
Asynchronous Proof-of-Stake

Jakub Sliwinski, Roger Wattenhofer

ETH Zurich
jsliwinski,wattenhofer@ethz.ch

Abstract. We introduce a new permissionless blockchain architecture
called Cascade (Consensusless, Asynchronous, Scalable, Deterministic
and Efficient). The protocol is completely asynchronous, and does rely
on neither randomness nor proof-of-work. Transactions exhibit finality
within one round trip of communication.
Cascade is consensusless and only satisfies a relaxed form of consensus
by introducing a weaker termination property. Without full consensus,
the protocol does not support certain applications, such as general smart
contracts. However, many important applications do not require general
smart contracts, and Cascade is an advantageous solution for these appli-
cations. In particular, the architecture can implement the functionality
of a cryptocurrency such as Bitcoin, replacing Bitcoin’s energy-hungry
proof-of-work with a proof-of-stake validation.

1 Introduction

Nakamoto’s Bitcoin protocol [12] has taught the world how to achieve trust
without a designated trusted party. The Bitcoin architecture provides an in-
teresting deviation from classic distributed systems approaches, for instance by
using proof-of-work to allow anonymous participants to join and leave the system
at any point, without permission.

However, Bitcoin’s proof-of-work solution comes at serious costs and compro-
mises. The security of the system is directly related to the amount of investments
in designated proof-of-work hardware, and to spending energy to run that hard-
ware. Since the system’s participants that provide the distributed infrastructure
(often called miners) bear significant costs (hardware, energy), the protocol com-
pensates them with Bitcoins. However, adversaries might disrupt this scheme by
bribing the miners to behave untruthfully or disrupt the reward payments.

Irrespectively of how costly Bitcoin’s proof-of-work gets, this solution can
only process a fixed amount of transactions in a given time period, hampering
adoption and often making it infeasible to use Bitcoin at all.

To make matters worse, proof-of-work protocols assume critical requirements
related to the communication between the participants regarding message loss
and timing guarantees. In other words, such protocols are vulnerable to attacks
on the underlying network.

In the decade since the original Bitcoin publication, researchers have tried to
address the wastefulness and ineffectiveness of proof-of-work. One of the most

2 Jakub Sliwinski, Roger Wattenhofer

prominent research directions is replacing Bitcoin’s proof-of-work with a proof-
of-stake approach. In proof-of-stake designs, miners are replaced with partici-
pants who contribute to running the system according to the amounts of cryp-
tocurrency they hold. Alas, proof-of-stake protocols require similar communica-
tion guarantees as proof-of-work, and thus can also be attacked by disrupting the
network. Moreover, proof-of-stake introduces some of its own problems. Promi-
nently, existing proof-of-stake designs critically rely on randomness. To achieve
consensus, the participants of such systems repeatedly choose a leader among
themselves. Despite being random, this choice needs to be taken collectively and
in a verifiable way, which complicates the problem.

Due to the way blockchains typically process transactions, participants have
to wait a significant amount of time before they can be confident that their
transactions are accepted by the system. For example, it usually takes around
an hour for merchants to accept Bitcoin transactions as confirmed, which is
unacceptable for time-sensitive applications.

In his seminal paper, Nakamoto made the crucial assumption that his system
has to be able to totally order the transactions submitted to the system in order
to reject the fraudulent ones. However, meeting this requirement is equivalent to
solving the problem known as consensus. Nakamoto’s assumption has shaped the
design of blockchain systems to this day. Thus, many blockchain systems achieve
consensus while not taking advantage of this powerful property, but suffering the
associated costs.

Our Contribution We relax the usual notion of consensus to extract the
requirements necessary for an efficient cryptocurrency. Thus we introduce a
blockchain design that is Consensusless, Asynchronous, Scalable, Determinis-
tic, and Efficient (Cascade). We claim the protocol to offer a host of exciting
properties:

Permissionless: Most importantly, Cascade offers its advantages without rely-
ing on permissioned participation. The protocol is permissionless in the same
way as other proof-of-stake systems, where participants of the system freely
exchange cryptocurrency tokens. Token holders run the system by validating
new transactions. Additionally, any token holder can delegate the validation
role to other participants, but preserving his ownership of the associated
tokens.

Parallelizable: In Cascade, validators running the system can parallelize the
processing of transactions. There is no limit to the number of transactions a
validator can process by parallelization.

