assume the even more special case of
Euclidean TSP, where the nodes of the graph corresponds to specific
points in a plane, for example. That is, each node v is associated with
two coordinates vx and vy, and the weight of the edge between u and

v is the Euclidean distance of u and v, i.e.
√

(ux − vx)2 + (uy − vy)2.

2.9. FPTAS: KNAPSACK 39

3

4

5

83

5

5

2

4

5

(a) (b) (c) (d)

Figure 2.66: A weighted complete graph as an input to TSP (a), an MST in
this graph (b), the tour P0 obtained from this MST, starting from an arbitrary
node (c), and the simplified tour P after removing repeated occurrences (d).

2.9 FPTAS: Knapsack

We have now seen many problems that are α-approximable for a specific con-
stant α. Sometimes we can even get arbitrarily close to the optimum in poly-
nomial time: there exists a (1 + ε)-approximation for any ε > 0.

Definition 2.67 (FPTAS). We say an algorithm A is a fully polynomial-time
approximation scheme (FPTAS) if for any ε > 0

• A is a (1 + ε)-approximation algorithm, and

• the running time of A is polynomial in both n and 1
ε .

Remarks:

• While an FPTAS is not as good as a polynomial-time exact algorithm,
it is almost as good: for any desired error ε, we can efficiently find a
solution that is only ε away from the optimum.

• There is also a slightly weaker notion of PTAS (polynomial-time ap-
proximation scheme), where we only require the running time to be
polynomial in n, but not in 1

ε . That is, the running time is still poly-
nomial in n for any fixed ε > 0, but it might increase very quickly in
1
ε ; for example, it includes a factor of n21/ε . These algorithms are not
as useful in practice: if we want to get very close to the optimum by
selecting a small ε, the running time still becomes unreasonably large.

• As an example for a nicely approximable problem, we revisit the Knap-
sack problem, and present an FPTAS for it.

• Since we now study the problem from more of a mathematical than a
programming-based perspective, we introduce a shorter notation for
the inputs of the problem.

Definition 2.68 (Knapsack notation). We will use C to denote the capacity of
our Knapsack, and we denote the value and weight of the ith item as vi and wi,
respectively. We denote the number of items by n as before. Finally, let us use
vmax to denote the value of the highest value item, i.e. vmax := max vi.

40 CHAPTER 2. COMPLEXITY

Remarks:

• In case of this problem, we use v∗ to denote the maximal value we can
fit into the knapsack.

• Note that if any item has wi > C, then it can never fit into the
knapsack, so we might as well remove such items. We will assume
that vmax denotes the maximal value of an item that still fits into the
knapsack.

• Recall that we have discussed a dynamic programming solution for
Knapsack, where each cell V [i][c] of our DP table stored the maximum
value that can be achieved with capacity c using only the first i items.
The starting point of our FPTAS algorithm will be a slightly different
variant of this DP method: in our new table, W [i][v] will store the
weight of the lowest-weight subset of items 1, ..., i that has a total
value of v.

• One can show that this table W can also be computed with a similar → notebook

dynamic programming method to Algorithm 1.12. As before, the table
has n rows. The number of columns is now at most n · vmax, which is
an upper bound on the value of any subset; we have n items, and each
of them has value at most vmax. From this alternative DP table, we
can find the optimum v∗ by taking the maximal v value in the table
where W [n][v] ≤ C.

• The main difference from the original DP algorithm is that now each
column expresses the value of a specific subset of items, instead of the
weight of a specific subset of items as before.

• We can now use this alternative DP algorithm to develop an FPTAS
for Knapsack. The main idea is to slightly round up the values of the
items, which results in some inaccuracy for the algorithm, but it also
reduces the number of columns in our DP table.

