
Discrete Event Systems
Verification of Finite Automata (Part 2)

Most materials from Lothar Thiele

ETH Zurich (D-ITET)

December 2, 2021

Romain Jacob

www.romainjacob.net

https://romainjacob.net/
https://romainjacob.net/

Thank you for your feedback!

 Slightly too fast

 Reachability was covered too quickly

 More examples would be nice

 More interaction would be nice

2

Will hopefully improve already today

Last week in
Discrete Event Systems

Verification Scenarios

comparison
reference system data structure

system under test data structure

Comparison of specification and implementation

property

system under test data structure

fixed-point calculation

Proving properties

4

The device
can always be
switched off.”

“

𝑦 = 𝑥1 + 𝑥2 ⋅ 𝑥3

Example

Comparison using BDDs

• Boolean (combinatorial) circuits: Compare specification and implementation,
or compare two implementations.

• Method:
• Representation of the two systems in ROBDDs, e.g., by applying the APPLY operator repeatedly.

• Compare the structures of the ROBDDs.

• Example:

compare

APPLY

APPLY

5

Sets and Relations using Boolean Expressions

• Representation of a relation 𝑅 ⊆ 𝐴 × 𝐵
• Binary encoding 𝜎 𝑎 , 𝜎(𝑏) of all elements 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵

• Representation of 𝑅

• Example finite automaton:

states

input
events

output
events

finite automaton

we remove the binary encoding
for convenience in our notation;
but u, q, q’ are actually
represented as binary vectors

𝑢 𝑦

6

characteristic function
of the relation 𝑅

𝑎, 𝑏 ∈ 𝑅 ⇔ 𝜓𝑅(𝜎 𝑎 , 𝜎 𝑏)

Reachability of States – State Diagram

7

Is a state 𝑞 ∈ 𝑄 reachable by a sequence of state transitions?Question

Problem Drawing state diagrams is not feasible in general.

𝜓𝑄𝑅(𝑞
′) = 𝜓𝑄0(𝑞

′)

𝑖≥0

(∃𝑞 ∶ 𝜓𝑄𝑖 𝑞 ⋅ 𝜓𝛿 𝑞, 𝑞′)

Reachability of States – Boolean Expressions

8

𝑄𝑅: set of
reachable states

𝑄𝑅 = 𝑄0ڂ𝑖≥0 𝑆𝑢𝑐(𝑄𝑖, 𝛿) Finite union
if model is finite

𝑄0 = {𝑞0}

𝑄𝑖+1 = 𝑄𝑖 ∪ 𝑆𝑢𝑐 𝑄𝑖, 𝛿 until 𝑄𝑖+1 = 𝑄𝑖

𝜓𝑄𝑖+1 𝑞
′ = 𝜓𝑄𝑖 𝑞

′ + (∃𝑞 ∶ 𝜓𝑄𝑖 𝑞 ⋅ 𝜓𝛿 𝑞, 𝑞′) Test by comparing the
ROBDDs of 𝑄𝑖+1 = 𝑄𝑖

Fixed-point
computation

 Start with the initial state
 Determine the set of states that can be reached in one
 Take the union and iterate until a fixed-point is reached

Reachability of States – Example

9

𝝈(𝒒) x1 x0

q0 0 0

q1 0 1

q2 1 0

q3 1 1

x1 x0 x1’ x0’

0 0 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 1 0

1 1 0 0

entries where
𝜓𝛿 𝑞, 𝑞′ = 1

only

State encoding

Transition relation
encoding

𝜓𝛿 𝑞, 𝑞′ = 𝑥0′ ⋅ 𝑥0 ⋅ 𝑥1 + 𝑥1
′ + 𝑥1 ⋅ 𝑥1

′ + 𝑥0 ⋅ 𝑥0
′ ⋅ 𝑥1′

As a Boolean function

𝑥1, 𝑥0 = 𝜎(𝑞)

𝜓𝛿(𝑞, 𝑞
′)

𝑞0 → 𝑞1

e.g.

𝑞2 → 𝑞2

10

𝝈(𝒒) x1 x0

q0 0 0

q1 0 1

q2 1 0

q3 1 1

x1 x0 x1’ x0’

0 0 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 1 0

1 1 0 0

States

Transitions

𝜓𝑄𝑖+1 𝑞
′ = 𝜓𝑄𝑖 𝑞

′ + (∃𝑞 ∶ 𝜓𝑄𝑖 𝑞 ⋅ 𝜓𝛿 𝑞, 𝑞′)

Comparison of Finite Automata

Strategy

For simplicity, we only consider Moore automata,
i.e., the output depends on the current state only.
The output function is 𝜔 ∶ 𝑄 → Σ and 𝑦 = 𝜔(𝑞).