Asynchronous: Cascade does not require the messages to be delivered within
any known period of time. Thus the protocol is fully resilient to all network-
related threats, such as delaying messages, denial-of-service, or network eclipse
attacks. An adversary having complete control of the network always can
delay the progress of the system (by simply disabling communication), but
otherwise cannot interfere with the protocol or trick the participants in any
way. Previously approved transactions cannot be invalidated and impermis-
sible transactions cannot be approved.

Asynchronous Proof-of-Stake 3

Table 1. Comparison of Cascade to selected BFT/blockchain protocols. Permissioned
protocols are on the left, permissionless protocols on the right. We mark all protocols
providing full consensus as supporting general smart contracts, even though particular
implementations might not feature smart contracts.

P
B

F
T

[3
]

H
on

ey
B

ad
ge

r
B

F
T

[1
1]

B
ro

ad
ca

st
-

b
as

ed
[7

]

B
it

co
in

an
d

E
th

er
eu

m
[1

6]

O
u
ro

b
or

os
[8

]

A
lg

or
an

d
[4

]

C
as

ca
d
e

Permissionless X X X X

Proof-of-work
free

X X X X X X

Finality X X X X X

Asynchronous X X X

Deterministic X X X

Parallelizable X X

General smart
contracts

X X X X X

Final: Under normally functioning network communication, transactions in Cas-
cade are instantly confirmed. Confirmation is final and impossible to revert.
This is in stark contrast to systems such as Bitcoin, where the confidence in
a transaction being confirmed only probabilistically increases over time.

Deterministic: We assume the functionality provided by asymmetric encryp-
tion and hashing. Apart from these cryptographic necessities, Cascade is
completely deterministic and surprisingly simple.

Efficient: Unlike proof-of-work, the security of the system does not depend
on the amount of devoted resources such as energy, computational power,
memory, etc. Instead, similarly to proof-of-stake protocols, Cascade requires
that more than two-thirds of the system’s cryptocurrency is held by honest
participants.

Cascade does not support consensus. This prevents the protocol from sup-
porting applications that involve smart contracts open for interaction with any-
body. For example, the smart contract functionality of Ethereum cannot be
directly implemented with Cascade. Many important applications (e.g., cryp-
tocurrencies or IoT systems), do not require consensus, and Cascade offers an
advantageous solution for these applications.

Table 1 compares the properties of Cascade with some of the most relevant
existing BFT/blockchain paradigms. Many more protocols exist that improve
some aspects, for example, many protocols improve upon PBFT. While many of
these protocols are more performant and efficient than the original PBFT, they

4 Jakub Sliwinski, Roger Wattenhofer

share the fundamental disadvantages of PBFT: They are not permissionless,
they are not parallelizable, and in order to make progress (“liveness”), they
need synchronous communication.

Table 1 shows the close relation of Cascade with broadcast-based protocols.
One may argue that Cascade brings the simplicity, robustness, and efficiency of
broadcast-based protocols to the permissionless domain.

In this paper we focus on the basic correctness properties of the protocol and
leave in depth discussion of the scalability aspect to future work.

1.1 Relaxing Consensus

In the context of a cryptocurrency, consensus is used to solve the problem of
double-spending. Suppose Alice holds one cryptocurrency coin. Now Alice sets
up a transaction that transfers her coin to Bob (in exchange for a good or ser-
vice). However, Alice wants to cheat, trying to simultaneously spend the same
coin in another transaction to Carol. Upon receiving one (or both) of Alice’s
transactions, honest agents need to agree on what happens to Alice’s coin, pre-
venting Alice from doubling her money. In this context, achieving consensus
consists of the following requirements:

Definition (Consensus).
Each honest agent observes some transaction from a pairwise conflicting set

of transactions {t0, t1, . . . }.

Agreement: If some honest agent accepts a transaction ti, every honest agent
will accept ti. No conflicting transaction can be accepted.

Validity: If all honest agents observe only one transaction ti, only ti can be
accepted by honest agents.

Termination: One of the transactions ti will be accepted by honest agents.

The insight leading to the relaxation, is that malicious agents do not need to
enjoy any guarantees. Alice tried to cheat by issuing two conflicting transactions.
Cascade does not guarantee that any of Alice’s conflicting transactions will be
accepted.

