Discrete Event Systems

Exercise Session 4

Roland Schmid

nsg.ee.ethz.ch

ETH Zürich (D-ITET)

14 October 2021

Context-Free Grammars 1

Give context-free grammars for the following languages over the alphabet $\Sigma = \{0, 1\}$:

a)
$$L_1 = \{w \mid \text{the length of } w \text{ is odd}\}$$

b) $L_2 = \{w \mid \text{contains more 1s than 0s}\}$

Model Robustness

- The class of regular languages was quite robust
 - Allows multiple ways for defining languages (automaton vs. regexp)
 - Slight perturbations of model do not change result (non-determinism)
- The class of context free languages is also robust: you can use either PDA's or CFG's to describe the languages in the class.
- However, it is less robust than regular languages when it comes to slight perturbations of the model:
 - Smaller classes
 - Right-linear grammars
 - Deterministic PDA's
 - Larger classes
 - Context Sensitive Grammars

- The DFA above can be simulated by the grammar
 - $-x \rightarrow 0x \mid 1y$
 - $y \rightarrow 0x \mid 1z$
 - $-z \rightarrow 0x \mid 1z \mid \varepsilon$
- Definition: A right-linear grammar is a CFG such that every production is of the form A → uB, or A → u where u is a terminal string, and A,B are variables.

- Theorem: If $M = (Q, \Sigma, \delta, q_0, F)$ is an NFA then there is a right-linear grammar G(M) which generates the same language as M.
- *Proof*:
 - Variables are the states: V = Q
 - Start symbol is start state: $S = q_0$
 - Same alphabet of terminals Σ
 - A transition $q_1 \rightarrow a \rightarrow q_2$ becomes the production $q_1 \rightarrow aq_2$
 - − For each transition, $q_1 \rightarrow aq_2$ where q_2 is an accept state, add $q_1 \rightarrow a$ to the grammar
- Homework: Show that the reverse holds. Right-linear grammar can be converted to a FSA. This implies that RL ≈ Right-linear CFL.

- Theorem: If $M = (Q, \Sigma, \delta, q_0, F)$ is an NFA then there is a right-linear grammar G(M) which generates the same language as M.
- Proof:
 - Variables are the states: V = Q
 - Start symbol is start state: $S = q_0$
 - Same alphabet of terminals Σ
 - A transition $q_1 \rightarrow a \rightarrow q_2$ becomes the production $q_1 \rightarrow aq_2$
 - − For each transition, $q_1 \rightarrow aq_2$ where q_2 is an accept state, add $q_1 \rightarrow a$ to the grammar
- Homework: Show that the reverse holds. Right-linear grammar can be converted to a FSA. This implies that RL ≈ Right-linear CFL.
- Question: Can every CFG be converted into a right-linear grammar?

Chomsky Normal Form

- Chomsky came up with an especially simple type of context free grammars which is able to capture all context free languages, the Chomsky normal form (CNF).
- Chomsky's grammatical form is particularly useful when one wants to prove certain facts about context free languages. This is because assuming a much more restrictive kind of grammar can often make it easier to prove that the generated language has whatever property you are interested in.
- Noam Chomsky, linguist at MIT, creator of the Chomsky hierarchy, a classification of formal languages. Chomsky is also widely known for his left-wing political views and his criticism of the foreign policy of U.S. government.

Chomsky Normal Form

- Definition: A CFG is said to be in Chomsky Normal Form if every rule in the grammar has one of the following forms:
 - $-S \rightarrow \varepsilon$ (ε for epsilon's sake only) $-A \rightarrow BC$ (dyadic variable productions) $-A \rightarrow a$ (unit terminal productions)

where S is the start variable, A,B,C are variables and a is a terminal.

• Thus epsilons may only appear on the right hand side of the start symbol and other rights are either 2 variables or a single terminal.

$CFG \rightarrow CNF$

- Converting a general grammar into Chomsky Normal Form works in four steps:
- 1. Ensure that the start variable doesn't appear on the right hand side of any rule.
- 2. Remove all epsilon productions, except from start variable.
- 3. Remove unit variable productions of the form $A \rightarrow B$ where A and B are variables.
- 4. Add variables and dyadic variable rules to replace any longer nondyadic or non-variable productions

Context-Free Grammars 1

Give context-free grammars for the following languages over the alphabet $\Sigma = \{0, 1\}$:

a)
$$L_1 = \{w \mid \text{the length of } w \text{ is odd}\}$$

b) $L_2 = \{w \mid \text{contains more 1s than 0s}\}$

Regular and Context-Free Languages

a) Consider the context-free grammar G with the production $S \to SS \mid 1S2 \mid 0$. Describe the language L(G) in words, and prove that L(G) is not regular.

b) The regular languages are a subset of the context-free languages. Give the context-free grammar for an arbitrary language L that is regular.

Context-Free or Not? 3

For the following languages, determine whether they are context free or not. Prove your claims!

a)
$$L = \{w \# x \# y \# z \mid w, x, y, z \in \{a, b\}^* \text{ and } |w| = |z|, |x| = |y|\}$$

b)
$$L = \{w \# x \# y \# z \mid w, x, y, z \in \{a, b\}^* \text{ and } |w| = |y|, |x| = |z|\}$$

4 Push Down Automata

For each of the following context free languages, draw a PDA that accepts L.

a)
$$L = \{u \mid u \in \{0,1\}^* \text{ and } u^{reverse} = u\} = \{u \mid "u \text{ is a palindrome"}\}\$$

b) $L = \{u \mid u \in \{0,1\}^* \text{ and } u^{reverse} \neq u\} = \{u \mid "u \text{ is no palindrome"}\}\$

Ambiguity 5

Consider the following context-free grammar G with non-terminals S and A, start symbol S, and terminals "(", ")", and "0":

$$\begin{array}{rrrr} S & \to & SA \mid \varepsilon \\ A & \to & AA \mid (S) \mid 0 \end{array}$$

a) What are the eight shortest words produced by G?

- **b)** Context-free grammars can be ambiguous. Prove or disprove that G is unambiguous.
- c) Design a push-down automaton M that accepts the language L(G). If possible, make M deterministic.

Counter Automaton 6

A push-down automaton is basically a finite automaton augmented by a stack. Consider a finite automaton that (instead of a stack) has an additional counter C, i.e., a register that can hold a single integer of arbitrary size. Initially, C = 0. We call such an automaton a Counter Automaton M. M can only increment or decrement the counter, and test it for 0. Since theoretically, all possible data can be coded into one single integer, a counter automaton has unbounded memory. Further, let \mathcal{L}_{count} be the set of languages recognized by counter automata.

- a) Let \mathcal{L}_{req} be the set of regular languages. Prove that $\mathcal{L}_{req} \subseteq \mathcal{L}_{count}$.
- **b)** Prove that the opposite is not true, that is, $\mathcal{L}_{count} \not\subseteq \mathcal{L}_{reg}$. Do so by giving a language which is in \mathcal{L}_{count} , but not in \mathcal{L}_{req} . Characterize (with words) the kind of languages a counter automaton can recognize, but a finite automaton cannot.
- c) Which automaton is stronger? A counter automaton or a push-down automaton? Explain your decision.