
Chapter 15

Fault-Tolerance & Paxos

How do you create a fault-tolerant distributed system? In this chapter we start
out with simple questions, and, step by step, improve our solutions until we
arrive at a system that works even under adverse circumstances, Paxos.

15.1 Client/Server

Definition 15.1 (node). We call a single actor in the system node. In a
computer network the computers are the nodes, in the classical client-server
model both the server and the client are nodes, and so on. If not stated otherwise,
the total number of nodes in the system is n.

Model 15.2 (message passing). In the message passing model we study
distributed systems that consist of a set of nodes. Each node can perform local
computations, and can send messages to every other node.

Remarks:

� We start with two nodes, the smallest number of nodes in a distributed
system. We have a client node that wants to “manipulate” data (e.g.,
store, update, . . . ) on a remote server node.

Algorithm 15.3 Näıve Client-Server Algorithm

1: Client sends commands one at a time to server

Model 15.4 (message loss). In the message passing model with message loss,
for any specific message, it is not guaranteed that it will arrive safely at the
receiver.

Remarks:

� A related problem is message corruption, i.e., a message is received
but the content of the message is corrupted. In practice, in contrast
to message loss, message corruption can be handled quite well, e.g. by
including additional information in the message, such as a checksum.

4



15.1. CLIENT/SERVER 5

� Algorithm 15.3 does not work correctly if there is message loss, so we
need a little improvement.

Algorithm 15.5 Client-Server Algorithm with Acknowledgments

1: Client sends commands one at a time to server
2: Server acknowledges every command
3: If the client does not receive an acknowledgment within a reasonable time,

the client resends the command

Remarks:

� Sending commands “one at a time” means that when the client sent
command c, the client does not send any new command c′ until it
received an acknowledgment for c.

� Since not only messages sent by the client can be lost, but also ac-
knowledgments, the client might resend a message that was already
received and executed on the server. To prevent multiple executions of
the same command, one can add a sequence number to each message,
allowing the receiver to identify duplicates.

� This simple algorithm is the basis of many reliable protocols, e.g.
TCP.

� The algorithm can easily be extended to work with multiple servers:
The client sends each command to every server, and once the client
received an acknowledgment from each server, the command is con-
sidered to be executed successfully.

� What about multiple clients?

Model 15.6 (variable message delay). In practice, messages might experience
different transmission times, even if they are being sent between the same two
nodes.

Remarks:

� Throughout this chapter, we assume the variable message delay model.

Theorem 15.7. If Algorithm 15.5 is used with multiple clients and multiple
servers, the servers might see the commands in different order, leading to an
inconsistent state.

Proof. Assume we have two clients u1 and u2, and two servers s1 and s2. Both
clients issue a command to update a variable x on the servers, initially x = 0.
Client u1 sends command x = x+ 1 and client u2 sends x = 2 · x.

Let both clients send their message at the same time. With variable message
delay, it can happen that s1 receives the message from u1 first, and s2 receives
the message from u2 first.1 Hence, s1 computes x = (0 + 1) · 2 = 2 and s2
computes x = (0 · 2) + 1 = 1.

1For example, u1 and s1 are (geographically) located close to each other, and so are u2

and s2.



6 CHAPTER 15. FAULT-TOLERANCE & PAXOS

Definition 15.8 (state replication). A set of nodes achieves state replication,
if all nodes execute a (potentially infinite) sequence of commands c1, c2, c3, . . . ,
in the same order.

Remarks:

� State replication is a fundamental property for distributed systems.

� For people working in the financial tech industry, state replication is
often synonymous with the term blockchain. The Bitcoin blockchain
we will discuss in Chapter 22 is indeed one way to implement state
replication. However, as we will see in all the other chapters, there
are many alternative concepts that are worth knowing, with different
properties.

� Since state replication is trivial with a single server, we can desig-
nate a single server as a serializer. By letting the serializer distribute
the commands, we automatically order the requests and achieve state
replication!

Algorithm 15.9 State Replication with a Serializer

1: Clients send commands one at a time to the serializer
2: Serializer forwards commands one at a time to all other servers
3: Once the serializer received all acknowledgments, it notifies the client about

the success

Remarks:

� This idea is sometimes also referred to as leader/follower (or par-
ent/child) replication.

