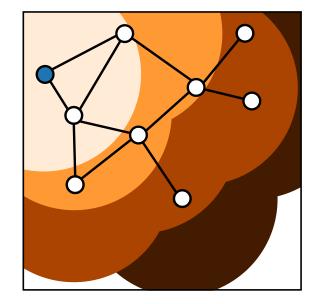
Discrete Event Systems Verification of Finite Automata (Part 2)



Romain Jacob www.romainjacob.net

ETH Zurich (D-ITET)

December 2, 2021

Most materials from Lothar Thiele

Thank you for your feedback!

- Slightly too fast
- Reachability was covered too quickly
- More examples would be nice
- More interaction would be nice

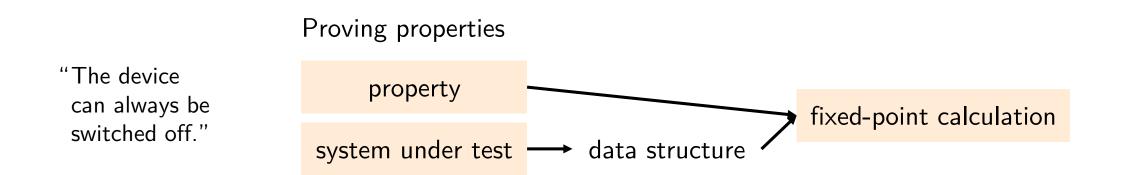
Will hopefully improve already today ③

Last week in Discrete Event Systems

Verification Scenarios

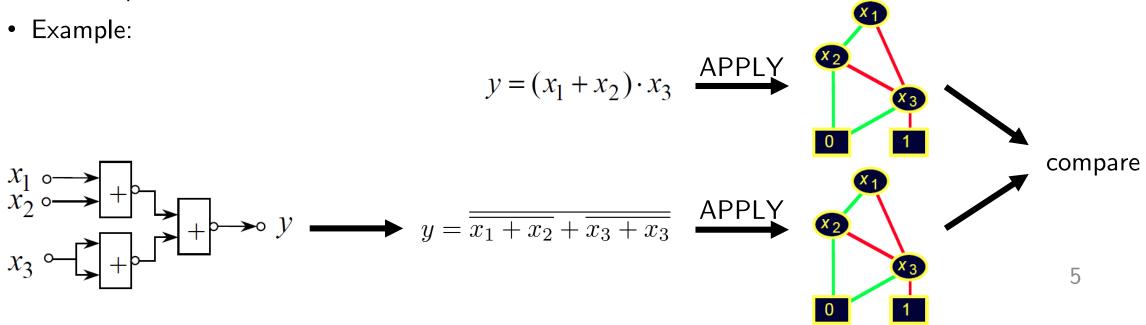
Example

Comparison of specification and implementation $y = (x_1 + x_2) \cdot x_3$ reference system data structure -> comparison system under test data structure



Comparison using BDDs

- Boolean (combinatorial) circuits: Compare specification and implementation, or compare two implementations.
- Method:
 - Representation of the two systems in ROBDDs, e.g., by applying the APPLY operator repeatedly.
 - Compare the structures of the ROBDDs.

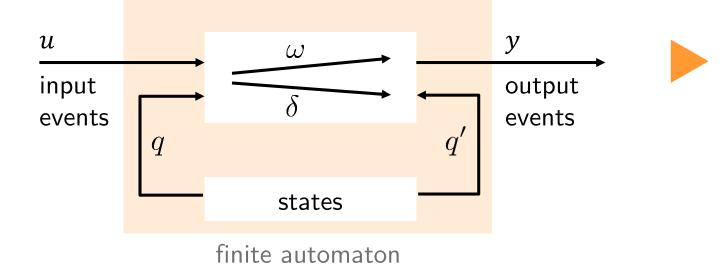


Sets and Relations using Boolean Expressions

- Representation of a relation $R \subseteq A \times B$
 - Binary encoding $\sigma(a)$, $\sigma(b)$ of all elements $a \in A$, $b \in B$
 - Representation of R

 $(a,b) \in R \iff \psi_R(\sigma(a),\sigma(b))$

• Example finite automaton:



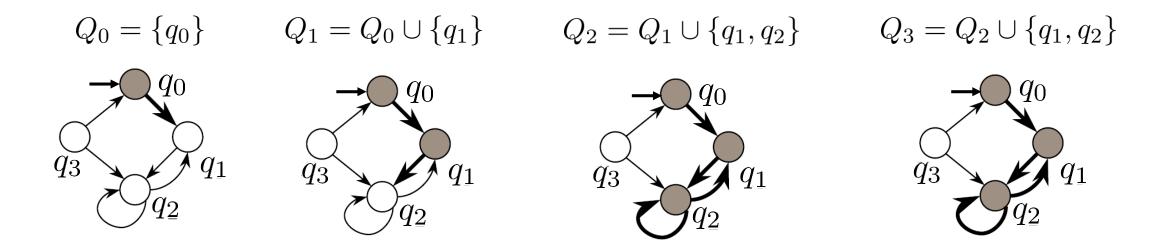
characteristic function of the relation R

 $\psi_{\delta}(u, q, q') = 1$ $\psi_{\omega}(u, q, y) = 1$

we remove the binary encoding for convenience in our notation; but u, q, q' are actually represented as binary vectors 6

Reachability of States – State Diagram

Is a state $q \in Q$ reachable by a sequence of state transitions?



Problem

Question

Drawing state diagrams is not feasible in general.

Reachability of States – Boolean Expressions

Fixed-point computation

 Q_R : set of

reachable states

- Start with the initial state
- Determine the set of states that can be reached in one
- Take the union and iterate until a fixed-point is reached

$$Q_{0} = \{q_{0}\}$$

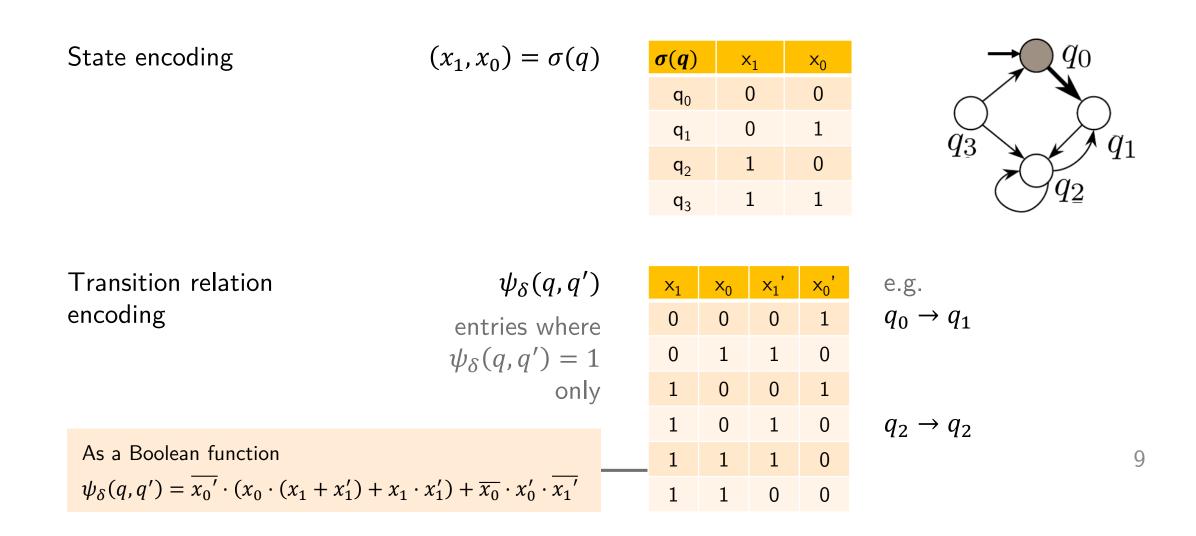
$$Q_{i+1} = Q_{i} \cup Suc(Q_{i}, \delta) \qquad \text{until } Q_{i+1} = Q_{i}$$

