
Distributed
 Computing

Prof. T. Roscoe, Prof. R. Wattenhofer

Computer Systems
— Solution to Assignment 12 —

1 Game Theory

Quiz

1.1 Selling a Franc

We assume that there are two bidders, b1 and b2. If b1 bids 5 rappen, his gain is 95 rappen. Now
b2 is inclined to bid 10 rappen and gains 90 rappen. This can continue until b1 bids 95 rappen.
Bidder b2 now has the choice of losing 90 rappen (her last bid) or coming out even. Since she is
a rational player, she will bid 1 franc. Bidder b1 now faces a similar choice. Either he loses 95
rappen or he bids and has a chance of only losing 5 rappen. Since he is a rational player, he will
bid 1.05 franc. This bidding war will continue indefinitely (or until one bidder runs out of money).

There are a few ways the bidders could have avoided this situation. Apart from the obvious,
simply do not play, they could have also colluded. One bidder bids 5 rappen for the franc and
the bidders will simply split the money they made. This requires that the bidders can trust each
other. As you can guess, there are games that anticipate collaboration.
There exists however a strategy, which is profitable even for a non-colluding bidder. If the first
bidder bids 95 rappen, she will win 5 rappen, because nobody else will also bid. Why will nobody
else bid? If another bidder bids more, he will certainly not bid more than 1 franc, because this
will yield a negative payoff. Instead, he could bid 1 franc. But then, the first bidder will bid 1.05
francs to minimize her loss. And then the game continues as outlined at the beginning and both
bidders will incur a loss. Therefore, no rational player will bid 1 franc in this scenario.

Basic

1.2 Selfish Caching

To be sure that we find every Nash Equilibrium, we explicitly write down every best response.

i. The best response strategies are

u: cache only if nobody else does. (B1)

v: cache if neither u nor x cache. (B2)

w: cache unless u caches. (B3)

x: cache if neither u nor v cache. (B4)

Nash equilibrium. If we assume that u plays Yu = 1 (u caches) the system can only be in
a NE if Yv = Yw = Yx = 0 due to (B1). Since for all v, w, and x it is the best response not
to cache if u does, x = (1000) is an Nash equilibrium. If Yu = 0 then (B3) implies Yw = 1.
If furthermore, Yv = 1 it must hold that Yx = 0 due to (B2). This does not conflict with
(B4), and (0110) constitutes another NE. Last, if Yv = 0 then (B2) implies Yx = 1, which is
also okay with (B4). Hence (0011) is also a NE.

NE = {(1000), (0110), (0011)}

Price of anarchy. The social optimum is achieved in strategy profile (1000), namely
OPT = cost(1000) = 1 + 1

2 + 3
8 + 3

4 = 21
8 . Since (1000) is also a Nash equilibrium we

immediately get that OPoA = 1. The worst-case price of anarchy is

PoA =
cost(0110)

OPT
=

1
2 + 1 + 1 + 7

8
21
8

=
9

7
≈ 1.286.

ii. The best response strategies are

u: cache only if nobody else does. (B1)

v: cache unless u caches. (B2)

w: cache unless x caches. (B3)

x: cache if neither u nor w cache. (B4)

Nash equilibrium. If we assume that u plays Yu = 1 (u caches) the system can only be
in a NE if Yv = Yw = Yx = 0 due to (B1). However, Yx = 0 implies that Yw = 1 due to
(B3), and hence there can be no NE with Yu = 1. In any NE it must hold that Yu = 0.
Consequently, it must hold that Yv = 1 from (B2). Now if Yw = 1 (B3) implies that x does
not cache. This does not infringe rule (B4), and thus x = (0110) is a Nash equilibrium. If
Yw = 0 then (B4) implies that x caches. As thus, rule (B3) is not violated x = (0101) is also
a Nash equilibrium.

Price of anarchy. The social optimum is achieved in strategy profile (0110), namely
OPT = cost(0110) = 1

3 · 0.2 + 1 + 1 + 1
2 · 0.2 = 2.16. Since (0110) is also a Nash equilibrium

we get that the optimistic price of anarchy is 1. The worst-case price of anarchy is

PoA =
cost(0101)

OPT
=

1/3 · 0.2 + 1 + 0.2 + 1

2.16
=

68

65
≈ 1.046

1.3 Selfish Caching with variable caching cost

We define Di to be the set of nodes that cover node i. A node j covers node i if and only if
ci←j < αi, i.e., node i prefers accessing the object at node j than caching it. Convince yourself
that a strategy profile is a Nash Equilibrium if and only if for each node i it holds that

• if Yi = 1 then Yj = 0 for all j ∈ Di, and

• if Yi = 0 then ∃j ∈ Di with Yj = 1.

i. Du = ∅, Dv = {u,w}, Dw = {u}. Du being empty implies Yu = 1 (i.e. caches the file).
Hence Yv = 0, and Yw = 1. NE = {(101)}. PoA = 1 since (101) is also the social optimum
strategy.

ii. Du = {v}, Dv = {u}, Dw = {u, v}. If Yu = 1, then Yv = 0 and Yw = 0. If Yu = 0, then
Yv = 1. Hence Yw = 0. The equilibria are NE = {(100), (010)}.

