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7 Binary Decision Diagram 10

8 Petri Nets 24
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1 True or False (5 points)

On the following page you see definitions of languages L1, ..., L3. Based on those, indicate
for each of the statements a)–e) whether they are TRUE or FALSE (circle one answer) and
give a brief explanation. For each question answered correctly, one point is added. For each
question answered incorrectly, one point is removed. No answer gives zero points. There is
always one correct answer. This task gives at least 0 points.

a) [1] TRUE FALSE Let Σ “ tau. Then, L “ tax`y | x P L1, y P L2u is regular.

b) [1] TRUE FALSE L “
!

0n1n
ˇ

ˇ

ˇ
n ă 1010

10
)

is not regular.

c) [1] TRUE FALSE L3 can be written as the REX: 0˚1
`

p01q˚ Y 0˚
˘

p1 Y 0q.

d) [1] TRUE FALSE L2 Ď L3.

e) [1] TRUE FALSE L “ tuvv | u P L3, v P L2u is context-free.
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The languages L1, ..., L3 are defined over the alphabet Σ “ t0, 1u as follows:

• L1 “ t01, 10, 11u,

• L2 is the language recognized by the following DFA:

q1start

q2

q3

q4

1 0

1

0, 1

0, 1

0

• L3 is the language recognized by the following NFA:

q1start q2 q3 q4 q5 q6
1 0 1

0

0
1

ε

ε

ε

1
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Model solution

a) True. L1 is finite and L2 is arithmetically bounded to a single value. In other words,
L “ taaa, aaaa, aaaaau.

b) False. L is finite and thus regular.

c) False. Counter examples (one direction is sufficient):

• 100 R L3 is accepted by the REX.

• 010101 P L3, but not possible with the REX.

q1
0
Ñ q1

1
Ñ q2

0
Ñ q3

1
Ñ q4

ε
Ñ q2

ε
Ñ q5

0
Ñ q5

1
Ñ q6

d) True. L2 “ 0˚10 is a subset of L3:

q1
´

0
Ñ q1

¯˚ 1
Ñ q2

0
Ñ q3

ε
Ñ q6

e) True. S Ñ L3V 10, V Ñ 0V 0 | 10, where L3 produces all words in L3.
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2 Regular Languages (15 points)

a) Consider the generic language Ln for n ě 2 over the alphabet Σn “ tx1, x2, ..., xnu:

Ln “
!

w | #x1pwq mod k ą #x2pwq mod k ą . . . ą #xnpwq mod k
)

where k “ n` 1. For example, L2 “ tw | #x1pwq mod 3 ą #x2pwq mod 3u.

Recall: #xipwq denotes the number of occurrences of the symbol xi P Σ in a word w P Σ˚.

(i) [6] Draw a DFA recognizing L2. Use at most 12 states.

(ii) [2] Give the size of the minimized DFA for Ln as a function of n.

(iii) [2] Give the number of final states in the minimized DFA for Ln as a function of n.
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b) [5] Consider L “ tx#y#z| x, y, z P t0, 1u˚, z ´ y “ xu where x, y and z are unsigned
binary numbers. State whether L is regular or not, and prove your claim.
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Model solution

a) (i) A DFA for L2 looks as follows:

0,0start 1,0 2,0

0,1 1,1 2,1

0,2 1,2 2,2

x1

x1

x1

x1

x1

x1

x1

x1

x1

x2 x2 x2

x2 x2 x2
x2 x2 x2

(ii) sizepnq “ k ¨ k ¨ ... ¨ k
looooomooooon

n times

“ pn` 1qn.

(iii) For n ě 2, there are always exactly n` 1 final states.

This can be seen inductively. The claim holds true for n “ 2 as we can see above.
For the induction step nÑ n` 1, there is one more dimension to consider, and we
have one more available number to fit it in the ą-relation. Hence, for Ln`1 we get all
the accepting state combinations for Ln in state n of the new dimension (“ n` 1),
plus one configuration that never needed the highest number in state n ´ 1 of the
newly added dimension.

b) We claim that L is not regular and prove our claim with the pumping lemma.

