
Networked Systems Group (NSG)

HS 2021 R. Jacob / T. Schneider
based on Prof. L. Thiele’s material

Discrete Event Systems
Exercise Sheet 11

1 Temporal Logic

a) We consider the following automaton. Property a holds in the colored states (0 and 3).

For each of the following CTL formula, list all the states for which it holds true.

(i) EF a

(ii) EG a

(iii) EX AX a

(iv) EF (a AND EX NOT(a))

b) You are given a set of states S, the transition function f : S ÞÑ S, encoded as the charac-
teristic function ψf pq, q

1q (which returns true only if fpqq “ q1), and the set Z Ď S with
its characteristic function φZpqq (which returns true only if q P Z). Your goal is to come
up with a simple algorithm to find the characteristic function ψAFZpqq, which encodes the
set of all states satisfying AFZ.

(i) Give a relation between EGZ and AFZ.

(ii) Using this relation, formulate an iterative procedure to find the set of states that
satisfy AFZ. Use regular set operations to find the procedure. You can use the
predecessor function PrepQ, fq, which returns the set of states from which we can
reach states in Q using the transition function f in one step.

PrepQ, fq “ tq1 : Dq, ψf pq
1, qq ¨ ψQpqq “ 1u

(iii) Translate the iteration procedure from (ii) into an algorithm using boolean expres-
sions. Assume that you are given, for each set Q (i.e., its characteristic function), the
characteristic function ψPrepQ,fq.

2 Safe Network-Wide Configuration Updates

In this exercise, you are a network engineer operating an extremely important computer network
with many policies that cannot be violated. A client has noticed a weird behavior with some
internet packets being dropped along the way. You managed to figure out that this behavior
is due to sub-optimal configuration of some of the network devices, and you have prepared an
updated configuration that fixes the problem. Your goal is to update the network (also known
as performing a network migration), while verifying that the policies are always satisfied. All
policies should hold not only for the initial and final configuration, but also in every intermediate
state during the migration. In this exercise, you will see how to use either BDDs or CTL and
model checkers to find migrations that are formally guaranteed to always satisfy the policies.

Computer networks are distributed systems that provide communication between different
endpoints. Let us consider a very simple view of computer networks (see Figure 1). We are given
an undirected graph G “ pV,Eq with nodes V (network routers or sinks) and edges E (links
between routers).

v0

v1

v2

tσpv0q “ 00

σpv1q “ 01

σpv2q “ 10

σpv3q “ 11

ρ0
ρf

Figure 1: Simple network with 3 routers (v0, v1, and v2) and one sink (t). The
initial routing function ρ0 is drawn as red dashed lines, and the final routing func-
tion ρf as blue dotted lines.

Any router in the network forwards packets either towards one of its neighbors, or drop the
packets. We encode the initial routing state with the routing function ρ0, as shown in Figure 1
as red dashed arrows. The operators intend to change it into the routing function ρf , drawn as
blue, dotted arrows. Both routing functions are summarized in the following table.

router v initial next-hop ρ0prq final next-hop ρf prq

v0 ρ0pv0q “ v1 ρf pv0q “ v2
v1 ρ0pv1q “ v2 ρf pv1q “ t
v2 ρ0pv2q “ t ρf pv2q “ v1

Due to the limitations of the network being a distributed system, it is practically impossible
to perform the update on all devices at the same time. Hence, the update needs to be performed
for one device at a time. Your task is it to model the update, and to find an update sequence,
that preserves important properties (more on that later).