1 def Knapsack_FPTAS(items, C):

2 k = ε · vmax / n

3 consider the modified Knapsack problem where item i has

weight wi and value v̂i = vi

k � · k↪→

4 run the alternative DP algorithm on this problem, with

columns only corresponding to multiples of k↪→

Algorithm 2.69: FPTAS algorithm for Knapsack.

Lemma 2.70. Algorithm 2.69 has a running time of O(
n3 · 1

ε

)
.

Proof. Given the parameter ε, the algorithm introduces a scaling parameter
k = ε · vmax / n, and defines the rounded-up value of item i as v̂i = vi

k � ·k. This
means that whichever subset of nodes we select, the total value of the subset is
a multiple of k.

2.10. NON-APPROXIMABILITY: INDEPENDENT SET 41

On the other hand, any subset of the items has a total value of n · vmax at
most. If each column represents a multiple of k, then the table has at most
n · vmax / k = n2 · 1

ε columns. The table still has n rows, so the total running
time of the DP algorithm with these rounded values is O(n3 · 1

ε).

Theorem 2.71. Algorithm 2.69 is an FPTAS.

Proof. The polynomial running time has already been established in Lemma
2.70. Let us use S to denote the set of items chosen by Algorithm 2.69. Since we
round the values to multiples of k, the value of each item has been overestimated
by k at most, so v̂i − k ≤ vi. Hence for the total value of items in S we have

∑

i∈S

vi ≥
∑

i∈S

(v̂i − k) =
∑

i∈S

v̂i − |S| · k =
∑

i∈S

v̂i − |S| · ε · vmax

n
≥

∑

i∈S

v̂i − ε · vmax.

To simplify this last expression even more, we make two more observations.
First, since the value of each item is only rounded upwards in this modified
problem, and our algorithm finds the optimal solution, we have

∑
i∈S v̂i ≥ v∗.

Also, choosing the item with maximal value vmax is always a valid solution, so
we also have vmax ≤ v∗. Hence for the total value in S we have

∑

i∈S

v̂i − ε · vmax ≥ v∗ − ε · v∗ = (1− ε) · v∗.

Note that this shows v∗ / v(S) ≤ 1
1−ε , while our original FPTAS definition

requires a slightly different relation: that v∗ / v(S) ≤ (1 + ε). However, since
we now have an α = 1

1−ε̂ -approximation algorithm for any ε̂ > 0, we can obtain
α = (1 + ε) by choosing ε̂ = ε

1+ε .

2.10 Non-Approximability: Independent Set

The most difficult problems are those that cannot be approximated to any
constant α, but only to a factor α = f(n) depending on n, e.g. α = log n
or α =

√
n. This means that as the size of the problem becomes larger, the

difference between the optimum and our solution also grows larger.

Remarks:

• Remember the Independent Set problem? It turns out that this is one
of the most difficult problems from this perspective: approximating it
to any factor that is slightly smaller than n would already imply that
P = NP.

Theorem 2.72. For any positive constant δ > 0, it is NP-hard to approximate
the Independent Set problem to a ratio of n1−δ.

Proof. The proof of this theorem is more involved than our previous claims, so
we do not discuss it here. The idea of the proof is built on the notion of so-called
probabilistically checkable proof systems.

42 CHAPTER 2. COMPLEXITY

Remarks:

• This means that for any approximation algorithm A, there are some
graphs where A returns very weak solutions.

• This n1−δ factor is indeed huge. For example, it might be that the
largest independent set contains n0.99 nodes, but A returns an inde-
pendent set of only 1 or 2 nodes. As such, an approximation algorithm
like this is not useful in practice.

• The same result also holds for the Clique problem.

• Recall from Theorem 2.12 that as a decision problem, Independent
Set ≤ Vertex Cover; however, we have seen that Vertex Cover is 2-
approximable. This shows that even if the decision version of two
problems are equivalent, the approximability of the optimization ver-
sion may differ significantly.

• So while all NP-complete decision problems have the same difficulty
in theory, their optimization variants can behave very differently in
practice.