PoA =
cost(100)

cost(010)
=

3 + 1 + 8/3

3/2 + 3/2 + 5/3
=

40

28
≈ 1.43

2

Dominant strategies. Every dominant strategy profile is also a Nash equilibrium. Hence we
only have to check the computed NEs whether they consist of dominant strategies only.

Let us consider game i. Since every dominant strategy profile is also a Nash Equilibrium,
it suffices to consider the NE. The game has no dominant strategy profile. Profile (101) is no
dominant strategy profile in game i. since, although Yu = 1 is the dominant strategy for u,
Yv = 0, and Yw = 1 are not dominant strategies for v and w. If Yv = 1, then it would be the best
response of w to set Yw = 0. Game ii: Since the decision of node u whether to cache depends
on the decision of node v, this is not a dominant strategy. Therefore, this game has no dominant
strategy profile.

Advanced

1.4 Matching Pennies

The bi-matrix of the game with Tobias as row player, and Stephan as column player looks as
follows:

H T

H 1 , -1 -1 , 1

T -1 , 1 1 , -1

This zero-sum game has no pure Nash equilibrium. For the mixed NEs, Tobias plays heads
(H) with probability p, tails (T) with probability 1− p. Stephan plays H with probability q, and
T with probability 1− q. We get the expected utility functions Γ:

ΓT (p, q) = p(q − (1− q)) + (1− p)(−q + (1− q)) = (4q − 2) · p+ 1− 2q

ΓS(p, q) = q(−p+ (1− p)) + (1− q)(p− (1− p)) = (2− 4p) · q + 2p− 1

If Stephan plays q = 1/2 the term 4q − 2 equals 0, and any choice of p will yield the same payoff
for Tobias. If Tobias plays p = 1/2 then any choice of q is a best response for Stephan. Thus
(p, q) = (1/2, 1/2) is a mixed NE. Note that for any choice of p > 1/2, Stephan’s best response is
to choose q = 0. For a p < 1/2 Stephan would choose q = 1. However, Tobias’ best response to
q > 1/2 is p = 1, and p = 0 if q < 1/2. Hence (p, q) = (1/2, 1/2) is the only pair of mutual best
responses.

1.5 PoA Classes

Let In be an instance of An[a,b] that maximizes the price of anarchy, i.e. PoA(An[a,b]) = PoA(In).

Let x, y ∈ X be two strategy profiles in In such that PoA(In) = cost(y)/cost(x). We show the
claim by constructing an instance În ∈ Wn

[1
b ,

1
a]

out of In for which it holds that PoA(În) ≥
a
bPoA(In) = a

bPoA(An[a,b]). We construct În by setting di = 1/αi, α̂i = 1 where αi are the

placement costs (for local caching) of player i in In. All edges remain as in In. This game has the
same Nash equilibria as In since the cover sets Di (nodes for which we do not cache if these cache
already) for each peer stay the same. A peer j is in Di iff ci←j < αi, or ci←j/αi < 1 respectively.
We get the bound by comparing the performance of the two strategies x, y that produce the PoA
in In in În. Note that x is not necessarily a social optimum in În, but y is a Nash equilibrium

3

also in În, because the cover sets are the same.

PoA(În) ≥
ˆcost(y)

ˆcost(x)
=

∑n
i=1

(
yi + (1− yi) ci(y)αi

)
∑n
i=1

(
xi + (1− xi) ci(x)αi

) (1)

=
b · a

∑n
i=1

(
yi + (1− yi) ci(y)αi

)
b · a

∑n
i=1

(
xi + (1− xi) ci(x)αi

) (2)

≥
a
∑n
i=1 (yiαi + (1− yi)ci(y))

b
∑n
i=1 (xiαi + (1− xi)ci(x))

(3)

=
a · cost(y)

b · cost(x)
=
a

b
PoA(In) (4)

ˆcost(x) denotes the cost function in În. xi, and yi are either 1 or 0. xi equals 1 if player i caches
in strategy profile x, and 0 if she does not. With ci(y) we denote the cost of node i if it access the
file remotely in strategy y. For step (3) we exploit the fact that b ≥ αi and a ≤ αi for all i.