On the other hand, an honest agent will only create one transaction spending
her coin. Thus, every honest agent will see the same candidate transaction. Hence
we relax consensus to guarantee termination only for honest agents:

Definition (Cascade Consensus).

Agreement: As above.
Validity: As above.
Honest-Termination If all honest agents observe only one transaction ti, ti

will be accepted by honest agents.

Under this relaxed notion of consensus, if Alice tries to cheat, it is possible
that neither Bob nor Carol will accept Alice’s transaction. Some honest agents

Asynchronous Proof-of-Stake 5

might see one of the transactions first, while others might see the other first. Then
the requirement of Honest-Termination does not apply, and the transactions
might stay without a resolution forever. This turn of events can be seen as Alice
losing her coin due to misbehaviour.

Otherwise, Consensus and Cascade Consensus do not differ. Agreed upon
results are final, conflicting results are precluded and honest transactions are
accepted. Despite the difference being insignificant with respect to the function-
ing of a cryptocurrency, this relaxation allows Cascade to combine a large set of
advantages.

1.2 Intuition

For simplicity of presentation, we describe Cascade in the terminology of a cryp-
tocurrency and refer to the cryptocurrency managed by the protocol as the
money. A more formal description follows in Section 3.

Transactions. A transaction transfers money from one or more inputs to one or
more outputs. Inputs and outputs are money amounts paired with keys required
to spend them.

Validators. In proof-of-stake systems, the agents that own some of the money
in the system also run the system. These agents (validators) stay online and
participate in validating transactions. In Cascade, we do not require agents to
stay online and participate, but allow agents to delegate this responsibility to
other agents. Every agent can be a validator. Validators sign correct transactions.
The system works correctly as long as agents holding more than two-thirds of
the system’s money delegate to honest validators.

Confirmations. A transaction t is confirmed by the system if enough validators
ack (acknowledge by signing) t. If a transaction receives enough acks, no other
transaction conflicting with t can become confirmed. If a cheating Alice attempts
to issue two conflicting transactions t and t′ at roughly the same time, it is
possible that (a) either t or t′ gets confirmed (but not both), or (b) neither t
nor t′ are ever confirmed. Case (b) happens if some validators see and sign t,
while others see and sign t′. The system might stay in this state forever with
the validators’ approval split between t and t′. The result is equivalent to Alice
losing the money she attempted to double-spend, and does not constitute any
threat to the system.

It is intuitive to verify that such a system does work correctly, if the validating
power amounts are statically assigned to the validators, and a set of validators
controlling more than two-thirds of the cryptocurrency obeys the protocol. Our
system still works correctly when the agents can freely exchange the cryptocur-
rency and change the appointed validators, even in the harsh conditions of an
asynchronous network. Thus, we establish a system with the participation model
similar to proof-of-stake protocols, but much simpler than known proof-of-stake
protocols.

6 Jakub Sliwinski, Roger Wattenhofer

2 Model

Agents and Adversary. Our blockchain is used and maintained by its par-
ticipants called agents. Agents who follow the protocol are called honest. The
set of agents who do not follow the protocol is controlled by the adversary. The
adversary behaves in an arbitrary (adversarial) way.

We make a standard assumption pertaining to proof-of-stake systems that
the adversary always controls less than one-third of the cryptocurrency in the
system. The assumption is the equivalent of assuming that the adversary controls
less than one-third of the permissions in a BFT protocol, or half of the hashing
power in a proof-of-work system such as Bitcoin. The idea behind the assumption
is that an agent owning a large stake in a system is heavily invested in the system.
While sufficiently deep pockets make it possible to disrupt any system, the proof-
of-stake assumption ensures that an attack is costly and self-destructive. We
introduce more concepts to state this requirement precisely in Section 3.4.

Asynchronous Communication. All agents are connected by a virtual net-
work supporting a message diffusion mechanism (such as Bitcoin’s network),
where agents can broadcast their messages to all other agents. Like in Bitcoin,
new agents can join this network to receive new and prior messages.

The network is asynchronous: The adversary controls the network, dictat-
ing when messages are delivered and in what order. Messages are required to
arrive eventually, without any bound on the time it might take. Under such
weak requirements, an adversary delaying the delivery of messages can delay
the progress of an agent, but otherwise will not be able to interfere with the
protocol.

Cryptographic Primitives. We assume the functionality of asymmetric en-
cryption where a public key allows every agent to verify a signature of the asso-
ciated secret key. Agents can freely generate public/secret key pairs.