1. Compute the set of
jointly reachable states.

2. Compare the output values
of the two finite automata.

11

states

states
=

𝑦 = 1 ⇔ 𝑦1 = 𝑦2

This week in
Discrete Event Systems

13

Efficient state
representation

Computing
reachability

Proving
properties

 Set of states as Boolean function
 Binary Decision Diagram representation

 Leverage efficient state representation
 Explore successor sets of states

 Temporal logic (CTL)
 Encoding as reachability problem

Today

Temporal logics

• Verify properties of a finite automaton, for example
• Can we always reset the automaton?

• Is every request followed by an acknowledgement?

• Are both outputs always equivalent?

• Specification of the query in a formula of temporal logic.

• We use a simple form called Computation Tree Logic (CTL).

• Let us start with a minimal set of operators.
• Any atomic proposition is a CTL formula.

• CTL formula are constructed by composition
of other CTL formula.

There exists
other logics

(e.g. LTL, CTL*)

Formula Examples

Atomic
proposition

The printer is busy.
The light is on.

Boolean logic 𝜙1 + 𝜙2 ; ¬𝜙1

CTL logic EX 𝜙1

14

Formulation of CTL properties

Based on atomic propositions (𝜙) and quantifiers

A𝜙 → «All 𝜙», 𝜙 holds on all paths

E𝜙 → «Exists 𝜙», 𝜙 holds on at least one path

X𝜙 → «NeXt 𝜙», 𝜙 holds on the next state

F𝜙 → «Finally 𝜙», 𝜙 holds at some state along the path

G𝜙 → «Globally 𝜙», 𝜙 holds on all states along the path

𝜙1U𝜙2 → «𝜙1Until 𝜙2», 𝜙1 holds until 𝜙2 holds

implies that 𝜙2 has to hold eventually

Quantifiers
over paths

Path-specific quantifiers

15

Formulation of CTL properties

CTL quantifiers
works in pairs

{A,E} {X,F,G,U}𝜙 You need one of each!

Can be more
than one pair

AG 𝜙1 where 𝜙1 = EF 𝜙2 ≡ AG EF 𝜙2

16

No need to know that one

E,G,X,U are sufficient to define the whole logic.
A and F are convenient, but not necessary

CTL works on computation trees

Automaton Computation tree

… … …… … … 17

CTL works on computation trees

Required fully-defined
transition functions

Each state has at least
one successor (can be itself)

Automaton of interest Automaton to work with

M satisfies 𝜙 ⇔ 𝑞0 ⊨ 𝜙

where 𝑞0 is the initial state of M

18

Visualizing CTL formula

 We use this computation tree
as a running example.

 We suppose that the black and red states
satisfy atomic properties p and q, respectively.

 The topmost state is the initial state;
in the examples, it always satisfies the given formula.

19

Visualizing CTL formula

20

Visualizing CTL formula

21

Visualizing CTL formula

22

Visualizing CTL formula

23

⊨ EG (¬ p)⊭ AF (p)

Intuition for “AF p = ¬ EG (¬ p)”

24

Interpreting CTL formula
Encoding Proposition

p I like chocolate

q It's warm outside

 AG p

 EF p

 AF EG p

 EG AF p

 p AU q

25

Interpreting CTL formula
Encoding Proposition

p I like chocolate

q It's warm outside

 AG p I will like chocolate from now on, no matter what happens.

 EF p It's possible I may like chocolate someday, at least for one day.

 AF EG p There will be always sometime in the future (AF) that I may suddenly
start liking chocolate for the rest of time (EG).

 EG AF p This is a critical time in my life. Depending on what happens (E), it's possible
that for the rest of time (G), there will always be some time in the future (AF)
when I will like chocolate. However, if the wrong thing happens next, then all bets
are off and there's no guarantee about whether I will ever like chocolate.

 p AU q No matter what happens, I will like chocolate from now on. But when it gets warm
outside, I don’t know whether I still like it. And it will get warm outside someday.

26

q

⊨ 𝜙

q ⊨ EF 𝜙

r

s

r ⊨ ?
s ⊨ ?

EF 𝜙 : “There exists a path
along which at some state 𝜙 holds.”

27

q

⊨ 𝜙

q ⊨ EF 𝜙

r

s

r ⊨ EF 𝜙
s ⊨ EF 𝜙

EF 𝜙 : “There exists a path
along which at some state 𝜙 holds.”

28

q

⊨ 𝜙

q ⊨ AF 𝜙

r

s

r ⊨ ?
s ⊨ ?

AF 𝜙 : “On all paths, at some state 𝜙 holds .”

29

q

⊨ 𝜙

q ⊨ AF 𝜙

r

s

r ⊨ AF 𝜙
s ⊨ AF 𝜙

AF 𝜙 : “On all paths, at some state 𝜙 holds .”

30

q

⊨ 𝜙

q ⊨ AG 𝜙

r

s

r ⊨ ?
s ⊨ ?