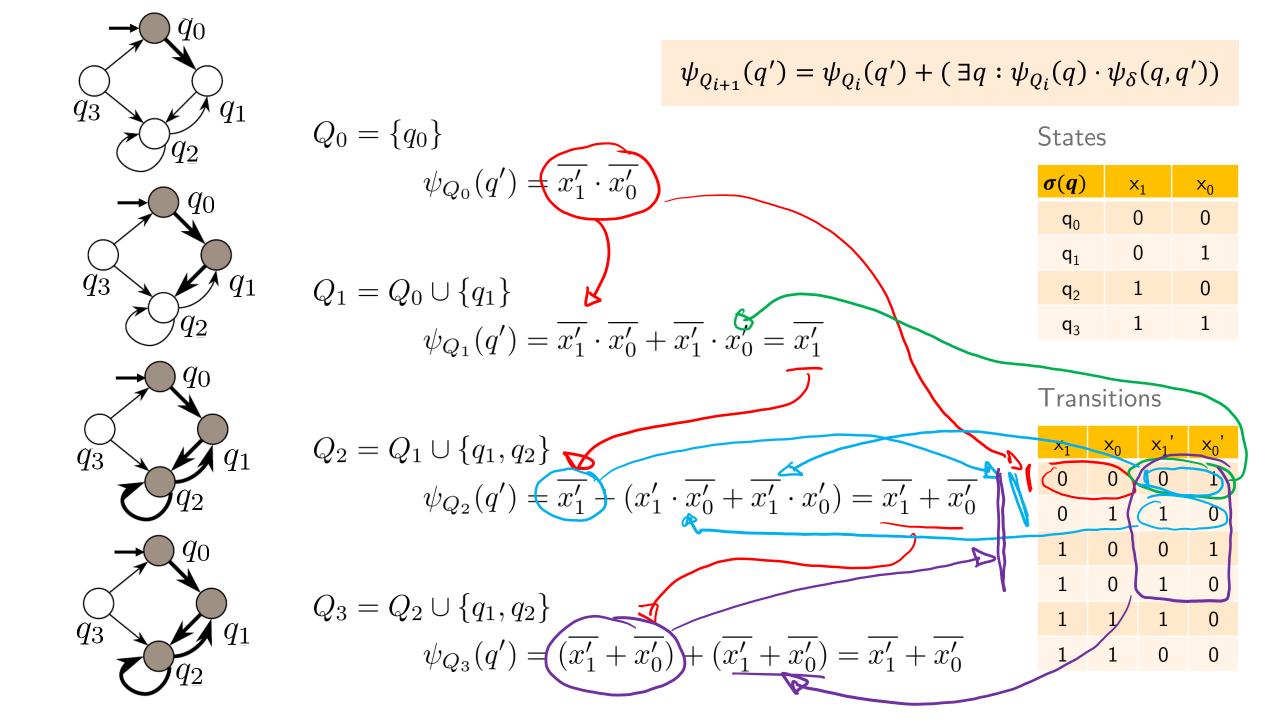
$$\psi_{Q_{i+1}}(q') = \psi_{Q_{i}}(q') + (\exists q : \psi_{Q_{i}}(q) \cdot \psi_{\delta}(q, q')) \qquad \text{Test by comparing the ROBDDs of } Q_{i+1} = Q_{i}$$

$$Q_{R} = Q_{0} \cup_{i \geq 0} Suc(Q_{i}, \delta) \qquad \text{Finite union if model is finite}$$

$$\psi_{Q_{R}}(q') = \psi_{Q_{0}}(q') \sum_{i \geq 0} (\exists q : \psi_{Q_{i}}(q) \cdot \psi_{\delta}(q, q')) \qquad 8$$

Reachability of States – Example

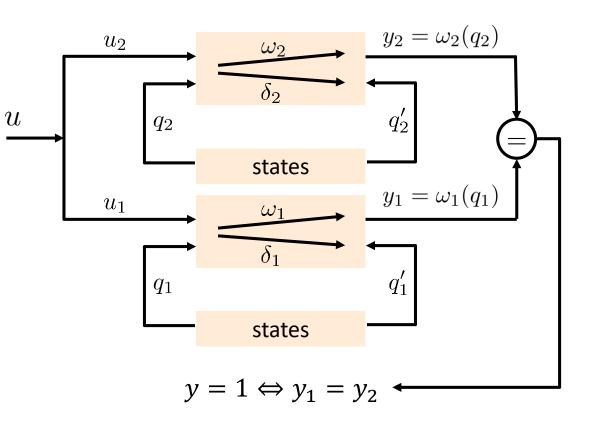




Comparison of Finite Automata

For simplicity, we only consider Moore automata, i.e., the output depends on the current state only. The output function is $\omega : Q \to \Sigma$ and $y = \omega(q)$.

- Compute the set of jointly reachable states.
- 2. Compare the output values of the two finite automata.



This week in Discrete Event Systems

Efficient state representation

Computing reachability

- Set of states as Boolean function
- Binary Decision Diagram representation

- Leverage efficient state representation
- Explore successor sets of states

- Temporal logic (CTL)
- Encoding as reachability problem

Temporal logics

- Verify properties of a finite automaton, for example
 - Can we always reset the automaton?
 - Is every request followed by an acknowledgement?
 - Are both outputs always equivalent?
- Specification of the query in a formula of temporal logic.
- We use a simple form called Computation Tree Logic (CTL).
- Let us start with a minimal set of operators.
 - Any atomic proposition is a CTL formula.
 - CTL formula are constructed by composition of other CTL formula.

There exists other logics (e.g. LTL, CTL*)

Formula	Examples
Atomic proposition	The printer is busy. The light is on.
Boolean logic	$\phi_1+\phi_2$; $\neg\phi_1$
CTL logic	EX ϕ_1

Formulation of CTL properties

Based on atomic propositions (ϕ) and quantifiers

Aφ	\rightarrow «AII ϕ »,
Eφ	\rightarrow «Exists ϕ »,

 ϕ holds on all paths ϕ holds on at least one path

Xφ	\rightarrow	«Ne $ imes$ t ϕ »,
F ϕ	\rightarrow	«Finally ϕ »,
Gφ	\rightarrow	«Globally ϕ »,
$\phi_1 U \phi_2$	\rightarrow	« ϕ_1 Until ϕ_2 »,

 ϕ holds on the next state ϕ holds at some state along the path ϕ holds on all states along the path ϕ_1 holds until ϕ_2 holds implies that ϕ_2 has to hold eventually Quantifiers over paths

Path-specific quantifiers

Formulation of CTL properties

CTL quantifiers works in pairs

 ${A,E} {X,F,G,U}\phi$

You need one of each!

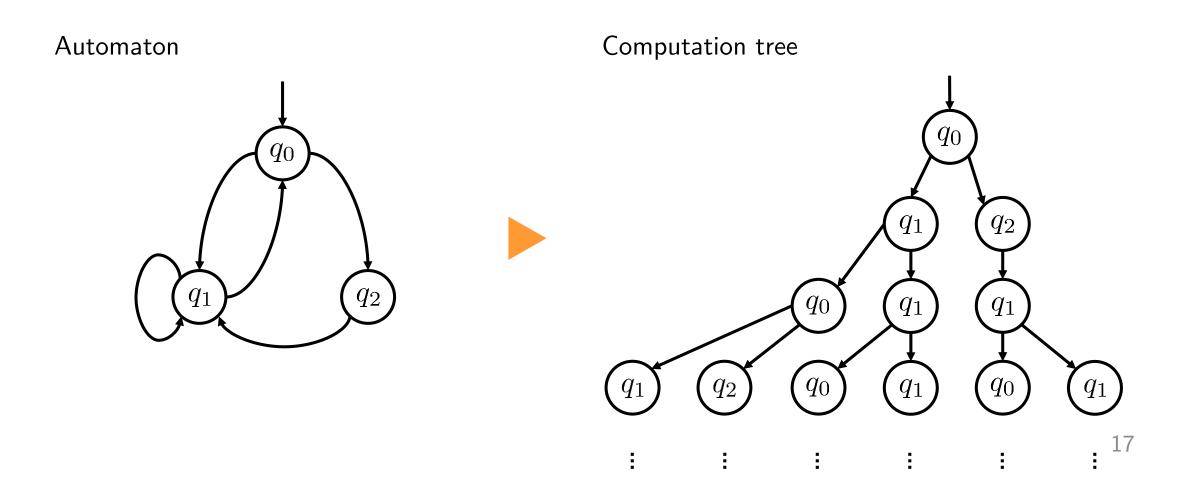
Can be more than one pair

AG ϕ_1 where $\phi_1 = \mathsf{EF} \ \phi_2 \equiv \mathsf{AG} \ \mathsf{EF} \ \phi_2$

E,G,X,U are sufficient to define the whole logic. A and F are convenient, but not necessary $AF\phi \equiv \neg EG(\neg \phi)$ $AG\phi \equiv \neg EF(\neg \phi)$ $AX\phi \equiv \neg EX(\neg \phi)$ $EF\phi \equiv true EU\phi$

No need to know that one $\triangleright \phi_1 AU \phi_2 \equiv \neg [(\neg \phi_1) EU \neg (\phi_1 + \phi_2)] + EG(\neg \phi_2)$

CTL works on computation trees

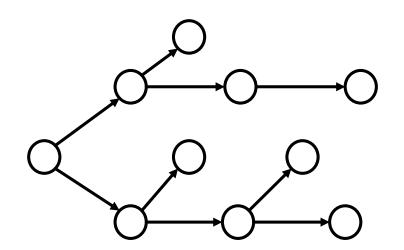


CTL works on computation trees

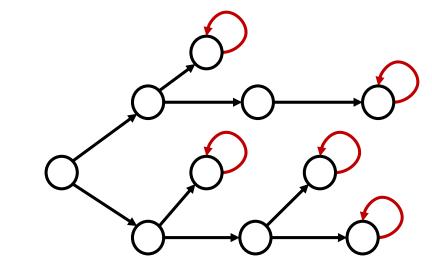
M satisfies $\phi \iff q_0 \vDash \phi$ where q_0 is the initial state of M

Required fully-defined transition functions

Each state has at least one successor (can be itself)