We also assume cryptographic hashing, where for every message a succinct,
unique hash can be computed. Whenever we say that a transaction t2 refers to
a transaction t1, we mean that t2 includes a hash of t1, and as such uniquely
identifies t1.

Apart from these two cryptographic primitives, the Cascade protocol is com-
pletely deterministic.

3 Protocol

3.1 Transactions

Outputs. Outputs are the basic unit of information. Outputs are included in
transactions and identify who owns how much money after the transaction was
confirmed by the system.

Definition 1 (Output). An output contains:

Asynchronous Proof-of-Stake 7

– Value: A number representing the amount of money.
– Owner key: A public key. The agent holding the associated secret key is the

owner of the money.

Agents can reuse their keys for multiple outputs, but for simplicity of pre-
sentation we assume that the owner key uniquely identifies a single output.

Transactions. A transaction is a request issued by an agent (or a set of agents)
to transfer money to other agent(s). Outputs of a transaction identify recipients
of the transaction. The transaction also indicates a validator – some agent de-
voted to maintaining the system.

Outputs can be associated with some identifying number, but for simplicity
of presentation we assume that outputs uniquely identify the originating trans-
action.

Definition 2 (Transaction). A transaction t contains:

– A set of inputs, where each input is an output of some previous transaction.
Transaction t is said to spend these inputs.

– A set of outputs. The sum of values of the outputs equals the sum of values
of the inputs. This sum is called the value of the transaction.

– Validator key: A public key. The value of the transaction is delegated to the
agent holding the associated secret key (validator).

The transaction is signed by all secret keys associated with the inputs.

The validator cannot spend the transaction outputs. After t is confirmed, the
validator’s signing stake increases until t’s outputs are spent.

Genesis. The genesis is a special transaction without inputs. The genesis is
hard-coded in the protocol and known upfront to every agent. The genesis de-
scribes the initial distribution of money among the original agents and the initial
validators (which could or could not be the same as the original agents).

The values of all genesis outputs sum up to M , so M is the total money in
the system. In this paper, we assume that M never changes.

→ (p1, 4)

→ (p2, 5)

→ (p3, 3)

Genesis

(p1, 4) → (p4, 2)

→ (p5, 2)

sign(s1)

(p2, 5) → (p6, 5)

sign(s2)

(p4, 2) → (p7, 1)

(p6, 5) → (p8, 2)

→ (p9, 4)

sign(s4, s6)

Fig. 1. Example DAG of transactions, validator keys are omitted. The pi’s are owner
keys, and si’s are the corresponding secret keys.

8 Jakub Sliwinski, Roger Wattenhofer

3.2 Validators

Validators are agents processing transactions in the system. Validators listen for
transactions being broadcast, and sign them if they have not observed a conflict.
An honest validator signs all non-conflicting transactions.

After a transaction t with a value of m is confirmed by the system (explained
below), the “signing power” of the validator v indicated in transaction t increases
by m (at the cost of the validators indicated in transactions that have output
the inputs of t). To spend an output of t, the owner of an output must later
broadcast a new transaction, as v cannot spend the outputs of t. An owner of
an output of t can change the appointed validator v to any other validator by
spending t’s output (for instance by self-sending the money), when including a
different validator key. Any agent can also indicate themselves as the validator.

The validator v signs transactions in the system to contribute to their con-
firmation, and the contribution is proportional to the amount delegated to v.

Number of Validators. Similarly to Bitcoin mining pools, the number of val-
idators in Cascade might naturally be relatively small, such that a small number
of validator’s signatures is needed to confirm a transaction. The protocol can also
enforce or encourage the number of validators to form groups, for example by
an appropriate fee structure. In contrast to Bitcoin mining pools, the validators
forming a group can maintain trustlessness with respect to each other by using
an aggregatable signature scheme such as BLS [1]. In this way, a few validator
pools would preserve the agency of individual validators. We believe that this
is more decentralized than for example Bitcoin. Due to the page limit, we leave
these aspects of the protocol to future work.

3.3 Confirmations

A validator broadcasts an ack message to communicate a new set of transactions
the validator signed.

Definition 3 (ack). An ack contains:

– A reference to the previous ack issued by the same validator.
– A set of references to transactions the validator signs.

The ack is signed by the validator’s secret key.