2 Authenticated Agreement

Quiz

2.1 PBFT: Basics

a) According to Lemma 25.18, it is impossible that two prepared-certificates for the same
sequence number are gathered within the same view (not even at different nodes). Therefore,
once a node has obtained a prepared-certificate for a request r in view v, it can be sure that
no correct node will execute a different request r′ 6= r with the same sequence number in
view v, as this would also require a prepared-certificate for the other request within the same
view.

b) The new primary has to send around the new-view-certificate V; that certificate has to
be valid and the set of pre-prepared-messages O has to be constructed validly from V
in the way specified by the protocol. Since V already determines the content of O and the
view-change-messages in V are signed, correct replicas can rely on O if the above conditions
hold.

c) Not necessarily. It is possible that some node u collected a prepared-certificate for a triple
(v, s, r), but as soon as u collected the prepared-certificate, a view change happened. In
that case, no correct node can have executed that request yet, but u’s view-change-message
could still end up in the set V of the new-view-message for the next view.

d) The proof of Theorem 25.26 shows that if a request was executed by a correct node, then a
prepared-certificate will end up in V. If we take the contrapositive of that statement, we find
that if there is no prepared-certificate for a request in V, then no correct node has executed
that request yet. Omitting prepared-certificates for requests that no correct node executed
cannot harm correctness of the system.

Basic

4

2.2 PBFT: Utility of the Phases of the Agreement Protocol

a) Backups start their faulty-timer after they receive a request. If backups do not forward
requests to the primary, then a faulty client could just send requests to the backups, and the
backups’ faulty timers would permanently keep expiring, inducing view change after view
change.

A byzantine client could make sure to send a request to a backup even without knowing
which node is the primary by simply sending distinct requests to all nodes; all but one node
will be backups, and all of their faulty-timers would start running for requests that the
primary has never seen and for which the primary can therefore not start the agreement
protocol.

b) Lemma 25.18 implies that two correct nodes cannot agree to execute different requests
within a single view, and the proof does not rely on nodes waiting for commit-messages, so
this Lemma remains intact even with the alteration made in this exercise.

However, the commit-messages are important for the view change protocol to maintain safety
across views, which we can see in the proof of Theorem 25.26. Consider the following sequence
of events:

1. Node u collects a prepared-certificate matching (v, s, r), and directly executes r. No
other node has seen a prepared-certificate yet, and a view change occurs at this moment.

2. The new primary p′ of view v′ > v collects 2f + 1 view-change-messages, and u’s
message is too slow to be included. p′ thus does not add a pre-prepared(v′, s, r, p′)p′ -
message to O.

3. In the new view v′, correct nodes (with the “help” of byzantine nodes) run the agreement
protocol for (v′, s, r′) for some r′ 6= r. As soon as correct node w 6= u collects a prepared-
certificate matching (v′, s, r′), node w will execute r′ with sequence number s.

With this, u will execute r with sequence number s, and w will execute r′ 6= r with sequence
number s.

If s < sVmax (cf. Algorithm 25.24), then r′ will be null. However, if s > sVmax, then r′ can
be a distinct non-null request.

Advanced

2.3 Authenticated Agreement

a) We can do roughly the same as we did in Algorithm 25.2, but for multiple values in parallel.
Every backup will be collecting messages for every value they hear about. If a correct node
gathered agreement for multiple values (or for no values) after f + 1 rounds, then it knows
that the primary must be faulty. The new algorithm can be seen in Algorithm ??.

b) The proof is very similar to the one in the script, so we will only give a rough sketch of how
to adapt it here:

• If the primary is correct, then he only sends one message value(x)p in the first round,
and all correct backups decide on x after round f + 1.

• If the primary is byzantine, then there are these cases:

1. No correct node ever adds a value to A, then all correct nodes output “sender
faulty”.

5

Algorithm 1 Byzantine Agreement with Authentication

Code for primary p:

1: x← input value of p
2: broadcast value(x)p
3: decide x and terminate

Code for backup b:

4: A← ∅
5: for all rounds i ∈ {1, . . . , f + 1} do
6: for all messages value(x)u that b received this round do
7: Vx ← {all messages value(x)v that b received since round 1}
8: if |Vx| ≥ i and value(x)p ∈ Vx then
9: A← A ∪ {x}

10: broadcast Vx ∪ value(x)b
11: end if
12: end for
13: end for
14: if |A| = 1 then
15: decide on the single element in A and terminate
16: else
17: decide “sender faulty” and terminate
18: end if

2. (The proof of this case is analogous to correct nodes deciding on 1 in the proof in
the script. Check the proof in the script if some detail here is unclear.)
At least one correct node adds at least one value x to A. For any value x that
gets added to A by some correct node, the first time a correct node adds x to A
necessarily happens in a round i < f + 1, and all correct nodes will have x ∈ A in
round i + 1 ≤ f + 1. Since this holds for all x, all correct nodes have the same A
after round f + 1.
If A contains exactly one value after round f + 1, then all correct nodes decide on
that value, otherwise all of them decide on “sender faulty”.