� What about node failures? Our serializer is a single point of failure!

� Can we have a more distributed approach of solving state replication?
Instead of directly establishing a consistent order of commands, we
can use a different approach: We make sure that there is always at
most one client sending a command; i.e., we use mutual exclusion,
respectively locking.

Algorithm 15.10 Two-Phase Protocol

Phase 1

1: Client asks all servers for the lock

Phase 2

2: if client receives lock from every server then
3: Client sends command reliably to each server, and gives the lock back
4: else
5: Clients gives the received locks back
6: Client waits, and then starts with Phase 1 again
7: end if



15.2. PAXOS 7

Remarks:

� This idea appears in many contexts and with different names, usually
with slight variations, e.g. two-phase locking (2PL).

� Another example is the two-phase commit (2PC) protocol, typically
presented in a database environment. The first phase is called the
preparation of a transaction, and in the second phase the transaction
is either committed or aborted. The 2PC process is not started at the
client but at a designated server node that is called the coordinator.

� It is often claimed that 2PL and 2PC provide better consistency guar-
antees than a simple serializer if nodes can recover after crashing. In
particular, alive nodes might be kept consistent with crashed nodes,
for transactions that started while the crashed node was still running.
This benefit was even improved in a protocol that uses an additional
phase (3PC).

� The problem with 2PC or 3PC is that they are not well-defined if
exceptions happen.

� Does Algorithm 15.10 really handle node crashes well? No! In fact,
it is even worse than the simple serializer approach (Algorithm 15.9):
Instead of needing one available node, Algorithm 15.10 requires all
servers to be responsive!

� Does Algorithm 15.10 also work if we only get the lock from a subset
of servers? Is a majority of servers enough?

� What if two or more clients concurrently try to acquire a majority
of locks? Do clients have to abandon their already acquired locks, in
order not to run into a deadlock? How? And what if they crash before
they can release the locks?

� Bad news: It seems we need a slightly more complicated concept.

� Good news: We postpone the complexity of achieving state replication
and first show how to execute a single command only.

15.2 Paxos

Definition 15.11 (ticket). A ticket is a weaker form of a lock, with the fol-
lowing properties:

� Reissuable: A server can issue a ticket, even if previously issued tickets
have not yet been returned.

� Ticket expiration: If a client sends a message to a server using a previ-
ously acquired ticket t, the server will only accept t, if t is the most recently
issued ticket.



8 CHAPTER 15. FAULT-TOLERANCE & PAXOS

Remarks:

� There is no problem with crashes: If a client crashes while holding
a ticket, the remaining clients are not affected, as servers can simply
issue new tickets.

� Tickets can be implemented with a counter: Each time a ticket is
requested, the counter is increased. When a client tries to use a ticket,
the server can determine if the ticket is expired.

� What can we do with tickets? Can we simply replace the locks in
Algorithm 15.10 with tickets? We need to add at least one additional
phase, as only the client knows if a majority of the tickets have been
valid in Phase 2.

Algorithm 15.12 Näıve Ticket Protocol

Phase 1

1: Client asks all servers for a ticket

Phase 2

2: if a majority of the servers replied then
3: Client sends command together with ticket to each server
4: Server stores command only if ticket is still valid, and replies to client
5: else
6: Client waits, and then starts with Phase 1 again
7: end if

Phase 3

8: if client hears a positive answer from a majority of the servers then
9: Client tells servers to execute the stored command

10: else
11: Client waits, and then starts with Phase 1 again
12: end if

Remarks:

� There are problems with this algorithm: Let u1 be the first client
that successfully stores its command c1 on a majority of the servers.
Assume that u1 becomes very slow just before it can notify the servers
(Line 9), and a client u2 updates the stored command in some servers
to c2. Afterwards, u1 tells the servers to execute the command. Now
some servers will execute c1 and others c2!

� How can this problem be fixed? We know that every client u2 that
updates the stored command after u1 must have used a newer ticket
than u1. As u1’s ticket was accepted in Phase 2, it follows that u2
must have acquired its ticket after u1 already stored its value in the
respective server.