To start, we encode the state of the network—the routing function—by encoding, for each
router v0, v1, and v2 how they treat incoming packets. We write the state as Z “ rz0, z1, z2s,
where zi describes the forwarding rule of ri. For each router ri, we use two bits zi “ rz

1
i , z

0
i s,

and its numeric value represents the next-hop the router ri forwards traffic to (as indicated in
Figure 1). If any node vi selects itself as a next hop, this means that the packets are trapped in
an infinite loop. For instance, we encode with z0 “ 01 that node v0 forwards packets towards
v1. As an example, the initial forwarding state Z0 is be represented as:

2

variable value

z0 01
z1 10
z2 11

The initial forwarding state Z0 can be expressed by the following encoding σpρ0q and boolean
expression ψρ0pZq (which is only true if Z is the initial state Z0):

σpρ0q “ 01 10 11 ψρ0pZq “
sz10z

0
0 z

1
1

sz01 z
1
2z

0
2

a) List all forwarding states where packets are trapped in an infinite loop.

b) The forwarding state is restricted by the physical topology. Routers can only choose a
next-hop if they really are adjacent to that next-hop. Express the characteristic function
ψtopopZq, which should only return true if the state is actually valid.

c) Router v0 is expected to route important traffic towards t. Find a characteristic function
ψtpZq that returns true only for a network state in which v0 reaches sink t. Remember,
that in any specific network state Z, a router always uses the same next-hop.

Hint: Start at v0, and enumerate (by case distinction) all possible cases of how t can be
reached.

d) In addition to this property, the network operator also requires traffic from v0 to always
traverse v2. Similarly to before, find the characteristic function ψv2pZq that only returns
true for a network state where v0 eventually reaches v2.

e) Find the characteristic function ψφpZq which only returns true if, for a given network state
Z, it eventually reaches or traverses both t and v2.

f) Verify that ψφ holds for both the initial and the final state.

g) As of now, we only have considered a single state of the network. However, we wish to
transition from the initial Z0 to the final state Zf . Recall that we can only change the
routing decision of a single router in the network at the same time. Express the transition
function ψtranspZ,Z

1q, which should only return true if we can transition from state Z to
state Z1 by changing the forwarding of a single router. You are allowed to use quantifiers
(@ and D), but you do not have to. You do not have to simplify the expression.

So far, we have described a state machine with 26 “ 64 different states. However some of
them are not allowed by the topology (as derived in Task b). In addition, not all of them satisfy
the policies (as derived in Task e). Finally, many state transitions are also not allowed (as
derived in Task g). Your task now is to combine all these constraints, and to find a valid and
safe migration, i.e., we eventually reach Zf (valid) while all policies are never violated (save).
In the final two tasks, we discuss two different methods to reach this goal. The first method
(Task h) is to use a model checker in order to find a single migration that is valid and safe. The
second method (Task i) is to use a computer to build an ROBDD that represents all valid and
safe migrations at once.

h) How can we use that model checker to find a valid and safe sequence of states in order to
perform the network migration? Don’t actually use one, you just need to describe how you
would encode the problem and use a model checker. You can assume that the model checker
can check a CTL expression on a given state machine, or give you a counter-example if the
expression is not satisfied. Please explain how you build the state machine (which states
and transitions it should contain), and give the precise CTL formula you would ask the
model checker to verify in order to find a sequence of states to perform the migration. You
may use all results from the previous tasks.

3

i) We now wish to find an ROBDD that encodes all valid migrations. Assume that we are
given the information that it is possible to transition from the initial to the final state
in just three steps. Write down the boolean expression based on the symbolic variables
Z1, Z2 and Z3, which returns true only for all sequences of states that transition safely
from Z0 to Zf . You do not need to simplify the expression in any way, nor actually draw
the ROBDD. Usually, we would use a computer to simplify the expression, and build the
ROBDD automatically.

The Bigger Picture In this exercise, we have built a model which we can use to find a
solution to a real-world problem. In fact, (almost) all steps above can be done automatically by
a computer. The only step, that is yet a bit unclear is how to find the constraints ψφ. However,
there are other approaches that show how this can be built without manual reasoning. (We have
followed a different, manual approach, because the automatic method is hard to motivate, and
difficult to understand in just two hours.) In fact, current research is discussing a very similar
approach to performing graceful network state migration, highlighting the relevance of ROBDD,
CTL and model checking (e.g., https://snowcap.ethz.ch).

4

https://snowcap.ethz.ch

	Temporal Logic
	Safe Network-Wide Configuration Updates