2.4 Multiple Prepared-Certificates for the Same Sequence Number!?
— How can this happen?

In Quiz question c), we saw that a correct node can collect a prepared-certificate that will not be
included in a new-view-message. Working from this insight, we can imagine the following sequence
of events:

1. Only correct node u collects a prepared-certificate for (v, s, r).

2. A view change to view v+1 happens, and the prepared-certificate that u collected for (v, s, r)
is not included in the view change.

3. Correct node w collects a prepared-certificate for (v + 1, s, r′) for some r′ 6= r.

4. A view change to view v + 2 happens. Both prepared-certificates are included in the
new-view-message.

6

2.5 Multiple Prepared-Certificates for the Same Sequence Number!?
— How can we fix it?

Notice that step 2. of the solution to Exercise ?? can only occur if the prepared-certificate that
u collected was for a request that no correct node executed, see the solution to Quiz question d).
This means that we can ignore that prepared-certificate without worrying about it.

On the other hand, for every request that was executed by some correct node, a prepared-
certificate for it will end up in every subsequent new-view-message, see the proof of Theorem 25.26.

From these considerations, we define the protocol to do the following in Algorithm 25.24: if
multiple prepared-certificates for sequence number s end up in V, then let v∗ be the highest view
number for which a prepared-certificate (v∗, s, r) exists in V. The primary p of new view v will
include a pre-prepare(v, s, r, p)p-message in O and ignore all other prepared-certificates for s.
The claim we now make is this:

Theorem 1. Let v∗ be the maximum view number of any prepared-certificate for s in V. If the
V-component of a new-view-message contains multiple prepared-certificates for the same sequence
number s, then due to Lemma 25.18, there is at most one such prepared-certificate per view v∗.
While constructing O in Algorithm 25.24 during a view change, let the primary of the new view
only include a pre-prepare-message for the prepared-certificate matching s with the highest view
number among the prepared-certificates for s in V (this is the latest prepared-certificate for s).
Then, if some correct node executes a request r with sequence number s in view v, then the latest
prepared-certificate for s in V during every view change after v will match (s, r).

Proof. If no new-view-message ever contains two prepared-certificates for the same sequence num-
ber s but different requests r′ 6= r, then the Theorem is already proved in the proof of Theo-
rem 25.26 in the script. If no correct node ever executed a request at some sequence number s,
then there cannot be a problem with correctness at s either. Thus, assume that a correct node
executed request r with sequence number s in view v, and some subsequent new-view-message
contains multiple prepared-certificates for s. We prove the theorem by induction, showing that
once a correct node executed r with sequence number s in view v, then all prepared-certificates
for sequence number s that nodes collect in later views will match (s, r).

Base case: Consider the first view v′ > v in which the new primary p′ sends a valid new-view-
message. Since correct backups reject invalid messages, no correct node entered any view v† with
v < v† < v′, so no prepared-certificates were collected in any such view v†. Thus, v is the highest
view number for which any node collected a prepared-certificate for s. As shown in the proof of
Theorem 25.26, a prepared-certificate matching (v, s, r) will be in V in the new-view-message for v′.

Induction step: Consider a view change from v′ to v′′ with v < v′ < v′′ and assume that up to v′,
the latest prepared-certificate in the V-component of new-view-messages for s has matched (s, r).
Because backups respond to O in Algorithm 25.25 before responding to any other pre-prepare-
messages, nodes can only have collected a prepared-certificate for s with the same r during view
v′. Thus, during the view change from v′ to v′′, the latest prepared-certificate for s that is in V
will match (s, r) as well.

Notice how this clarifies the answer to Exercise ??: it can happen that multiple prepared-
certificates for the same sequence number s exist in a new-view-message. However, if the new
primary always picks the latest such prepared-certificate to react to when constructing O, then
that guarantees that once a request r was executed at s by any correct node, then no node will
ever be able to gather a prepared-certificate for (s, r′) with r′ 6= r. Thus no correct node will ever
execute anything but r at sequence number s.

7