1. Assume for contradiction that L was regular.

2. There must exist some p, s.t. any word w P L with |w| ě p is pumpable.

3. Choose the string w “ 1p#0#1p P L with length |w| ą p.

4. Consider all ways to split w “ xyz s.t. |xy| ď p and |y| ě 1.
Ñ Hence, y P 1`.

5. Observe that xy0z R L – a contradiction to p being a valid pumping length.

6. Consequently, L cannot be regular.
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3 Context-Free Languages (20 points)

a) Consider L “ tx | x is divisible by 5 u where x is an unsigned binary number.

(i) [6] Give a CFG for L. Use at most 7 non-terminal symbols.

(ii) [2] Give derivations of x1 “ 0101 and x2 “ 1111 with your CFG.

(iii) [2] Is your CFG ambiguous?
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b) [10] Draw a PDA that recognizes L “ tx#y | x, y P t0, 1u`, x ‰ yu. Use at most 12
states.

Hint: Can two strings x and y with |x| ă |y| ever be equal?
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Model solution

a) For the CFG, we first accept all leading 0s and then have a symbol Si that allows to
derive all bit-strings with a remainder of Si mod 5 “ i.

(i)

S Ñ 0S | S0

S0 Ñ S00 | S21 | ε

S1 Ñ S30 | S01

S2 Ñ S10 | S31

S3 Ñ S40 | S11

S4 Ñ S20 | S41

(ii) 0101 : S Ñ 0S Ñ 0S0 Ñ 0S21 Ñ 0S101 Ñ 0S0101 Ñ 0101
1111 : S Ñ S0 Ñ S21 Ñ S311 Ñ S1111 Ñ S01111 Ñ 1111

(iii) The grammar given is ambiguous: For leading zeros, there are currently 2 ways to
generate them. Either via S Ñ 0S, or via S0 Ñ S00 (see the second derivation for
an example how S0 will end up in the front). All other substrings have a unique
derivation, as their remainder Si mod 5 “ i is unique.

The grammar could be made non-ambiguous by removing the rule S Ñ 0S | S0 and
making S0 the start symbol.

b) A PDA recognizing L “ tx#y | x, y P t0, 1u`, x ‰ yu could look like this:

q0start q1

q#2

q#3.1

q#3.2

q2.1

q2.2

q3.1

q3.2

q4

ε, εÑ $

0, εÑ α
1, εÑ α #, εÑ ε

0, αÑ ε
1, αÑ ε

ε, αÑ ε
ε, αÑ ε

0, $ Ñ ε
1, $ Ñ ε

0, εÑ ε
1, εÑ ε

1, εÑ ε

0, εÑ ε

0, εÑ ε
1, εÑ ε

0, εÑ ε
1, εÑ ε

#, εÑ ε

#, εÑ ε

0, αÑ ε
1, αÑ ε

0, αÑ ε
1, αÑ ε

0, $ Ñ ε

1, $ Ñ ε

0, εÑ ε
1, εÑ ε
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We make use of non-determinism for two decisions: First, we decide whether to check
that the lengths |x| and |y| differ, i.e. whether |x| ą |y| (Ñ q#3.1) or |x| ă |y| (Ñ q#3.2).
If they do not differ by length, we use non-determinism to fix some position in x that is
a 1 (or a 0), and then we make sure that the same digit in y is a 0 (or a 1; Ñ q4). As
both x, y P t0, 1u` and have the same length, there must always exist such a position.

Note that the presented automaton is not minimal, as states q4 and q#3.2 are indis-
tinguishable. However, we leave the presentation “as is” for clarity of the construction
idea.
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4 Secret Message Passing (20 points)

A group of 9 students decides to use a diary to start passing messages around. The students
take turns. A student is keeping the diary for a day (possibly writing something in the diary),
then randomly passing it to one of their friends. These friend relations are depicted in Figure
1 (note that a friend relation is always mutual).