Automaton of interest

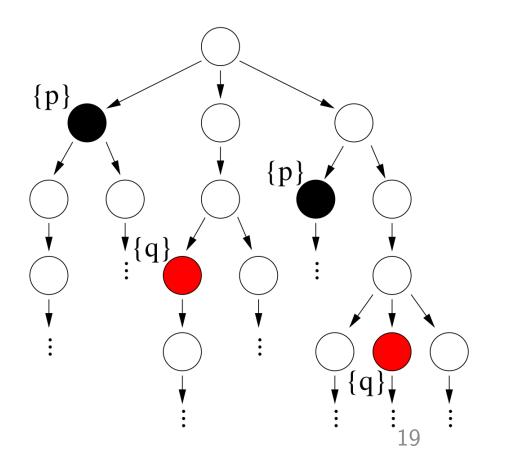


Automaton to work with

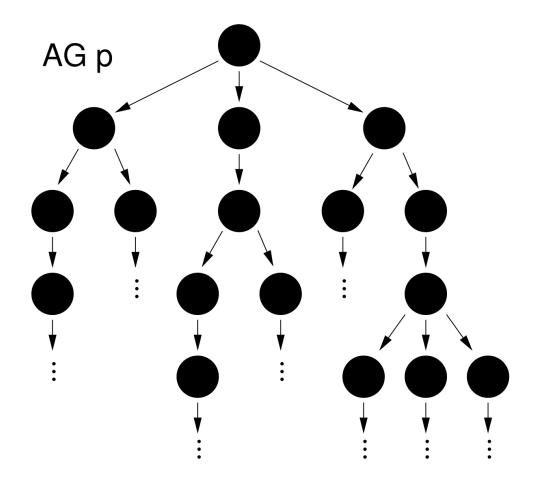
Visualizing CTL formula

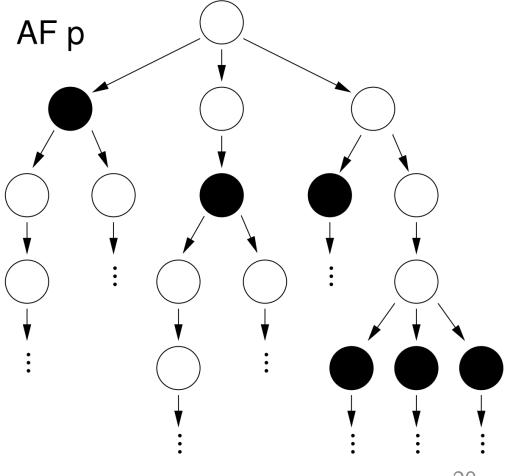
- We use this computation tree as a running example.
- We suppose that the black and red states satisfy atomic properties p and q, respectively.

 The topmost state is the initial state; in the examples, it always satisfies the given formula.



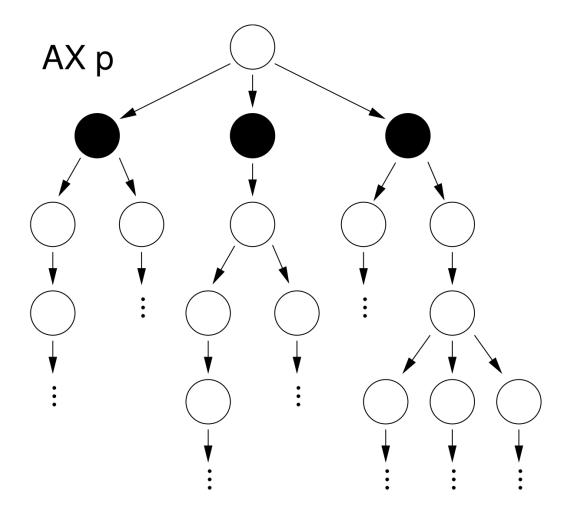
Visualizing CTL formula

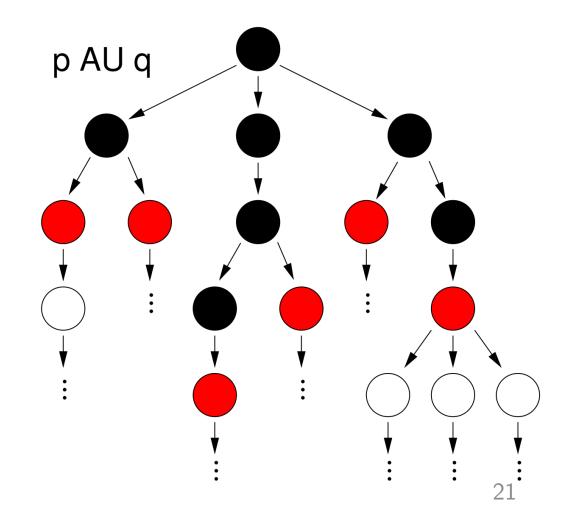


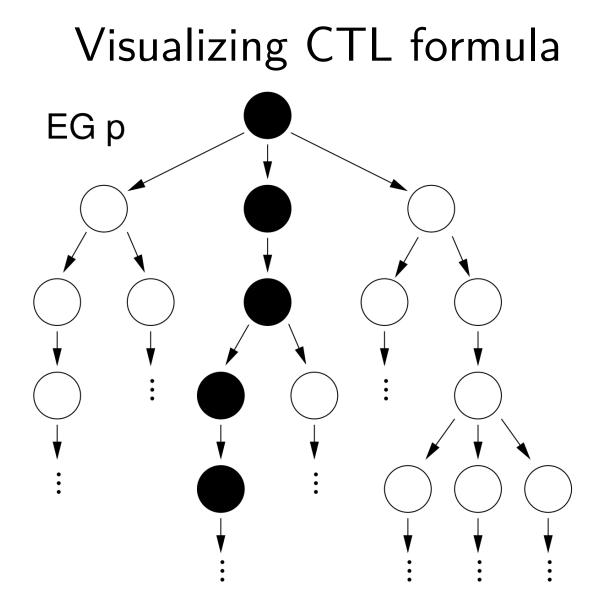


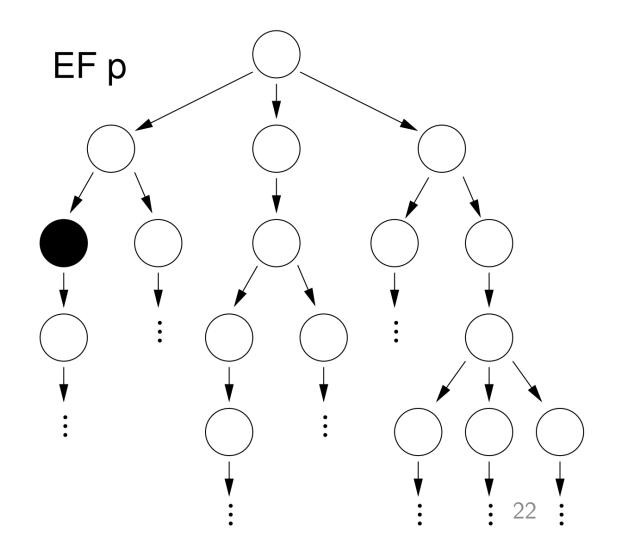
20

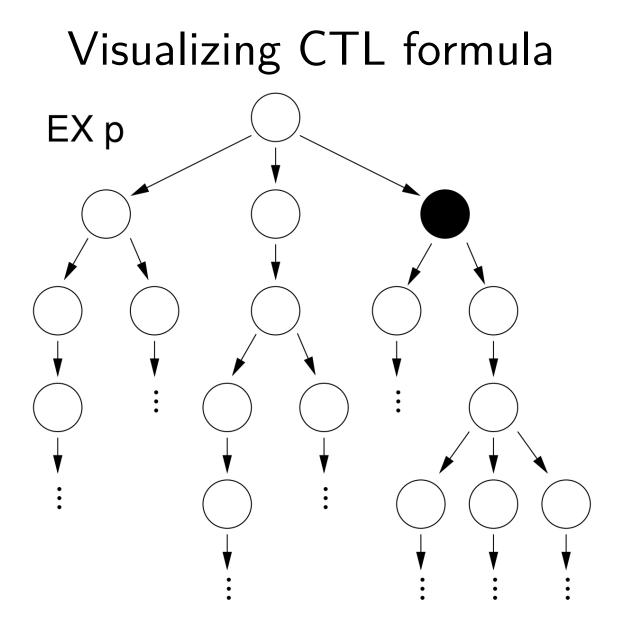
Visualizing CTL formula

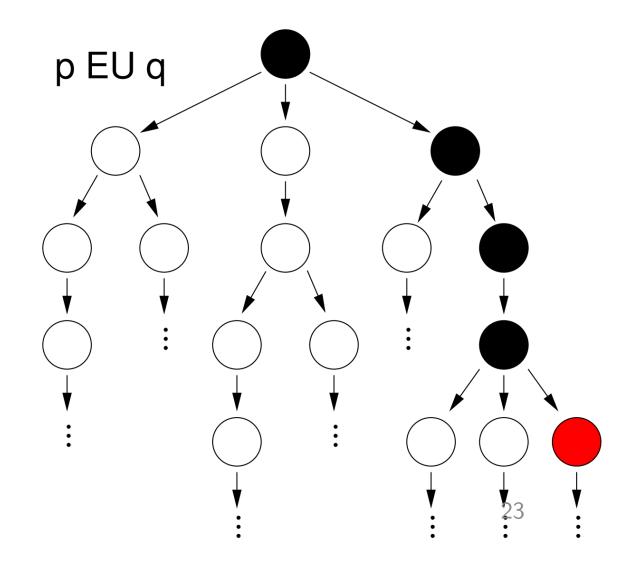




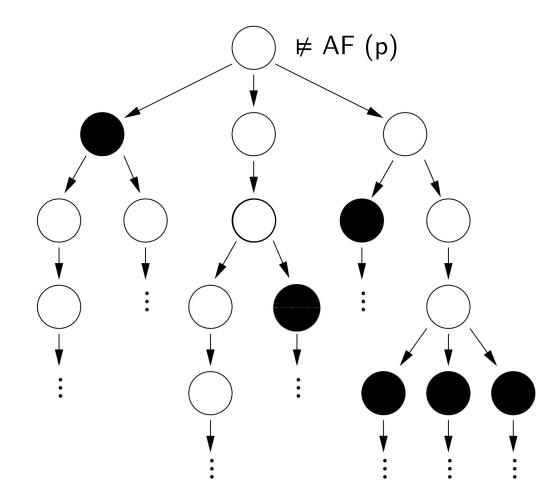


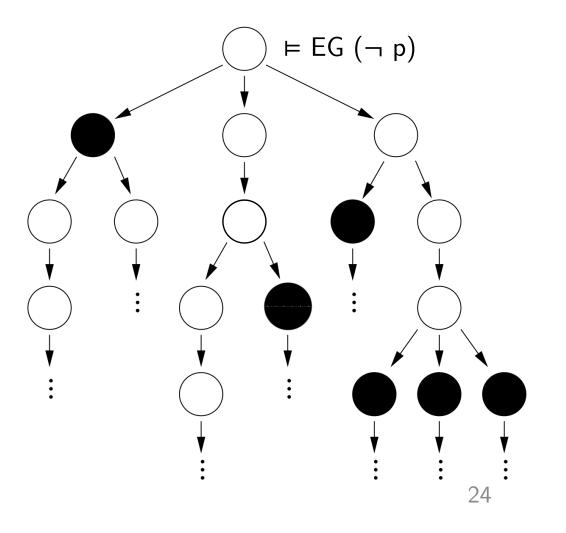






Intuition for "AF $p = \neg EG (\neg p)$ "