15.2. PAXOS 9

� Idea: What if a server, instead of only handing out tickets in Phase
1, also notifies clients about its currently stored command? Then, u2
learns that u1 already stored c1 and instead of trying to store c2, u2
could support u1 by also storing c1. As both clients try to store and
execute the same command, the order in which they proceed is no
longer a problem.

� But what if not all servers have the same command stored, and u2
learns multiple stored commands in Phase 1. What command should
u2 support?

� Observe that it is always safe to support the most recently stored
command. As long as there is no majority, clients can support any
command. However, once there is a majority, clients need to support
this value.

� So, in order to determine which command was stored most recently,
servers can remember the ticket number that was used to store the
command, and afterwards tell this number to clients in Phase 1.

� If every server uses its own ticket numbers, the newest ticket does not
necessarily have the largest number. This problem can be solved if
clients suggest the ticket numbers themselves!



10 CHAPTER 15. FAULT-TOLERANCE & PAXOS

Algorithm 15.13 Paxos

Client (Proposer)

Initialization

c / command to execute
t = 0 / ticket number to try

Phase 1

1: t = t+ 1
2: Ask all servers for ticket t

Phase 2

7: if a majority answers ok then
8: Pick (Tstore, C) with largest Tstore

9: if Tstore > 0 then
10: c = C
11: end if
12: Send propose(t, c) to same

majority
13: end if

Phase 3

19: if a majority answers success

then
20: Send execute(c) to every server
21: end if

Server (Acceptor)

Tmax = 0 / largest issued ticket

C = ⊥ / stored command
Tstore = 0 / ticket used to store C

3: if t > Tmax then
4: Tmax = t
5: Answer with ok(Tstore, C)
6: end if

14: if t = Tmax then
15: C = c
16: Tstore = t
17: Answer success
18: end if

Remarks:

� Unlike previously mentioned algorithms, there is no step where a client
explicitly decides to start a new attempt and jumps back to Phase 1.
Note that this is not necessary, as a client can decide to abort the
current attempt and start a new one at any point in the algorithm.
This has the advantage that we do not need to be careful about se-
lecting “good” values for timeouts, as correctness is independent of
the decisions when to start new attempts.

� The performance can be improved by letting the servers send negative



15.2. PAXOS 11

replies in phases 1 and 2 if the ticket expired.

� The contention between different clients can be alleviated by random-
izing the waiting times between consecutive attempts.

Lemma 15.14. We call a message propose(t,c) sent by clients on Line 12 a
proposal for (t,c). A proposal for (t,c) is chosen, if it is stored by a majority
of servers (Line 15). For every issued propose(t′,c′) with t′ > t holds that
c′ = c, if there was a chosen propose(t,c).

Proof. Observe that there can be at most one proposal for every ticket number
τ since clients only send a proposal if they received a majority of the tickets for
τ (Line 7). Hence, every proposal is uniquely identified by its ticket number τ .

Assume that there is at least one propose(t′,c′) with t′ > t and c′ 6= c; of
such proposals, consider the proposal with the smallest ticket number t′. Since
both this proposal and also the propose(t,c) have been sent to a majority of the
servers, we can denote by S the non-empty intersection of servers that have been
involved in both proposals. Since propose(t,c) has been chosen, this means that
at least one server s ∈ S must have stored command c; thus, when the command
was stored, the ticket number t was still valid. Hence, s must have received the
request for ticket t′ after it already stored propose(t,c), as the request for ticket
t′ invalidates ticket t.

Therefore, the client that sent propose(t′,c′) must have learned from s that
a client already stored propose(t,c). Since a client adapts its proposal to the
command that is stored with the highest ticket number so far (Line 8), the client
must have proposed c as well. There is only one possibility that would lead to
the client not adapting c: If the client received the information from a server
that some client stored propose(t∗,c∗), with c∗ 6= c and t∗ > t. In this case, a
client must have sent propose(t∗,c∗) with t < t∗ < t′, but this contradicts the
assumption that t′ is the smallest ticket number of a proposal issued after t.

Theorem 15.15. If a command c is executed by some servers, all servers (even-
tually) execute c.