A B

C

D

EF G

H I

Figure 1: Friend Relations

a) [3] Assume Alice (A) has the diary on day d. Why can she not have the diary a week
later, on day d` 7?

b) [5] How often do B and D exchange the diary (in either direction) in the long run? Do
H and I exchange less often?
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c) [7] Suppose u has the diary, and v (a friend of u) desperately wants it. How long does v
have to wait? Prove that the expected time for u to pass the diary to v is 1` 2mu,vpuq
days, where mu,vpuq is the number of edges in u’s connected component of the graph
without edge pu, vq. (Examples: mB,DpBq “ 2 and mB,DpDq “ 5.)

d) [5] Student u now has the diary on day d and writes a question for student w ‰ u into
the diary (w is not necessarily a friend of u). What’s the expected time before u can read
an answer from w in the diary? Show that this expected time can only be one of these
values: 16, 32, 48, or 64.
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Model solution

a) The Markov chain has a period of 2, so if Alice has the book on day d, then she can only
have the book on days d` n where n is even.

b) The graph is connected (and finite) so the random walk is a (finite) irreducible MC, so
it has a stationary distribution π. Let u, v be two friends. Then crossing the edge has
probability

πu
1

δpuq
` πv

1

δpvq
“

1

2m
`

1

2m
“

1

m
“

1

8

in the long run. (Note that this gives a uniform distribution over all the edges). Therefore
the expected time between interactions of any friends u and v is m “ 8.

c) Note that we can view the connected component (CC) containing u plus the edge pu, vq
independently from the rest of the graph. This is because there is only one way to get
from u’s CC to v’s CC, and that is through the edge pu, vq. So all movements before
crossing the edge pu, vq are independent of the rest of the graph (i.e. v’s CC). Since v is
a leaf in this graph we have a simple formula for hv,v, that is, hv,v “ 1` hu,v. We know
from the lecture that hv,v “

2m
δpvq , where m “ mu,vpuq ` 1 equals the number of edges in

this component, and δpvq “ 1. Therefore

hu,v “ hv,v ´ 1 “ 2pmu,vpuq ` 1q ´ 1 “ 2mu,vpuq ` 1.

d) For two friends, we have cu,w “ hu,w ` hw,u “ 2mu,vpuq ` 1 ` 2mu,vpvq ` 1 “ 2m “ 16.
On the other hand for any two nodes in a tree, there is unique path between them. For
example to get from A to H, one has to reach B from A first and then D from B and H
from D. So we can write hA,H “ hA,B ` hB,D ` hD,H . Therefore

cA,H “ phA,B ` hB,Aq ` phB,D ` hD,Bq ` phD,H ` hH,Dq “ 3p16q “ 48.

Indeed for any u,w at distance dpu,wq, we have cu, w “ 16dpu,wq. Since the diameter of
the graph is 4, we have cu,w P t16, 32, 48, 64u as required.
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5 Elevator (20 points)

Consider an office building with 101 floors (numbered from 0 to 100) and 1 elevator that moves
at a speed of 1 floor per second. Due to a pandemic only very few people are in the office
and want to use the elevator. In particular, we can assume that there is always enough time
between consecutive requests to move the elevator to any arbitrary floor. An elevator cannot
wait between 2 floors. We would like to design an algorithm that decides where to position the
elevator between requests.
The employees can request the elevator by pressing a button on any floor. The elevator then
moves from its position to the employee and takes the employee to the floor they would like to
go (which is different from the current floor). Opening and closing the doors as well as entering
and exiting the elevator takes no time.
For each request, we consider the time between the employee pressing the button and the
employee arriving at the desired floor. The cost of an algorithm is the sum of this time over
all requests. The optimal (offline) algorithm knows all requests in advance.

a) [6] What is the best deterministic algorithm? (Design an algorithm, prove its competitive
ratio, and argue that no deterministic algorithm with lower competitive ratio exists.)

b) [3] How would the optimum deterministic strategy change for 2 elevators? (One sentence
answer is enough, no need to explain.)
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Let RANDOM be the algorithm that moves the elevator to one of the floors uniformly at
random after each request. Assume that the adversary knows the algorithm but not the
individual random choices of RANDOM.

c) [6] Compute the competitive ratio of RANDOM.

d) [5] Prove that there exists no randomized algorithm with a lower competitive ratio than
RANDOM.
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Model solution

a) The optimal strategy is to always let the elevator wait at floor 50. Then every request
for travelling f floors can be served in at most 50` f seconds while OPT can serve it in
f . Since f ě 1, this means the algorithm is 51-competitive.