Encoding	Proposition
р	I like chocolate
q	lt's warm outside

Interpreting CTL formula

- AG p
- EF p
- AF EG p
- EG AF p

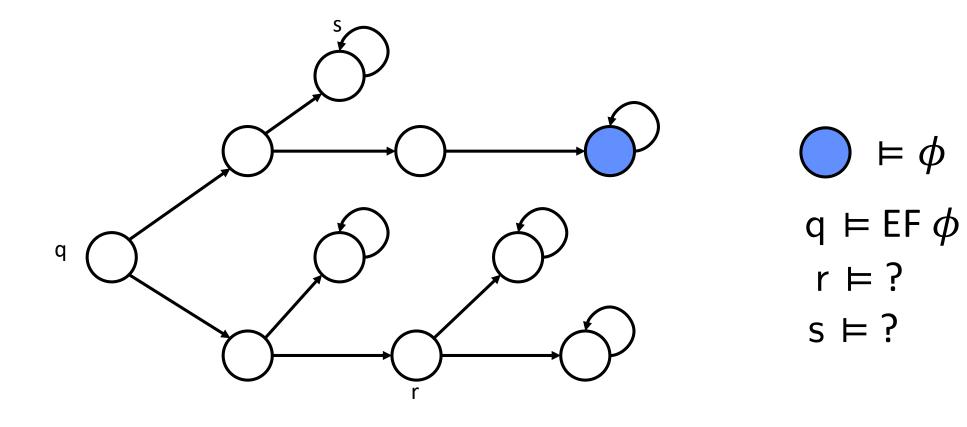
p AU q

Interpreting CTL formula

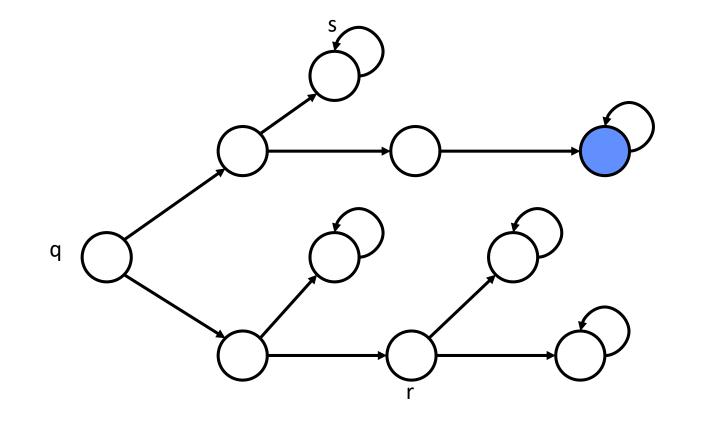
EncodingPropositionpI like chocolateqIt's warm outside

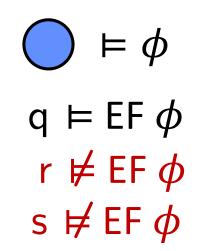
- AG p
 I will like chocolate from now on, no matter what happens.
- EF p It's possible I may like chocolate someday, at least for one day.
- AF EG p There will be always sometime in the future (AF) that I may suddenly start liking chocolate for the rest of time (EG).
- EG AF p This is a critical time in my life. Depending on what happens (E), it's possible that for the rest of time (G), there will always be some time in the future (AF) when I will like chocolate. However, if the wrong thing happens next, then all bets are off and there's no guarantee about whether I will ever like chocolate.
- p AU q No matter what happens, I will like chocolate from now on. But when it gets warm outside, I don't know whether I still like it. And it will get warm outside someday.

EF ϕ : "There exists a path along which at some state ϕ holds."

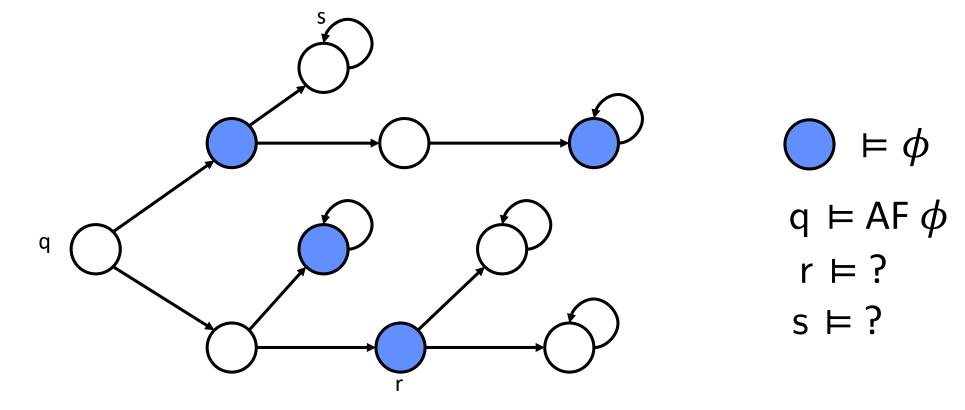


EF ϕ : "There exists a path along which at some state ϕ holds."



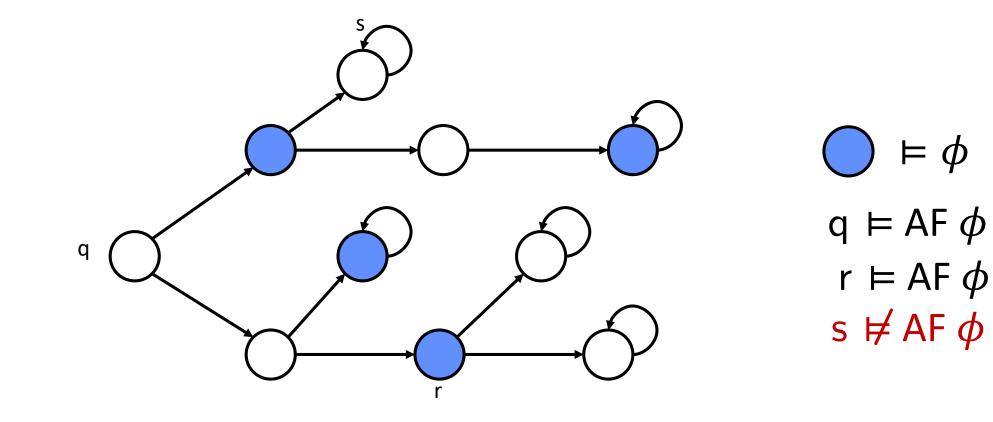


AF ϕ : "On all paths, at some state ϕ holds ."

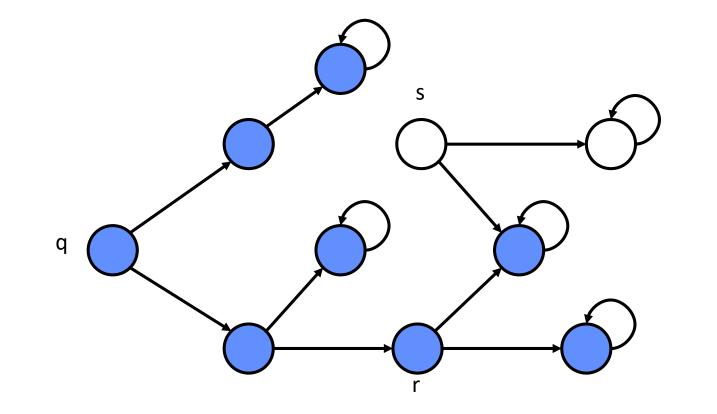


29

AF ϕ : "On all paths, at some state ϕ holds ."



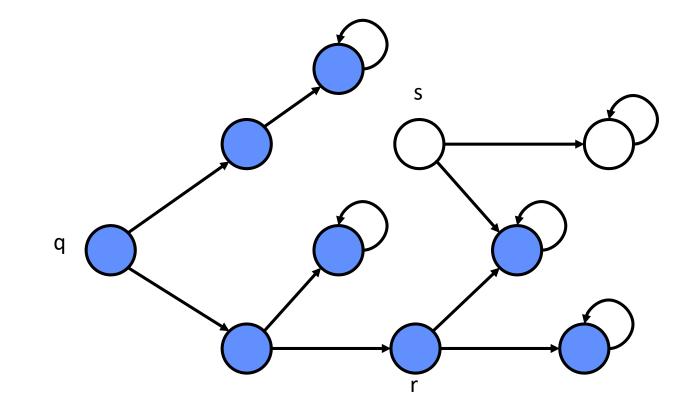
AG ϕ : "On all paths, for all states ϕ holds."