All messages can only reference previously created messages with hashes.
Cyclic hash references are impossible and hence all messages form a directed
acyclic graph (DAG), with the genesis being the only root. Messages are pro-
cessed in any order respecting references. Agents do not process a transaction t
until they have fully received past(t).

Definition 4 (past). The set of messages reachable by following references
from t is called past(t). For a set of messages T , past(T) =

⋃
t∈T past(t).

Asynchronous Proof-of-Stake 9

→ (p1, 4), v1

→ (p2, 4), v2

→ (p3, 2), v3

Genesis

(p1, 4) → (p4, 3)

→ (p5, 1)

v4

(p4, 3) → (p7, 3)

v5

(p3, 2) → (p6, 2)

v2

(p1, 4) → (p9, 4)

v9

(p6, 2) → (p8, 5)

(p7, 3) →
v8

v1

v2 v4

v2

v3

(a) Example transaction DAG, pi’s represent the owners and vi’s the validators. Circle
nodes are acks labelled by the issuing validators. Acks point to the transactions being
signed and (if available) the previous acks of the same validator. Light blue transactions
are confirmed based on the acks. When issuing an ack, validators have to point to the
previously issued ack, as exhibited by v2. The dark grey transaction is an attempt at
double-spending; it conflicts with a confirmed transaction and will never be confirmed.
The white transaction is not yet confirmed.

→ (p1, 4), v1

→ (p2, 4), v2

→ (p3, 2), v3

Genesis

(p1, 4) → (p4, 3)

→ (p5, 1)

v4

(p4, 3) → (p7, 3)

v5

(p3, 2) → (p6, 2)

v2

v1

v2 v4

t1

t2

(b) A subview of the transaction DAG
from Figure 2a. The set At1 consisting of
the acks of validators v1 and v2 is proof
that t1 is confirmed. The set At2 consist-
ing of the acks of validators v1, v2 and v4
is proof that t2 is confirmed.

→ (p1, 3), v1

→ (p2, 2), v2

→ (p3, 2), v3

→ (p4, 2), v4

Genesis

(p2, 2) → (p5, 2)

v2

(p4, 2) → (p7, 2)

v5

(p4, 2) → (p6, 2)

v5

v1

v2 v3

v4

v4

(c) Example attempt at double-
spending. The validator v4 is adversarial,
does not reference previous acks in new
acks and attempts to confirm conflicting
transactions. Honest validators are split
between conflicting transactions such
that neither will ever be confirmed.

Fig. 2. Example DAGs.

10 Jakub Sliwinski, Roger Wattenhofer

Transactions can be confirmed by the system, and confirmation is perma-
nent. A transaction t becomes confirmed when enough validators broadcast an
ack signing it. After a transaction is confirmed, the stake delegated to the val-
idator indicated in t increases by the value of t (and appropriately decreases for
the validators to whom the inputs were delegated). Thus we define transaction
confirmation and the stake delegated to a validator inductively (from genesis)
with respect to each other. Genesis is confirmed from the start.

Definition 5 (delegated stake). Given a set of acks A, let TA be the set of
transactions confirmed in past(A) that indicate v as the validator. The stake
delegated to v in past(A) is equal to the sum of values of outputs of transactions
in TA that are delegated to v and that are unspent in past(A).

Definition 6 (confirmed). A transaction t is confirmed if the transactions
that output the inputs of t are confirmed, and there exists a set of acks At such
that:

– some validators v1, . . . , vk with respective delegated stake m1, . . . ,mk in past(At)

sign t, and
∑k

i=1 mi >
2
3M ;

– no transaction t′ ∈ past(At) shares any input with t.

Honest agents do not spend their outputs more than once, i.e. every output
becomes an input at most once. Assume that t is a transaction by an honest
agent. Then we will never see a transaction t′ which tries to spend the same
outputs as inputs of t. In this case, it is straightforward to collect validator acks
for t, and eventually t will have enough acks to be confirmed.

On the other hand, if some t′ is sharing inputs with t is also present in the
transaction DAG, it is unclear if there can be a set At such that t is confirmed.
It is only the misbehaving agent’s concern to find an appropriate At and prove
to the recipient of t that t is confirmed.

3.4 Adversary

The adversary behaves in an arbitrary way, and thus might create conflicting
transactions, transmit acks that do not reference previously issued acks, send
different messages to different recipients, etc.