Chapter Notes

The first formal definition of computation was provided by Alan Turing in
1936 [20]. In this paper, Turing presents an automatic machine (now known as
Turing machine) that can compute certain classes of numbers. We will discuss
the Turing machine in more detail in the last chapter. The birth of compu-
tational complexity as a field is attributed to Hartmanis and Stearns for their
paper “On the computational complexity of algorithms” [14]. They proposed
to measure time with respect to the input size and showed that some problems
can only be solved if more time is given.

The first problem that was shown to be in P was the maximum matching
problem, see Edmonds [9]. In another paper, Edmonds introduced a notion that
is equivalent to the class NP [10]. In 1971, Cook [6] showed that SAT was NP-
complete. Two years later, independently of Cook’s result, Levin [17] showed
that six problems were NP-complete, the so-called universal search problems.
Both authors have formulated the famous P versus NP problem in computer
science. The name NP was however given to the class a year later by Karp [16],
who proved that 21 (combinatorial) problems were NP-complete. He thereby
first used the technique of polynomial reductions in these proofs. Since then,
thousands of problems in different areas of science have been shown to be NP-
hard. Also many new complexity classes have been proposed in the literature.
Different “zookeepers” around the world keep track of the newly introduced
complexity classes in their complexity zoos [1]. The question P �= NP still
remains open. In 2000, the P versus NP problem was announced as one of
the seven Millennium Prize Problems by the Clay Mathematics Institute [4].
Solving P versus NP (or BQP versus NP) will be a major milestone in science,
in case of equality (BQP = NP) there will be amazing practical consequences.

Circuit theory is almost 200 years old, being studied by electrical engineers
and physicists. In the 1940s, the invention of semiconductor devices and later

BIBLIOGRAPHY 43

the transistor further boosted the quest for understanding circuits. The com-
putational model of boolean circuits was introduced by Claude Shannon [19] in
1949, who showed that most boolean functions require circuits of exponential
size (see Theorem 2.42). It was a natural step to restrict the circuits in size and
depth and consider problems that are still computable on restricted circuits.
Furst, Saxe and Sipser [11] for example showed that Parity is not in AC0, but
in NC1. The first connection between circuits and Turing machines has been
made by Savage [18]. It is generally believed that proving bounds using boolean
circuits is easier than by using Turing machines.

While all known exact algorithms for NP-hard problems have a superpolyno-
mial runtime in the worst case, there are numerous possible tricks and optimiza-
tions that can make these algorithms viable on special cases of the problem, even
for very large inputs. For example, there are yearly SAT-competitions where
SAT-solver algorithms try to decide the satisfiability of SAT formulas from real-
life applications, with many of these formulas containing millions of variables
and tens of millions of clauses [2].

Heuristic solutions to hard problems have also been extensively studied. In
particular, there is a wide range of so-called metaheuristics, which are general
approaches and techniques for developing a heuristic solution to a problem.
This includes some simpler approaches like local search or gradient descent,
and also some more sophisticated ones like simulated annealing, tabu search or
genetic algorithms [13]. Note that many techniques in machine learning are also
developed for this purpose: to provide heuristic solutions to hard problems.

The 2-approximation algorithm for Vertex Cover has long been known, dis-
covered by both Gavril and Yannakakis independently [12]. The FPTAS algo-
rithm for Knapsack has also been around for a long time, and it is one of the
most popular FPTAS examples [21].

Bin Packing has also been studied for multiple decades [12]. A recent analysis
of the First Fit heuristic is available by Dósa and Sgall, proving the even stronger
result that First Fit is a 1.7-approximation [8]. The variant which first sorts
the items in decreasing order is known to even provide a 11

9 -approximation up
to an additive constant, and this bound is known to be tight [7].

For Travelling Salesperson, a slightly improved version of our approximation
algorithm is due to Christofides, which improves the approximation ratio to
only 1.5 [5]. In the special case of an Euclidean TSP, there even exists a (rather
complicated) PTAS algorithm, which received a Gödel prize [3].