No deterministic algorithm can have a smaller comp. ratio than 51 since for any floor the
elevator waits on, the adversary can request a trip of 1 floor starting 50 floors away.

b) Let the elevators wait on floors 25 and 75.

c) To maximize the time it takes the elevator to get there, the adversary will request trips
starting on floor 0 or 100. Then the elevator will take

100
ÿ

i“0

1

101
i “

1

101

100 ¨ 101

2
“ 50

seconds in expectation to arrive. So a request for moving f floors is served in 50` f by
RANDOM and in f by OPT. Thus, the adversary will choose f “ 1 and RANDOMs
comp. ratio is 51.

d) We use the Von Neumann/Yao Principle: Consider the distribution where trips from
floor 0 to 1 and from floor 100 to 99 are requested with 50% probability each. No matter
on which floor w the elevator waits, it will always need

1

2
w `

1

2
p100´ wq ` 1 “ 51

seconds in expectation to fulfill each request.

17



18



6 True or False (6 points)

For each of the following statements, assess if it is true or false and tick the corresponding box.
No justification is needed.
Every correct answer grants one point. Leaving a statement blank gives 0 point. Every incorrect
answer looses one point on the total, with a minimum of 0 point for the whole question.

Notes: • Petri net P is depicted in Figure 2(a).
Automaton A is depicted in Figure 2(b).

• v p w denotes the set of states which satisfies property p.
For example for automaton A, v p w “ t 3, 4, 5 u.

Statement True False

1 The Binary Decision Diagram of a Boolean function is always unique.

2 A non-timed Petri net can always be modeled by a deterministic finite
automaton.

3 Two Petri nets have different past markings, but the same current mark-
ing. They have different current states.

4 The given Petri net P is deadlock-free.

5 For automaton A, v EF ( (EX p) AND (AG p) ) w “ t1, 2u.

6 Automaton A satisfies EG p.

p1

t1

t2
2

p2 t3

(a) Petri net P

1 2 3

4 5 6

(b) Automaton A – 1 is the initial state. Property
p is true only in states 3, 4, and 5.

Figure 2: Petri net P (2(a)) and Automaton A (2(b))

19



Model solution

Statement True False

1 The Binary Decision Diagram of a Boolean function is always unique. X

2 A non-timed Petri net can always be modeled by a deterministic finite
automaton.

X

3 Two Petri nets have different past markings, but the same current mark-
ing. They have different current states.

X

4 The given Petri net P is deadlock-free. X

5 For automaton A, v EF ( (EX p) AND (AG p) ) w “ t1, 2u. X

6 Automaton A satisfies EG p. X

7 Binary Decision Diagram (10 points)

a) [6] Given the Boolean expression of function f and the ordering of variables
x1 ă x2 ă x3 ă x4, construct the reduced ordered binary decision diagram (ROBDD) of
f . Merge all equivalent nodes, including the leaves.
Note: Use solid lines for True arcs and dashed lines for False arcs.

fpx1, x2, x3, x4q “ x1 ¨ x2 ¨ p x2 ¨ x3 ` x3 q ` x3 ¨ x4 ` x1 ¨ x2 ¨ x3 ¨ x4
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b) [2] Consider the BDD of the function g in Figure 3. Express g as a boolean function.

x1g

x2

x3 x3

10

Figure 3: BDD of the Boolean function g

c) [2] Simplify the BDD of g (Figure 3) when x3 “ 0.
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Model solution

a) The BDD of f is shown below;

x1f

x2

x3

x4

0 1

b) The function g can be expressed by the following boolean expression

gpx1, x2, x3q “ x1 ¨ x3 ` x1 ¨ x2 ` x1 ¨ x2 ¨ x3

c) Finally, the BDD of g when x2 evaluated to 0 is shown below;

x1g|x3“0

x2

0 1
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8 Petri nets (24 points)

This question contains 3 independent sub-questions related to Petri nets. Throughout this
question, we use the following notations.

• MJ “ rm1,m2,m3,m4s and UJ “ ru1, u2, u3, u4, u5s are marking and firing vectors of P,
respectively.

• mi denotes the number of tokens in place pi.

• ui denotes the number of firings of transition ti.