 $\bigcirc \vDash \phi$ $q \vDash AG \phi$ $r \vDash ?$ $s \vDash ?$

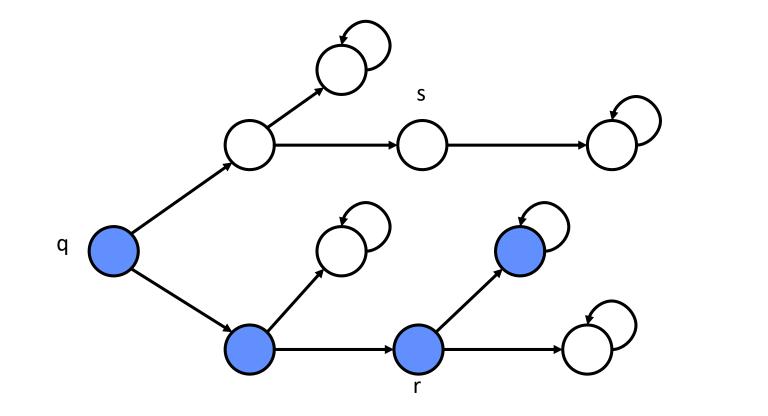
31

AG ϕ : "On all paths, for all states ϕ holds."



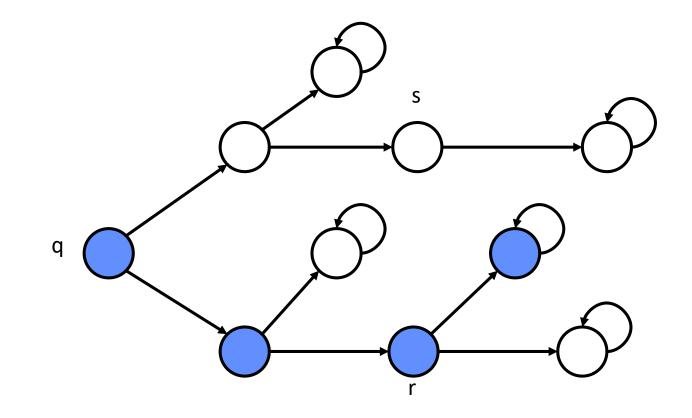
 $\bigcirc \vDash \phi$ $q \vDash AG \phi$ $r \vDash AG \phi$ $s \nvDash AG \phi$

EG ϕ : "There exists a path along which for all states ϕ holds ."



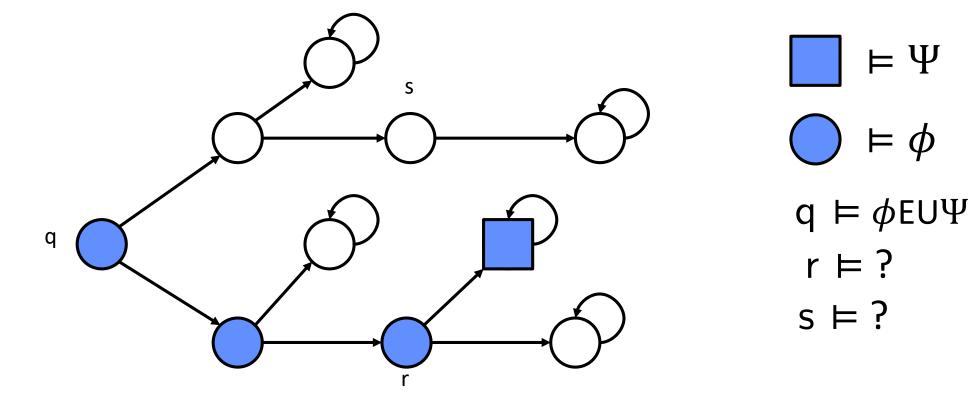
 $\bigcirc \vDash \phi$ $q \vDash EG \phi$ $r \vDash ?$ $s \vDash ?$

EG ϕ : "There exists a path along which for all states ϕ holds ."

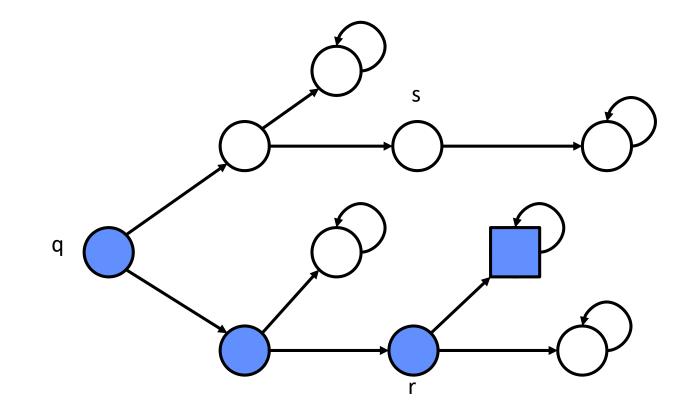


 $\bigcirc \vDash \phi$ $q \vDash EG \phi$ $r \vDash EG \phi$ $s \nvDash EG \phi$

 $\phi EU\Psi$: "There exists a path along which ϕ holds until Ψ holds."

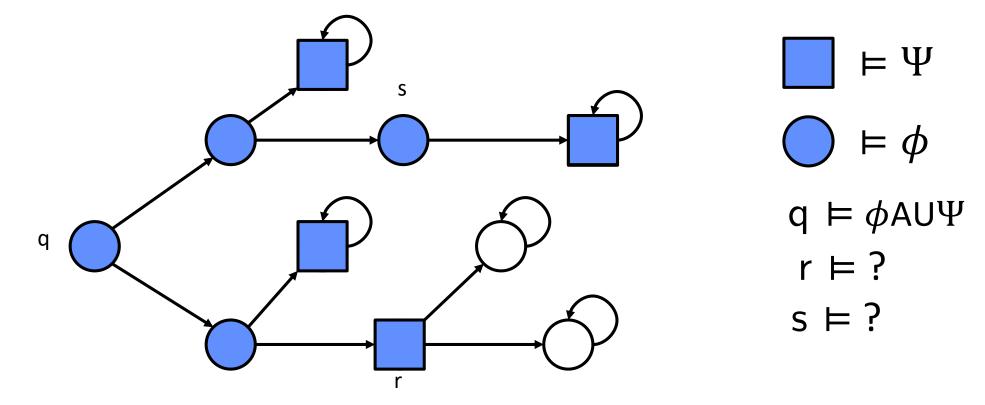


 $\phi EU\Psi$: "There exists a path along which ϕ holds until Ψ holds."



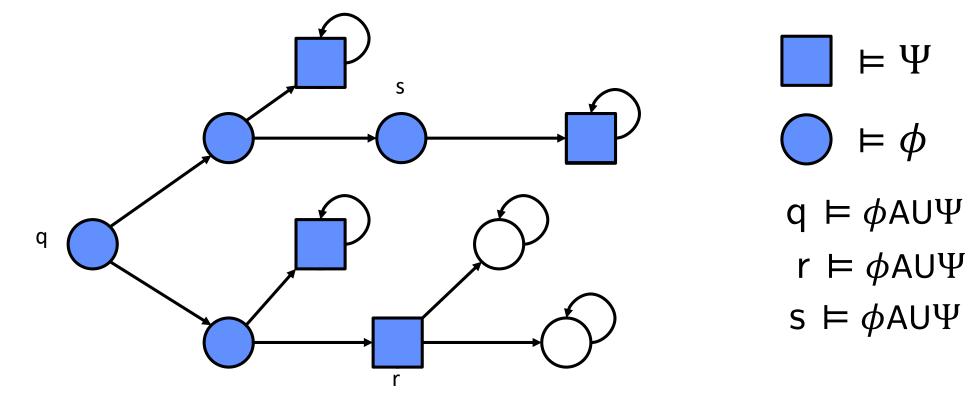
 $\models \Psi$ $\bigcirc \models \phi$ $q \models \phi \in U\Psi$ $r \models \phi \in U\Psi$ $s \neq \phi \in U\Psi$

$\phi AU\Psi$: "On all paths, ϕ holds until Ψ holds."

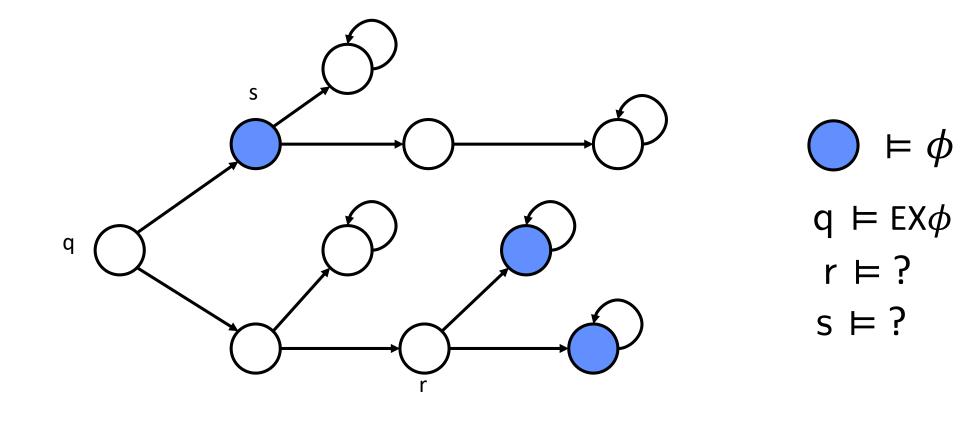


37

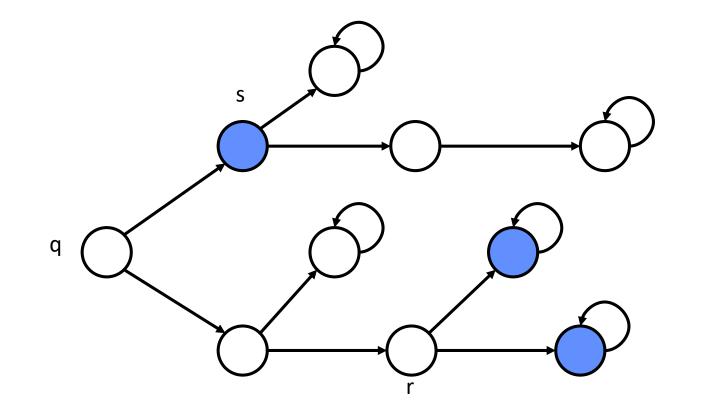
$\phi AU\Psi$: "On all paths, ϕ holds until Ψ holds."