The inapproximability result for Independent Set was the final result of a
line of lower bounds in the early 2000s; John Hastad also received a Gödel prize
for this result [15, 22].

This chapter was written in collaboration with Darya Melnyk and Pál András
Papp.

Bibliography

[1] Complexity zoo. https://complexityzoo.uwaterloo.ca/Complexity_

Zoo.

[2] The international SAT competition. http://www.satcompetition.org.

44 BIBLIOGRAPHY

[3] Sanjeev Arora. Polynomial time approximation schemes for euclidean trav-
eling salesman and other geometric problems. J. ACM, 45(5):753–782,
September 1998.

[4] James A Carlson, Arthur Jaffe, and Andrew Wiles. The millennium prize
problems. American Mathematical Society Providence, RI, 2006.

[5] Nicos Christofides. Worst-case analysis of a new heuristic for the travelling
salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa
Management Sciences Research Group, 1976.

[6] Stephen A Cook. The complexity of theorem-proving procedures. In Pro-
ceedings of the third annual ACM symposium on Theory of computing,
pages 151–158, 1971.

[7] György Dósa. The tight bound of first fit decreasing bin-packing algorithm
is ffd(i) ¡ 11/9 opt(i)+6/9. In Combinatorics, Algorithms, Probabilistic and
Experimental Methodologies, pages 1–11, Berlin, Heidelberg, 2007.

[8] György Dósa and Jiri Sgall. First Fit bin packing: A tight analysis. In
30th International Symposium on Theoretical Aspects of Computer Science
(STACS 2013), volume 20 of LIPIcs, pages 538–549, Dagstuhl, Germany,
2013.

[9] Jack Edmonds. Maximum matching and a polyhedron with 0, 1-vertices.
Journal of research of the National Bureau of Standards B, 69(125-130):55–
56, 1965.

[10] Jack Edmonds. Paths, trees, and flowers. Canadian Journal of mathemat-
ics, 17:449–467, 1965.

[11] Merrick Furst, James B Saxe, and Michael Sipser. Parity, circuits, and
the polynomial-time hierarchy. Mathematical systems theory, 17(1):13–27,
1984.

[12] Michael R. Garey and David S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman & Co., 1979.

[13] Fred W Glover and Gary A Kochenberger. Handbook of metaheuristics,
volume 57. Springer Science & Business Media, 2006.

[14] Juris Hartmanis and Richard E Stearns. On the computational complex-
ity of algorithms. Transactions of the American Mathematical Society,
117:285–306, 1965.

[15] Johan Hastad. Clique is hard to approximate within n1−ε. In Proceedings
of 37th Conference on Foundations of Computer Science, pages 627–636.
IEEE, 1996.

[16] Richard M Karp. Reducibility among combinatorial problems. In Com-
plexity of computer computations, pages 85–103. Springer, 1972.

[17] Leonid Anatolevich Levin. Universal sequential search problems. Problemy
peredachi informatsii, 9(3):115–116, 1973.

BIBLIOGRAPHY 45

[18] John E Savage. Computational work and time on finite machines. Journal
of the ACM (JACM), 19(4):660–674, 1972.

[19] Claude Elwood Shannon. Communication in the presence of noise. Pro-
ceedings of the IRE, 37(1):10–21, 1949.

[20] Alan Mathison Turing. On computable numbers, with an application to
the entscheidungsproblem. J. of Math, 58(345-363):5, 1936.

[21] Vijay V Vazirani. Approximation algorithms. Springer Science & Business
Media, 2013.

[22] David Zuckerman. Linear degree extractors and the inapproximability of
max clique and chromatic number. In Proceedings of the Thirty-Eighth An-
nual ACM Symposium on Theory of Computing, STOC ’06, page 681–690,
New York, NY, USA, 2006.