Let us first consider the Petri net P1 in Figure 4.

p1

t1
p2

t2

2

t3
p3

t4
p4

t5
2

Figure 4: Petri net P1 – Circles, dots and bars represent places, tokens and transitions,
respectively. Weights are associated to edges when they are different from 1.

8.1 Reachability [8 points]

a) [2] Derive the incidence matrix A of the Petri net P1 from Figure 4.
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b) [2] Given initial marking MJ
0 “ r1, 0, 0, 1s, is the Petri net deadlock-free? If so, provide

a brief proof. If not, list all reachable markings where the network is in deadlock.

c) [2] Consider the firing vector UJS “ r0, 1, 1, 1, 1s, where S denotes a firing sequence
containing the firing of t2, t3, t4 and t5 once.
Use the incidence matrix and the state equation of the Petri net P1 to compute the
marking MJ

1 obtained from the initial marking MJ
0 “ r1, 0, 0, 1s after firing S.

d) [2] Given initial marking MJ
0 “ r1, 0, 0, 1s and assume MJ

1 computed in (c) is a valid
marking (i.e., all elements are non-negative). Is it true that any firing sequence S with
firing vector UJS “ r0, 1, 1, 1, 1s is feasible? Provide a brief proof of your conclusion.
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Model solution

a) A “

»

—

—

—

—

—

–

-1 -1 0 -1 1

1 2 -1 0 0

0 0 1 0 0

0 0 0 1 -1

fi

ffi

ffi

ffi

ffi

ffi

fl

b) Deadlocks with r0, 0, 2, 1s or r0, 0, 1, 1s

c)

M1 “ A ¨ TS `

»

—

—

—

—

—

–

1

0

0

1

fi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

–

0

1

1

1

fi

ffi

ffi

ffi

ffi

ffi

fl

d) Not necessary a valid firing sequence. If t2 fires first, t5 can never fire.
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8.2 Coverability [8 points]

Let us now consider the Petri net P2 in Figure 5.

p1

t1

t2
2

p22 t3

p3

2

Figure 5: Petri net P2 – Circles, dots and bars represent places, tokens and transitions,
respectively. Edge weights are marked close to the edge when they are different from 1.

a) [4] Construct the coverability graph of the Petri net P2. Note: The coverability graph
is obtained from the coverability tree by merging nodes with the same marking.
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b) [3] Is MJ “ r7, 10, 2s reachable? Justify.

c) [1] Is MJ “ r2, 2, 9s reachable? Justify.
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Model solution

a)

p1, 0, 0q

p0, 2, 0q

p1, ω, ωq

pω, ω, ωq p0, ω, ωq

t1

t3

t3
t1

t3
t1, t2, t3

b) No, M t “ r7, 10, 2s is not reachable from M t
0 “ r1, 0, 0s. Because t3 is the only predecessor

of p1 and p3, and p3 has no out-going connection, we have Mpp3q ě Mpp1q ´ 1. Hence
M t “ r7, 10, 2s is not reachable.

c) No, p3 can only have even number of tokens.
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8.3 Timed Petri Net [8 points]

The Petri net P2 is redrawn below:

p1

t1

t2
2

p22 t3

p3

2

But now the transitions are associated with delays between their activation and firing:

dpt1q “ 2

dpt2q “ 1

dpt3q “ 2

Below is a table for the simulated steps, with columns for number of steps, simulation time τ ,
firing vector T τ , current state M τ , and event list Lτ . Some rows or cells are already given.
Simulate the behaviour of the timed Petri net P2 and fill in the table.
Notes:

• If there are several transitions enabled at the same time, they fire in the ordering of their
index, i.e., the smaller index fires first.

• Every firing is a simulated step.

steps τ T τ M τ Lτ

0 0 - r1, 0, 0s pt1, 2q

1 2 r1, 0, 0s r0, 2, 0s pt3, 4q

2

3

4
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Model solution

steps τ T τ M τ Lτ

0 0 - r1, 0, 0s pt1, 2q

1 2 r1, 0, 0s r0, 2, 0s pt3, 4q

2 4 r0, 0, 1s r1, 1, 2s pt1, 6q, pt3, 6q

3 6 r1, 0, 0s r0, 3, 2s pt3, 6q

4 6 r0, 0, 1s r1, 2, 4s pt1, 8q, pt3, 8q
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