CrashCourse — Time PetriNets

Tibor Schneider

ΤIK

Time Petri Nets

Timer on Transitions, that restart when:

- 1. Transition becomes active
- 2. A token from any input place is removed

Time Petri Nets

Timer on Transitions, that restart when:

- 1. Transition becomes active
- 2. A token from any input place is removed

1. [a, a]: Exactly after a time units (like in the lecture).

- 1. [a, a]: Exactly after a time units (like in the lecture).
- 2. [a, b]: Somewhere between a and b time units (at most b, at least a)

- 1. [a, a]: Exactly after a time units (like in the lecture).
- 2. [a, b]: Somewhere between a and b time units (at most b, at least a)
- 3. $[a, \infty]$: At least *a* time units, no upper bound.

- 1. [a, a]: Exactly after a time units (like in the lecture).
- 2. [a, b]: Somewhere between a and b time units (at most b, at least a)
- 3. $[a, \infty]$: At least *a* time units, no upper bound.
- 4. $[0,\infty]$: The transition can fire anytime (just like in the normal Petri net).

Your turn to work!

Ex1 a) 5x + y

Ex1 a) x - 2y

Ex3.1 a)

- one message every 5 time units \rightarrow **t0**.
- \blacktriangleright Reading / writing from/to BOLT takes 1 time unit each \rightarrow t1 and t2
- \blacktriangleright Sending a message in the network takes 1 time unit \rightarrow t3
- BOLT the network 10% of the time \rightarrow t4 (9 time units)

Ex3.1 b)

Network is not bounded!

Ex3.1 c) BOLT has capacity of 2

Ex3.1 d) Overflow transition t5

Ex3.1 e) Why does adding another token to p5 solve the problem?

Ex3.1 f) Make the input come in bursts

Ex3.1 f) Reduce time on transition t4

Ex3.1 f) duplicate the network multiple times

Ex3.2 b) From LTL to CTL

$\diamond t5 \iff \mathsf{AF} t5 \iff \mathsf{No}$ matter what happens, t5 will eventually fire.

Ex3.2 c) From Specification to CTL and LTL

No matter what happens, there is no overflow. \iff AG $\neg t5$ \iff $\neg \tau 5$

Ex3.2 d) Memory Place p4

Ex3.2 f) Why 27