Proof. From Lemma 15.14 we know that once a proposal for c is chosen, every
subsequent proposal is for c. As there is exactly one first propose(t,c) that is
chosen, it follows that all successful proposals will be for the command c. Thus,
only proposals for a single command c can be chosen, and since clients only
tell servers to execute a command, when it is chosen (Line 20), each client will
eventually tell every server to execute c.

Remarks:

� If the client with the first successful proposal does not crash, it will
directly tell every server to execute c.

� However, if the client crashes before notifying any of the servers, the
servers will execute the command only once the next client is success-
ful. Once a server received a request to execute c, it can inform every
client that arrives later that there is already a chosen command, so
that the client does not waste time with the proposal process.



12 CHAPTER 15. FAULT-TOLERANCE & PAXOS

� Note that Paxos cannot make progress if half (or more) of the servers
crash, as clients cannot achieve a majority anymore.

� The original description of Paxos uses three roles: Proposers, accep-
tors and learners. Learners have a trivial role: They do nothing, they
just learn from other nodes which command was chosen.

� We assigned every node only one role. In some scenarios, it might
be useful to allow a node to have multiple roles. For example in a
peer-to-peer scenario nodes need to act as both client and server.

� Clients (Proposers) must be trusted to follow the protocol strictly.
However, this is in many scenarios not a reasonable assumption. In
such scenarios, the role of the proposer can be executed by a set of
servers, and clients need to contact proposers, to propose values in
their name.

� So far, we only discussed how a set of nodes can reach decision for a
single command with the help of Paxos. We call such a single decision
an instance of Paxos.

� For state replication as in Definition 15.8, we need to be able to exe-
cute multiple commands, we can extend each instance with an instance
number, that is sent around with every message. Once the 1st com-
mand is chosen, any client can decide to start a new instance and
compete for the 2nd command. If a server did not realize that the 1st

instance already came to a decision, the server can ask other servers
about the decisions to catch up.

Chapter Notes

Two-phase protocols have been around for a long time, and it is unclear if there
is a single source of this idea. One of the earlier descriptions of this concept can
found in the book of Gray [Gra78].

Leslie Lamport introduced Paxos in 1989. But why is it called Paxos? Lam-
port described the algorithm as the solution to a problem of the parliament
of a fictitious Greek society on the island Paxos. He even liked this idea so
much, that he gave some lectures in the persona of an Indiana-Jones-style ar-
chaeologist! When the paper was submitted, many readers were so distracted by
the descriptions of the activities of the legislators, they did not understand the
meaning and purpose of the algorithm. The paper was rejected. But Lamport
refused to rewrite the paper, and he later wrote that he “was quite annoyed at
how humorless everyone working in the field seemed to be”. A few years later,
when the need for a protocol like Paxos arose again, Lamport simply took the
paper out of the drawer and gave it to his colleagues. They liked it. So Lamport
decided to submit the paper (in basically unaltered form!) again, 8 years after
he wrote it – and it got accepted! But as this paper [Lam98] is admittedly hard
to read, he had mercy, and later wrote a simpler description of Paxos [Lam01].

Leslie Lamport is an eminent scholar when it comes to understanding dis-
tributed systems, and we will learn some of his contributions in almost every
chapter. Not surprisingly, Lamport has won the 2013 Turing Award for his



BIBLIOGRAPHY 13

fundamental contributions to the “theory and practice of distributed and con-
current systems, notably the invention of concepts such as causality and logical
clocks, safety and liveness, replicated state machines, and sequential consis-
tency” [Mal13]. One can add arbitrarily to this official citation, for instance
Lamport’s popular LaTeX typesetting system, based on Donald Knuth’s TeX.

This chapter was written in collaboration with David Stolz.

Bibliography

[Gra78] James N Gray. Notes on data base operating systems. Springer, 1978.

[Lam98] Leslie Lamport. The part-time parliament. ACM Transactions on
Computer Systems (TOCS), 16(2):133–169, 1998.

[Lam01] Leslie Lamport. Paxos made simple. ACM Sigact News, 32(4):18–25,
2001.

[Mal13] Dahlia Malkhi. Leslie Lamport. ACM webpage, 2013.


	Fault-Tolerance & Paxos
	Client/Server
	Paxos