Any message sent by an honest agent is immediately seen by the adversary.
The delivery of each message from an honest agent to an honest agent can be
delayed by the adversary for an arbitrary amount of time.

Stake. As explained in Section 2, we assume that the value of genesis outputs
delegated to the adversary sums up to less than M/3. In every transaction, a
new validator is indicated. Hence the stake delegated to the adversary shifts over
time.

Definition 7 (adversary stake). Let mh
t and ma

t be the sums of values of
inputs of t that are outputs of transactions delegated to honest agents and the
adversary respectively.

Asynchronous Proof-of-Stake 11

When transaction t delegated to an honest agent is confirmed (i.e. any
At exists), then we subtract ma

t from the amount we count as delegated to the
adversary. When transaction t delegated to the adversary is issued, then we add
mh

t to the amount we count as delegated to the adversary.

4 Correctness

In this section we outline the proof that the Cascade protocol upholds Cascade
Consensus as defined in Section 1.1. The proof is available in the online version
of the paper [14].

The difficulty lies in the complete asynchrony of the system. In an orthodox
blockchain, all confirmed transactions are totally ordered. Such a total order
does not exist in Cascade. Moreover, the stake distribution among validators is
constantly shifting. The protocol prevents problems by requiring honest valida-
tors to reference previous acks. Moreover, when some transaction t shifts the
stake from a validator v1 to a validator v2, the stake is retracted from v1 as soon
as t is observed, but only credited to v2 when t is referenced by many other
validators and confirmed.

Theorem 8 is the main result we want to prove.

Theorem 8. The Cascade protocol satisfies Cascade Consensus.

Under our assumption from Section 3.4, more than two-thirds of the money
is always delegated to honest validators. Hence, if there is no double-spend al-
ternative to a transaction t, honest validators will sign t and t will be confirmed
by the system. Thus Validity and Honest-Termination of Definition 1.1 hold.
Whenever any agent observes a transaction t as confirmed, the acks At serve
as the proof that t is confirmed to any other agent. Therefore, to show that
Agreement holds, it suffices to show that no pair of conflicting transactions is
ever confirmed. Then the Cascade protocol satisfies Cascade consensus.

For contradiction, assume that some transaction DAG can be produced by the
protocol where two conflicting transactions tx and ty are confirmed. Consider the
instance of such a DAG G that is minimal in terms of the number of transactions.

Consider some transaction t0 confirmed in G during the protocol’s execution
based solely on the stake distribution specified in genesis. We show that for any
other confirmed transaction t, either t0 ∈ past(At) or t ∈ past(At0) holds in DAG
G. We conclude that t0 cannot conflict with any transaction. Then t0 does not
serve a purpose for the construction of DAG G, as t0’s inputs could be replaced
in the genesis with t0’s outputs for a smaller DAG. This contradicts with the
choice of G, and Theorem 8 summarizes that under our assumptions, conflicting
transactions cannot be confirmed in a single DAG.

As we mention in Section 5, in practice agents running Cascade would not
need to precisely compute past(At) for normal workloads. Every agent would
confirm almost all transactions based on a lower-bound of the stake delegated
to other agents computed from the observed confirmed and yet-to-be-confirmed
transactions. Precise past(At) might need to be computed only for some con-
tentious transactions when there is a conflict.

12 Jakub Sliwinski, Roger Wattenhofer

5 Future Work

Due to space constraints we focussed on the basic properties of Cascade in this
paper. In this section we briefly outline the aspects of Cascade we plan to discuss
and expand on in the future to exhibit the advantages of the protocol.

Parallelization. Provided the topology of the workload is not inherently im-
possible to parallelize (such as all transactions passing the same token in a chain
of transactions), validators can parallelize the signing and processing of trans-
actions. Thus, if we increase the number of machines (with constant bandwidth
each) at the validator’s disposal, the throughput of Cascade increases without
limit. To exclude the corner cases inherently resistant to parallelization, we state
Assumption 1.

Assumption 1. If xM is the value of honest transactions not determined to
be confirmed by some honest validators yet, honest validators control more than
(2
3 + x)M of the stake.

For example, if some 5% of the system’s money is being moved and uncon-
firmed at some instant, about 71.7% of validators need to be active to process
transactions in parallel efficiently.

Signing in parallel. Each validator v can split the space of keys between
multiple servers, for example based on the first few characters of the key. The
servers can independently store the spent inputs corresponding to the assigned
key space.