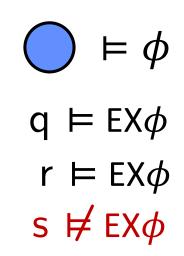


 $\mathsf{EX}\phi$: "There exists a path along which the next state satisfies ϕ ."

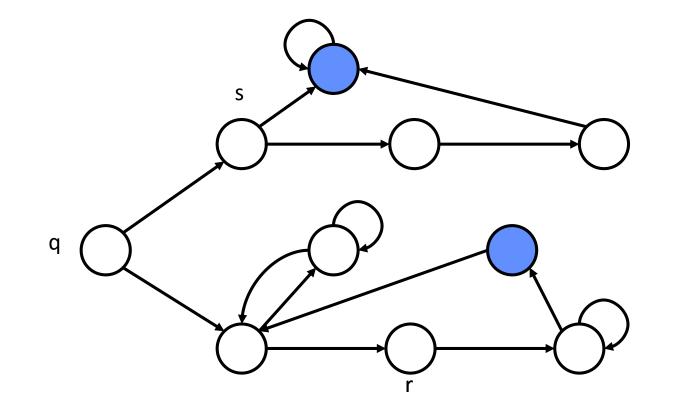


 $\mathsf{EX}\phi$: "There exists a path along which the next state satisfies ϕ ."





AG EF ϕ : "On all paths and for all states, there exists a path along which at some state ϕ holds."



 $\bigcirc \vDash \phi$ $q \vDash AG EF \phi$ $r \vDash ?$ $s \vDash ?$

41

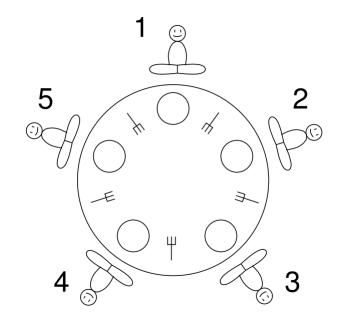
AG EF ϕ : "On all paths and for all states, there exists a path along which at some state ϕ holds."

> S) $\vDash \phi$ $q \models AG EF \phi$ q $r \models AG EF \phi$ $s \models AG EF \phi$ If we remare that edge, then Because and we can reach @ from r, ance we reach @ jrom r, ance

Specifying using CTL formula

Famous problem **Dining Philosophers**

- Five philosophers are sitting around a table, taking turns at thinking and eating.
- Each needs two forks to eat.
- They put down forks. only once they have eaten.
- There are only five forks.



Atomic proposition

 e_i : Philosopher *i* is currently eating.

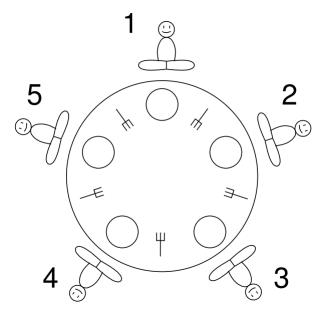
43

Specifying using CTL formula

"Philosophers 1 and 4 will never eat at the same time."

"Every philosopher will get infinitely many turns to eat."

"Philosopher 2 will be the first to eat."



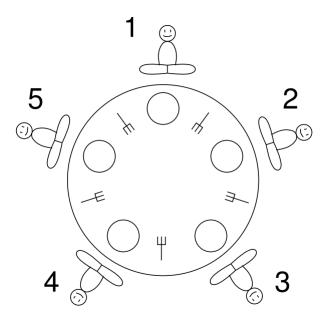
Specifying using CTL formula

"Philosophers 1 and 4 will never eat at the same time."

 $AG\neg(e_1\cdot e_4)$

- "Every philosopher will get infinitely many turns to eat." $AG(AFe_1 \cdot AFe_2 \cdot AFe_3 \cdot AFe_4 \cdot AFe_5)$
- "Philosopher 2 will be the first to eat."

$$\neg (e_1 + e_3 + e_4 + e_5) \operatorname{AU} e_2$$



• In order to compute CTL formula, we first define $[\![\phi]\!]$ as the set of all initial states of the finite automaton for which CTL formula ϕ is true. Then we can say that a finite automaton with initial state q_0 satisfies ϕ iff

$q_0 \in [\![\phi]\!]$

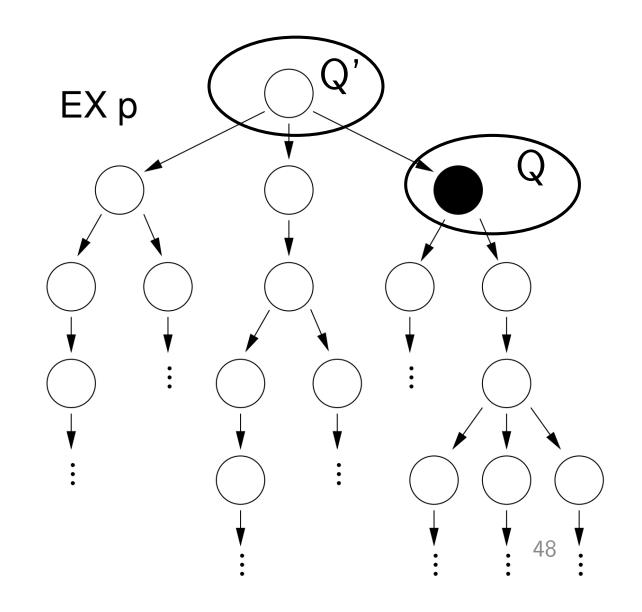
- Now, we can use our "trick": computing with sets of states!
 - $\psi_{[\phi]}(q)$ is true if the state q is in the set $[\phi]$, i.e., it is a state for which the CTL formula is true.
 - Therefore, we can also say

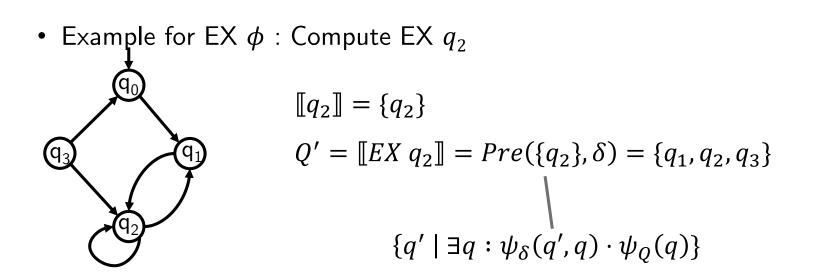
- When we compute the CTL-formulas, we start from the innermost terms.
- Remember: We suppose that every state has at least one successor state (could be itself).

- We now show how to compute some operators in CTL. All others can be determined using the equivalence relations between operators that we listed earlier.
 - EX ϕ : Let us first define the set of predecessor states of Q, i.e., the set of states that lead in one transition to a state in Q:

 $Q' = Pre(Q, \delta) = \{q' \mid \exists q : \psi_{\delta}(q', q) \cdot \psi_{Q}(q)\}$

Suppose that Q is the set of initial states for which the formula ϕ is true. Then we can write

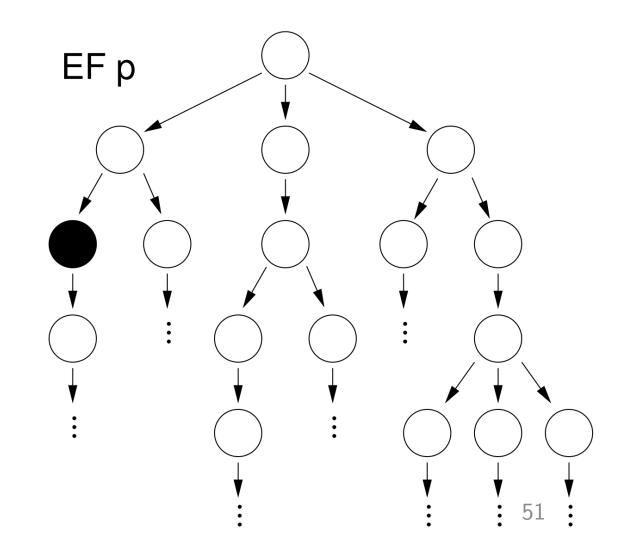




As $q_0 \notin \llbracket EX q_2 \rrbracket = \{q_1, q_2, q_3\}$, the CTL formula EX q_2 is not true.