AG 𝜙 : “On all paths, for all states 𝜙 holds.”

31

q

⊨ 𝜙

q ⊨ AG 𝜙

r

s

r ⊨ AG 𝜙
s ⊨ AG 𝜙

AG 𝜙 : “On all paths, for all states 𝜙 holds.”

32

q

⊨ 𝜙

q ⊨ EG 𝜙

r

s

r ⊨ ?
s ⊨ ?

EG 𝜙 : “There exists a path
along which for all states 𝜙 holds .”

33

q

⊨ 𝜙

q ⊨ EG 𝜙

r

s

r ⊨ EG 𝜙
s ⊨ EG 𝜙

EG 𝜙 : “There exists a path
along which for all states 𝜙 holds .”

34

q

⊨ 𝜙

q ⊨ 𝜙EUΨ

⊨ Ψ

r

s

r ⊨ ?
s ⊨ ?

𝜙EUΨ : “There exists a path
along which 𝜙 holds until Ψ holds.”

35

q

⊨ 𝜙

q ⊨ 𝜙EUΨ

⊨ Ψ

r

s

r ⊨ 𝜙EUΨ

s ⊨ 𝜙EUΨ

𝜙EUΨ : “There exists a path
along which 𝜙 holds until Ψ holds.”

36

q

⊨ 𝜙

q ⊨ 𝜙AUΨ

⊨ Ψ

r

s

r ⊨ ?
s ⊨ ?

𝜙AUΨ : “On all paths, 𝜙 holds until Ψ holds.”

37

q

⊨ 𝜙

q ⊨ 𝜙AUΨ

⊨ Ψ

r

s

r ⊨ 𝜙AUΨ

s ⊨ 𝜙AUΨ

𝜙AUΨ : “On all paths, 𝜙 holds until Ψ holds.”

38

q

⊨ 𝜙

q ⊨ EX𝜙

r

s

r ⊨ ?
s ⊨ ?

EX𝜙 : “There exists a path
along which the next state satisfies 𝜙.”

39

q

⊨ 𝜙

q ⊨ EX𝜙

r

s

r ⊨ EX𝜙

s ⊨ EX𝜙

EX𝜙 : “There exists a path
along which the next state satisfies 𝜙.”

40

AG EF 𝜙 : “On all paths and for all states,
there exists a path along which at some state 𝜙 holds.”

q

⊨ 𝜙

q ⊨ AG EF 𝜙

rr

s

r ⊨ ?
s ⊨ ?

41

q

⊨ 𝜙

q ⊨ AG EF 𝜙

rr

s

r ⊨ AG EF 𝜙

s ⊨ AG EF 𝜙

42

AG EF 𝜙 : “On all paths and for all states,
there exists a path along which at some state 𝜙 holds.”

Specifying using CTL formula

Famous
problem

Dining Philosophers

 Five philosophers are sitting
around a table, taking turns
at thinking and eating.

 Each needs two forks to eat.

 They put down forks.
only once they have eaten.

 There are only five forks.

Atomic
proposition

𝑒𝑖 : Philosopher 𝑖 is currently eating.
43

Specifying using CTL formula

 “Philosophers 1 and 4 will never eat at the same time.”

 “Every philosopher will get infinitely many turns to eat.”

 “Philosopher 2 will be the first to eat.”

44

Specifying using CTL formula

 “Philosophers 1 and 4 will never eat at the same time.”

 “Every philosopher will get infinitely many turns to eat.”

 “Philosopher 2 will be the first to eat.”

45

Computing CTL formula

• In order to compute CTL formula, we first define 𝜙 as the set of all initial states of the finite
automaton for which CTL formula 𝜙 is true. Then we can say that a finite automaton with
initial state 𝑞0 satisfies 𝜙 iff

• Now, we can use our “trick”: computing with sets of states!

• 𝜓 𝜙 (𝑞) is true if the state 𝑞 is in the set 𝜙 , i.e., it is a state for which the CTL formula is true.

• Therefore, we can also say

• When we compute the CTL-formulas, we start from the innermost terms.

• Remember: We suppose that every state has at least one successor state (could be itself).

characteristic function

of the set 𝜙

𝑞0 ∈ 𝜙

𝑞0 ∈ 𝜙 ≡ 𝜓 𝜙 (𝑞0)

46

Computing CTL formula

• We now show how to compute some operators in CTL. All others can be determined using the
equivalence relations between operators that we listed earlier.
• EX 𝜙 : Let us first define the set of predecessor states of 𝑄, i.e., the set of states that lead in one

transition to a state in 𝑄:

Suppose that Q is the set of initial states for which the formula 𝜙 is true. Then we can write

sets

characteristic
functions

𝑄′ = 𝑃𝑟𝑒 𝑄, 𝛿 = 𝑞′ ∃𝑞 ∶ 𝜓𝛿 𝑞′, 𝑞 ⋅ 𝜓𝑄 𝑞 }

47

Q

Q’
Computing CTL formula

48

Computing CTL formula

• Example for EX 𝜙 : Compute EX 𝑞2

As 𝑞0 ∉ 𝐸𝑋 𝑞2 = {𝑞1, 𝑞2, 𝑞3}, the CTL formula EX q2 is not true.

q0

q1

q2

q3 𝑄′ = 𝐸𝑋 𝑞2 = 𝑃𝑟𝑒 {𝑞2}, 𝛿 = {𝑞1, 𝑞2, 𝑞3}

𝑞2 = {𝑞2}

𝑞′ ∃𝑞 ∶ 𝜓𝛿 𝑞′, 𝑞 ⋅ 𝜓𝑄 𝑞 }

49

Computing CTL formula

• EF 𝜙: The idea here is to start with the set of initial states for which the formula 𝜙 is true. Then we
add to this set the set of predecessor states. For the resulting set of states we do the same, …., until
we reach a fixed-point. The corresponding operations can be done using BDDs (as described before).

50

Computing CTL formula

51

Computing CTL formula

• Example for EF𝜙: Compute EF 𝑞2

As , the CTL formula EF q2 is true.

q0

q1

q2

q3

52

Computing CTL formula

• EG 𝜙: The idea here is to start with the set of initial states for which the formula 𝜙 is true. Then we
cut this set with the set of predecessor states. For the resulting set of states we do the same, …., until
we reach a fixed-point. The corresponding operations can be done using BDDs (as described before).

53

Computing CTL formula

54

Computing CTL formula

• Example for EG 𝜙: Compute EG 𝑞2

As , the CTL formula EG q2 is not true.

q0

q1

q2

q3

55

Computing CTL formula

• 𝜙1𝐸𝑈𝜙2: The idea here is to start with the set of initial states for which the formula 𝜙2 is true. Then
we add to this set the set of predecessor states for which the formula 𝜙1 is true. For the resulting set
of states we do the same, …., until we reach a fixed-point. The corresponding operations can be done
using BDDs (as described before).

Like EF 𝜙2, the only difference is that on our path backwards, we always make sure that also 𝜙1
holds.

56

Computing CTL formula

57

Computing CTL formula

• Example for 𝜙1𝐸𝑈𝜙2: Compute 𝑞0 𝐸𝑈 𝑞1

As , the CTL formula q0 EG q1 is true.

q0

q1

q2

q3

58

So… what is model-checking exactly?

Model-checking is an algorithm
which takes two inputs

 a DES model 𝑴
 a formula 𝝓

It explores the state space of 𝑴 such as to either

 prove that 𝑴 ⊨ 𝝓, or
 return a trace where the formula does not hold in 𝑴.

Finite automato
Petri nets
Kripke machine
...

CTL, LTL, ...

59

a counter-example

So… what is model-checking exactly?

Model-checking is an algorithm
which takes two inputs

 a DES model 𝑴
 a formula 𝝓

It explores the state space of 𝑴 such as to either

 prove that 𝑴 ⊨ 𝝓, or
 return a trace where the formula does not hold in 𝑴.

Extremely useful! Debugging the model
 Searching a specific execution sequence

60

Finite automato
Petri nets
Kripke machine
...

CTL, LTL, ...

Let’s see how it works in practice...
communicating
finite automata

sequence diagram

simulation
trace

61

UPPAAL model-checker

 free for academia
 (much) more general than

what we show here
 can verify the timed

behavior of communicating
finite automata

Modeling and verification
of a simple protocol for
ATM-Money-Withdrawal

Example

Step 1. ATM without Cancel

send event “bank_card”

communicating finite automata

enabled by event “cash”initial state

AG

EF 62

Step 2. ATM with Cancel

counter
example

63

Your turn to practice!
after the break

64

1. Familiarise yourself with CTL logic
and how to compute sets of states
satisfying a given formula

2. Convert a concrete problem into
a state reachability question
(adapted from state-of-the-art research!)

Conclusion and perspectives

comparison
reference system data structure

system under test data structure

Comparison of specification and implementation

property

system under test data structure

fixed-point calculation

Proving properties

65

The device
can always be
switched off.”

“

𝑦 = 𝑥1 + 𝑥2 ⋅ 𝑥3

Example

Conclusion and perspectives

66

Next week(s) Petri Nets

How they work?
How to use them for modeling systems?
How to verify them?

 asynchronous DES model
 tailored model concurrent

distributed systems
 capture an infinite state space

with a finite model

a computer
a network

See you next week!
in Discrete Event Systems

Most materials from Lothar Thiele

ETH Zurich (D-ITET)

December 2, 2021

Romain Jacob

www.romainjacob.net

https://romainjacob.net/
https://romainjacob.net/