To issue an ack signing a lot of transactions in parallel, the implementation
might support splitting an ack into multiple parallel messages marked with a
message count number and the same ack sequence number.

Determining confirmation in parallel. To determine transaction confir-
mation in parallel, the key space is similarly split between machines that listen
to messages being broadcast in the network.

Since bandwidth is limited for individual machines, the network might simply
be split into a number of subnetworks corresponding to the key space splitting.

The validators maintain the sets of confirmed and yet-to-be-confirmed trans-
actions in their view. The set of outputs of confirmed transactions that are un-
spent in the set of confirmed and unprocessed transactions gives a lower bound of
the stake delegated to each validator in the view. By Assumption 1, these lower
bounds are enough to determine transactions as confirmed without identifying
the exact sets of confirming acks At or the exact corresponding stake amounts.

Smart Contracts. To support smart contracts callable by arbitrary parties
Cascade needs to be augmented with a consensus mechanism ordering inputs.
However, such consensus mechanism would be invoked only for the inputs requir-
ing it, where traditional BFT/blockchain protocols totally order all transactions,
and hence introduce an inherent bottleneck in the design of a system.

The consensus overhead is only necessary for some smart contracts, only when
conflicting inputs are issued at the same time, and only with respect to such

Asynchronous Proof-of-Stake 13

relevant inputs. Thus, a system processing mostly parallelizable content could
enjoy the properties of Cascade for the most part, while resorting to consensus
for the contents that require it.

Pruning the DAG. In contrast to standard blockchain systems, Cascade natu-
rally supports checkpoints and pruning old, redundant data from the blockchain,
which we discuss in the full version of the paper [14].

6 Related Work

Permissioned systems. Traditionally, distributed ledgers [9, 3] operate with
a carefully selected committee of trusted machines. Such systems are called per-
missioned. The committee repeatedly decides which transactions to accept, using
some form of consensus: The committee agrees on a transaction, votes on and
commits that transaction, and only then moves forward to agree on the next
transaction.

Gupta [7] proposes a permissioned transaction system that does not rely
on consensus. In this design, a static set of validators is designated to confirm
transactions. Our concepts (such as the use of parallelization) do work in the
permissioned setting as well, and could be applied to this work.

The authors of [6] show that the consensus number of a Bitcoin-like cryp-
tocurrency is 1, or in other words, that consensus is not needed. The paper
provides an analysis and discussion of which applications rely on consensus and
to what extent, all of which is directly relevant to Cascade. The authors draw
parallels between permissioned consensusless transaction systems and Byzantine
consistent broadcast [10, 2].

HoneyBadger BFT [11] provides an asynchronous permissioned system by
relying on advanced cryptographic techniques with full consensus. Again, the
main differences from Cascade are that the system is permissioned, much more
involved, and reliant on randomization.

The authors of [5] introduce a protocol based on reliable broadcast that
allows participants to join and leave the system. However, the adversary is re-
quired to control a limited number of participants (as opposed to hashing power
or stake), so the protocol cannot be applied in permissionless contexts where
unknown participants can join freely. The protocol consists of a few rounds of
communication to agree on nodes joining or leaving the system.

Permissionless systems. Bitcoin [12] radically departed from the established
model and became the first permissionless blockchain. In the Bitcoin system,
there is no fixed committee; instead, everybody can participate. Bitcoin achieves
this by using proof-of-work. Proof-of-work is a randomized process tying com-
putational power and spent energy to the system’s security, while also requiring
synchronous communication. However, Bitcoin’s form of consensus hardly satis-
fies the traditional consensus definition. Instead of terminating at any point, the
extent to which the consensus is ensured raises over time, approaching but never

14 Jakub Sliwinski, Roger Wattenhofer

reaching certainty. More precisely, in Bitcoin transactions are never finalized,
and can be reverted with ever decreasing probability.

Similar to Bitcoin, Cascade allows permissionless participation. In contrast
to Bitcoin, Cascade does not rely on proof-of-work or randomization, features
parallelizability and finality, and works under full asynchrony.