EF φ: The idea here is to start with the set of initial states for which the formula φ is true. Then we add to this set the set of predecessor states. For the resulting set of states we do the same,, until we reach a fixed-point. The corresponding operations can be done using BDDs (as described before).

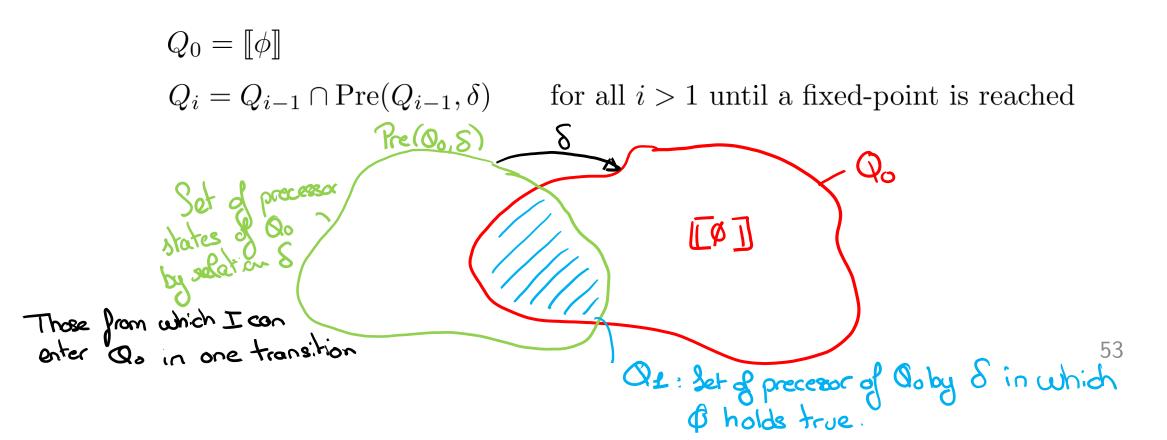
$$Q_0 = \llbracket \phi \rrbracket$$
$$Q_i = Q_{i-1} \cup \operatorname{Pre}(Q_{i-1}, \delta) \quad \text{for all } i > 1 \text{ until a fixed-point } Q' \text{ is reached}$$
$$\llbracket \operatorname{EF} \phi \rrbracket = Q'$$

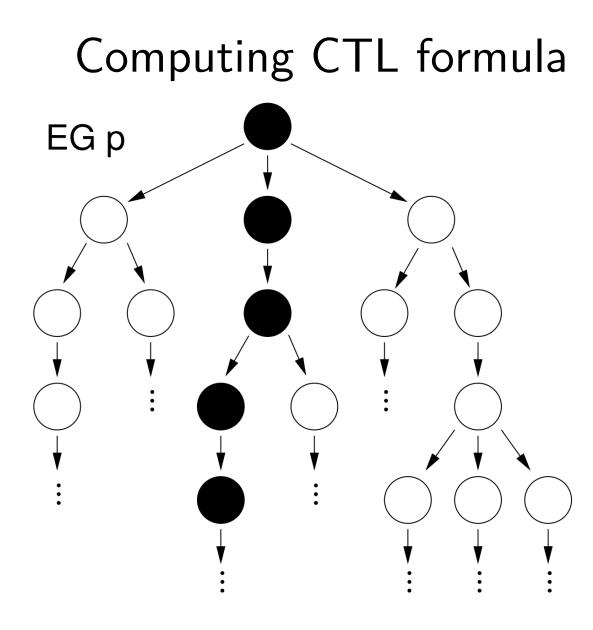


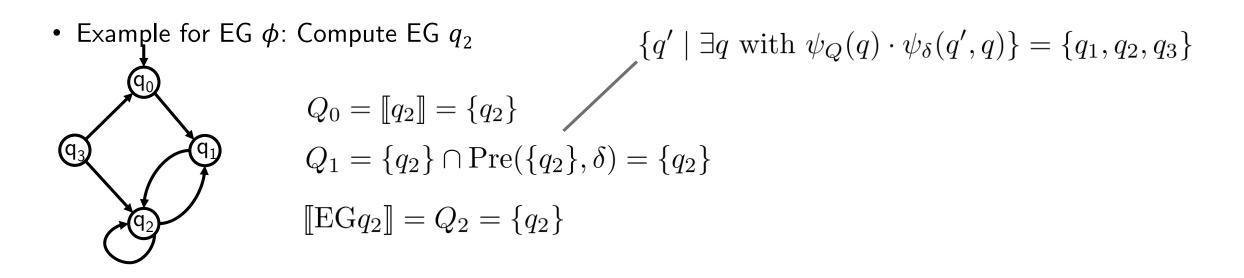
• Example for EF ϕ : Compute EF q_2 $Q_0 = [[q_2]] = \{q_2\}$ $Q_0 = [[q_2]] = \{q_2\}$ $Q_1 = \{q_2\} \cup \operatorname{Pre}(\{q_2\}, \delta) = \{q_1, q_2, q_3\}$ $Q_2 = \{q_1, q_2, q_3\} \cup \operatorname{Pre}(\{q_1, q_2, q_3\}, \delta) = \{q_0, q_1, q_2, q_3\}$ $Q_3 = \{q_0, q_1, q_2, q_3\} \cup \operatorname{Pre}(\{q_0, q_1, q_2, q_3\}, \delta) = \{q_0, q_1, q_2, q_3\}$ $[\operatorname{EF} q_2]] = Q_3 = \{q_0, q_1, q_2, q_3\}$

As $q_0 \in \llbracket \mathrm{EF} q_2
rbracket = \{q_0, q_1, q_2, q_3\}$, the CTL formula EF q₂ is true.

EG φ: The idea here is to start with the set of initial states for which the formula φ is true. Then we cut this set with the set of predecessor states. For the resulting set of states we do the same, ..., until we reach a fixed-point. The corresponding operations can be done using BDDs (as described before).







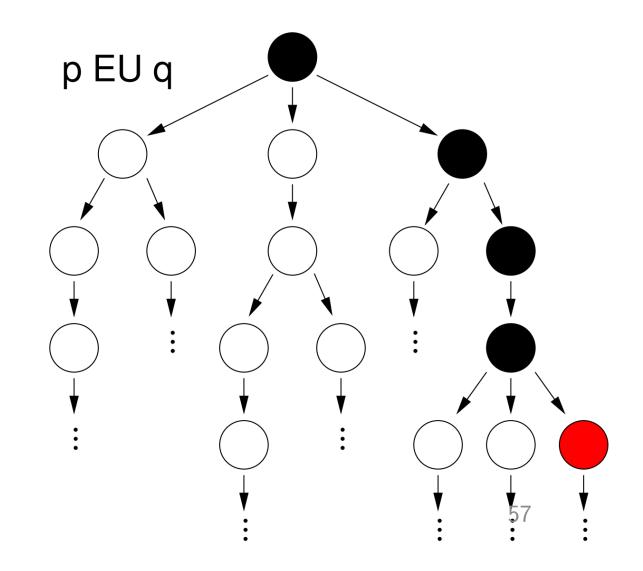
As $q_0 \not\in \llbracket \mathrm{EG} q_2 \rrbracket = \{q_2\}$, the CTL formula EG q_2 is not true.

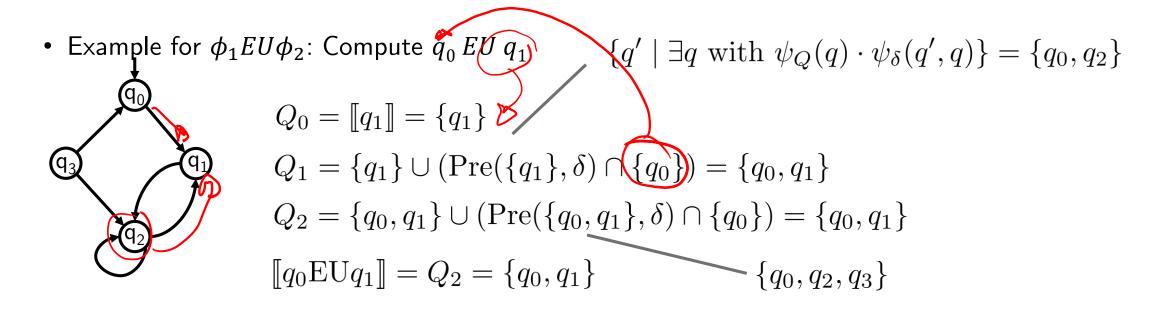
• $\phi_1 EU \phi_2$: The idea here is to start with the set of initial states for which the formula ϕ_2 is true. Then we add to this set the set of predecessor states for which the formula ϕ_1 is true. For the resulting set of states we do the same,, until we reach a fixed-point. The corresponding operations can be done using BDDs (as described before).

$$Q_0 = \llbracket \phi_2 \rrbracket$$
$$Q_i = Q_{i-1} \cup (\operatorname{Pre}(Q_{i-1}, \delta) \cap \llbracket \phi_1 \rrbracket)$$

for all i > 1 until a fixed-point is reached

Like EF ϕ_2 , the only difference is that on our path backwards, we always make sure that also ϕ_1 holds.



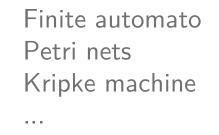


As $q_0 \in \llbracket q_0 \operatorname{EU} q_1 \rrbracket = \{q_0, q_1\}$, the CTL formula q_0 EG q_1 is true.

So... what is model-checking exactly?

Model-checking is an algorithm which takes two inputs

- a DES model M
- a formula $oldsymbol{\phi}$

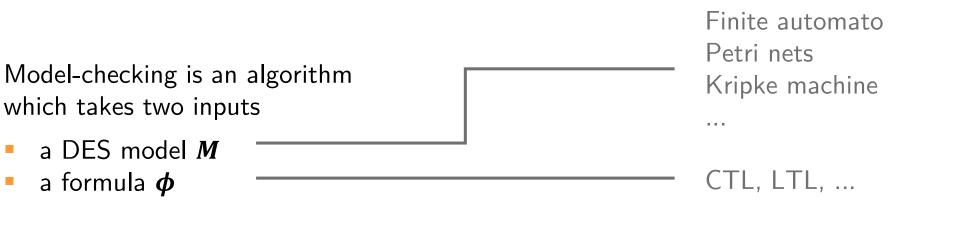


```
CTL, LTL, ...
```

It explores the state space of M such as to either

- prove that $M \vDash \phi$, or
- return a trace where the formula does not hold in **M**.

So... what is model-checking exactly?



It explores the state space of **M** such as to either

prove that $M \vDash \phi$, or

return a trace where the formula does not hold in *M*. a counter-example

Extremely useful! • Debugging the model

Searching a specific execution sequence

Let's see how it works in practice...

communicating finite automata

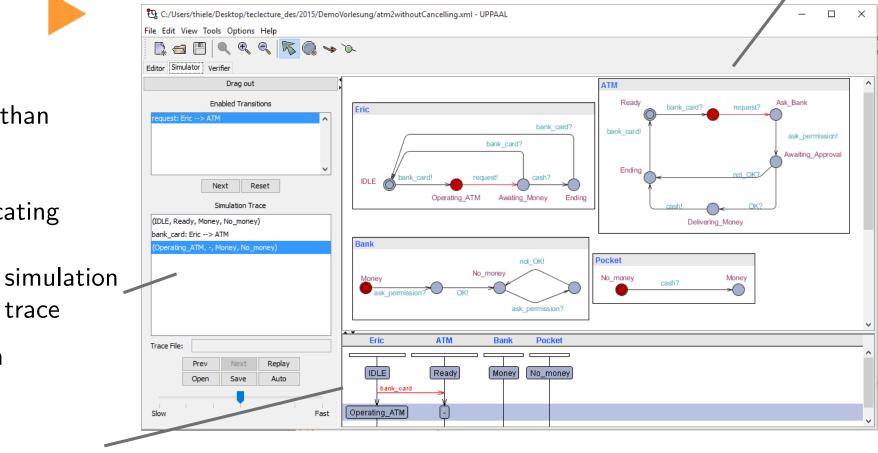
UPPAAL model-checker

trace

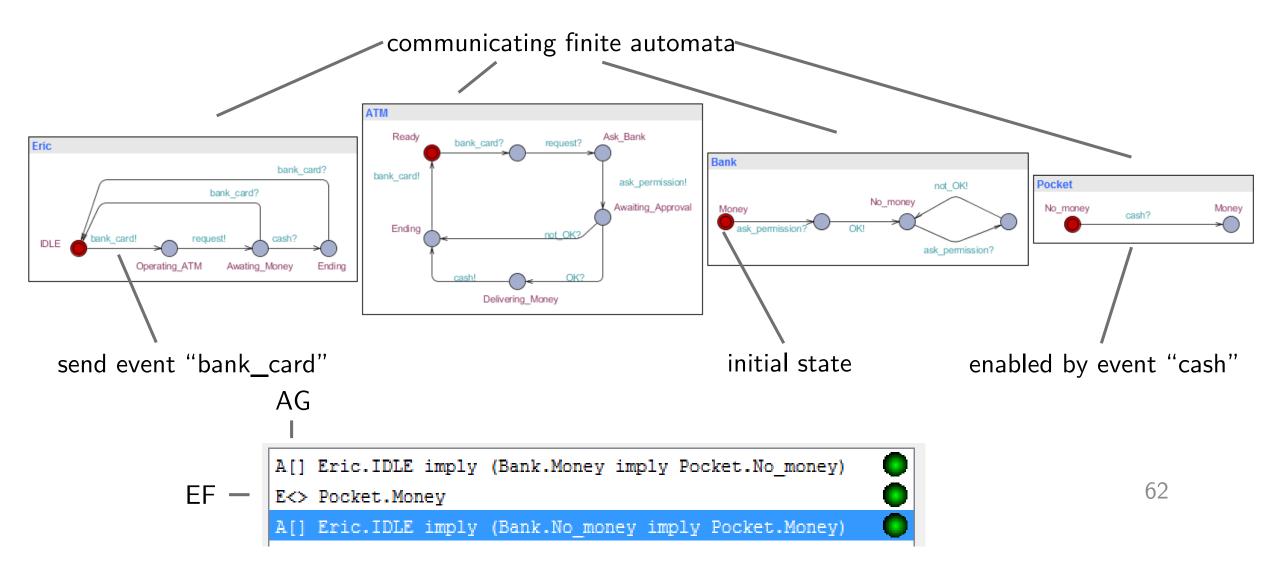
- free for academia
- (much) more general than what we show here
- can verify the timed behavior of communicating finite automata

Example

Modeling and verification of a simple protocol for ATM-Money-Withdrawal



Step 1. ATM without Cancel



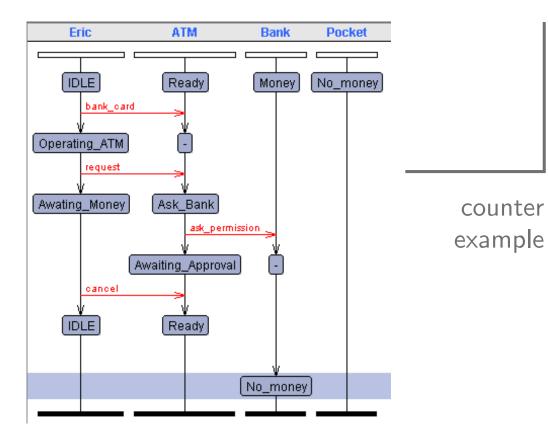
Step 2. ATM with Cancel

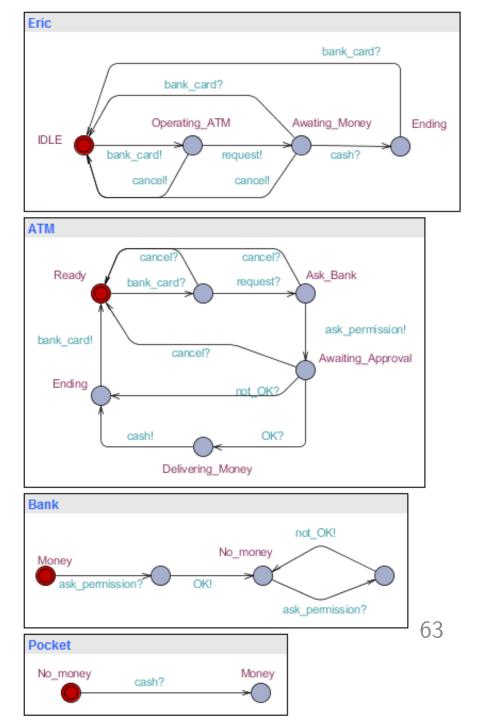
A[] Eric.IDLE imply (Bank.Money imply Pocket.No_money)

0

E<> Pocket.Money

A[] Eric.IDLE imply (Bank.No_money imply Pocket.Money)





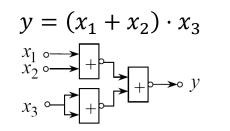
Your turn to practice! after the break

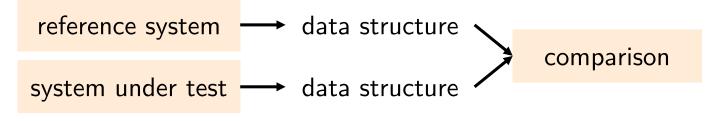
- Familiarise yourself with CTL logic and how to compute sets of states satisfying a given formula
- Convert a concrete problem into a state reachability question (adapted from state-of-the-art research!)

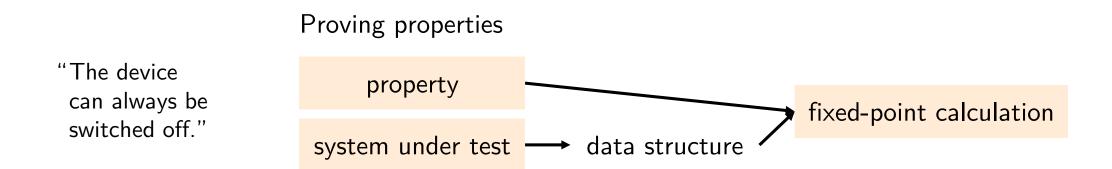
Conclusion and perspectives

Example

Comparison of specification and implementation







Conclusion and perspectives

Next week(s)

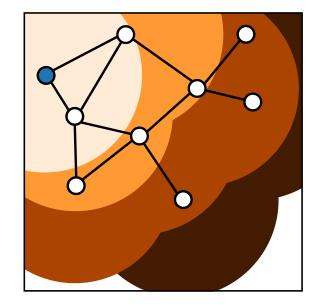
Petri Nets

- asynchronous DES model
- tailored model concurrent distributed systems
- capture an infinite state space with a finite model

a computer a network

How they work? How to use them for modeling systems? How to verify them?

See you next week! in Discrete Event Systems



Romain Jacob

www.romainjacob.net

ETH Zurich (D-ITET)

December 2, 2021

Most materials from Lothar Thiele