To address the problems associated with proof-of-work, proof-of-stake has
been suggested, first in a discussion on an online forum [13]. Proof-of-stake
blockchains are managed by participants holding a divisible and transferable
digital resource, as opposed to holding hardware and spending energy. Academic
works proposing proof-of-stake systems include designs such as Ouroboros [8] or
Algorand [4]. Proof-of-stake blockchains solve consensus and thus do not par-
allelize without compromises. The reliance on synchronous communication and
randomization in proof-of-stake are potential security risks. Despite avoiding
these pitfalls, Cascade is also simpler.

DAG blockchains. To increase the relatively modest throughput of Bitcoin,
some proof-of-work protocols employ directed acyclic graphs in the place of Bit-
coin’s single chain. SPECTRE [15] is likely the closest relative of Cascade among
such protocols, as it relaxes consensus similarly to Cascade. However, the sim-
ilarities are largely superficial, as SPECTRE remains a proof-of-work protocol,
employs different techniques, and does not share the other of Cascade’s advan-
tages. SPECTRE improves many aspects of Bitcoin, but with respect to the
harsh criteria of Table 1, SPECTRE can only earn a tick at permissionless.

ABC. We have been working on the idea of building a consensusfree permis-
sionless DAG blockchain for a few years already. A predecessor of this work [14]
discusses related topics not developed here due to space constraints, such as
pruning the transaction DAG, fees and money creation.

7 Conclusions

In this paper we presented Cascade, a permissionless and parallelizable block-
chain protocol. Cascade provides the functionality of a cryptocurrency without
consensus, without proof-of-work, without requiring synchronous communica-
tion, without relying on randomness. The protocol is scalable and exhibits final-
ity. The design of Cascade is arguably the simplest possible design for a variety
of blockchain applications.

Cascade provides an advantageous solution for applications like cryptocur-
rencies, where honest participants do not generate conflicting status updates.
Supporting general smart contracts would require performing consensus some of
the time. Adding this functionality would check the last box in Table 1.

Asynchronous Proof-of-Stake 15

References

1. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: In-
ternational conference on the theory and application of cryptology and information
security. pp. 514–532. Springer (2001)

2. Cachin, C., Guerraoui, R., Rodrigues, L.: Introduction to reliable and secure dis-
tributed programming. Springer Science & Business Media (2011)

3. Castro, M., Liskov, B., et al.: Practical byzantine fault tolerance. In: OSDI. vol. 99,
pp. 173–186 (1999)

4. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: Scaling
byzantine agreements for cryptocurrencies. In: Proceedings of the 26th Symposium
on Operating Systems Principles. pp. 51–68. ACM (2017)

5. Guerraoui, R., Komatovic, J., Seredinschi, D.A.: Dynamic byzantine reliable broad-
cast [technical report]. arXiv preprint arXiv:2001.06271 (2020)

6. Guerraoui, R., Kuznetsov, P., Monti, M., Pavlovič, M., Seredinschi, D.A.: The con-
sensus number of a cryptocurrency. In: Proceedings of the 2019 ACM Symposium
on Principles of Distributed Computing. pp. 307–316. ACM (2019)

7. Gupta, S.: A Non-Consensus Based Decentralized Financial Transaction Processing
Model with Support for Efficient Auditing. Master’s thesis (2016)

8. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: A provably secure
proof-of-stake blockchain protocol. In: Annual International Cryptology Confer-
ence. pp. 357–388. Springer (2017)

9. Lamport, L.: The part-time parliament. ACM Transactions on Computer Systems
(TOCS) 16(2), 133–169 (1998)

10. Malkhi, D., Merritt, M., Rodeh, O.: Secure reliable multicast protocols in a wan. In:
Proceedings of 17th International Conference on Distributed Computing Systems.
pp. 87–94. IEEE (1997)

11. Miller, A., Xia, Y., Croman, K., Shi, E., Song, D.: The honey badger of BFT
protocols. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security. pp. 31–42. ACM (2016)

12. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)
13. QuantumMechanic: https://bitcointalk.org/index.php?topic=27787.0

(2011)
14. Sliwinski, J., Wattenhofer, R.: ABC: Proof-of-stake without consensus (2019),

http://arxiv.org/abs/1909.10926

15. Sompolinsky, Y., Lewenberg, Y., Zohar, A.: Spectre: A fast and scalable cryptocur-
rency protocol. IACR Cryptology ePrint Archive 2016, 1159 (2016)

16. Wood, G., et al.: Ethereum: A secure decentralised generalised transaction ledger.
Ethereum project yellow paper 151(2014), 1–32 (2014)

