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1 Multiple Choice on Languages & Automata 8

2 Regular & Context-Free Languages 18
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1 Multiple Choice on Languages & Automata (8 points)

For each of the following statements, indicate whether they are TRUE or FALSE. No justifi-
cation is needed. There is always one correct answer. Each block of questions is awarded up to
4 points: 4 points for 4 correct answers, 2 points for 3 correct answers, and 0 points otherwise.

1.1 Regular Languages [4 points]

Let Σ “ t0, 1u and consider the automaton A:

q1start

q2

q3

q4

A

0
1

1

0
1

0

ε

0, 1

0, 1

TRUE FALSE

a) The given automaton A is a DFA.
There is an ε-transition.

l Xl

b) Making q2 an accepting state does not change the language
LpAq recognized by the automaton.
The changed automaton would newly accept 0˚1` as well.

l Xl

c) LpAq “ p10q`1Y 0˚1p1˚01q`.
p10q`1 Ă 0˚1p1˚01q` “ LpAq.

Xl l

d) There are always more 1s than 0s.
The automaton starts with a self-loop that accepts an arbi-
trary number of leading 0s.

l Xl
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1.2 Context-Free Languages [4 points]

Let Σ “ t0, 1u and consider the grammar G:

S0 Ñ S0 0 | S1 1 | ε

S1 Ñ S2 0 | S0 1

S2 Ñ S1 0 | S2 1

TRUE FALSE

a) The grammar G is given in Chomsky Normal Form (CNF).
All terminal symbols must be produced from separate produc-
tions in CNF.

l Xl

b) The language LpGq is regular.
G is a left-linear grammar. (Alternative: LpGq equals an
automaton to check whether the input is divisible by 3.)

Xl l

c) The grammar G is ambiguous.
There is always exactly one transition for any terminal sym-
bol read from the input.

l Xl

d) 01001 P L.
S0 ñ S1 1 ñ S2 0 1 ñ S1 0 0 1 ñ S0 1 0 0 1 ñ S0 0 1 0 0 1 ñ
01001.
(Alternative: 01001p2q “ 9p10q which is divisible by 3.)

Xl l
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2 Regular & Context-Free Languages (18 points)

a) In this task, we consider the art of Integer Pruning, that is, just like one can cut trees
into nice shapes, we now cut numbers to look nice by cropping selected digits from them.
More specifically, we like numbers that are divisible by 25, but we do not like the
number 0.

1234567 Ñ 1234567 “ 125
Your task is to find out whether a number can be pruned to a “nice number” (i.e. divisible
by 25 and greater than 0) by cropping digits from it. As for trees, we should not cut
away the entire number.

More formally, consider the language

L “ tn P N | n can be pruned to a “nice number”u

For example, 1235710 and 7654321 P L, but 54321 R L.

(i) [2] Find two 5-digit numbers that belong to L.

(ii) [8] Draw a non-deterministic automaton recognizing L using at most 5 states.

(You will be awarded up to 7 points if your solution uses at most 7 states.)
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b) [8] Draw a non-deterministic PDA using at most 8 states that recognizes the language:

L “ tx#y#z | x P t0, 1u`, y, z P t0, 1u˚, |x| ‰ |z|u.

For example, 0#1#11 and 00##000 P L, but 0##1 R L.
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Model solution

a) (i) Consider 21115 Ñ21115 “ 25 and 17151 Ñ 17151 “ 75.

(ii) All numbers accepted must either contain the digits of 25, 50, 75 or some non-zero
digit X and two zeros. (Note that X “ 5 is already covered.)

q0start

2.. / 7..

5.. / X0..X..

q˚

2, 7

5
1, 2, 3, 4, 6, 7, 8, 9

0

5

0

Σ

Σ

Σ

Σ

Remark: As it seems instructive, we allow the short notation of Σ on a transition to indicate that

any character from Σ would match here. This is not generally valid syntax for an automaton.

b) A PDA recognizing L “ tx#y#z | x P t0, 1u`, y, z P t0, 1u˚, |x| ‰ |z|u could look like
this:

q0start q1 q2 q3

q4

q5

ε, εÑ $

0, εÑ α
1, εÑ α

0, εÑ α
1, εÑ α

#, εÑ ε

0, εÑ ε
1, εÑ ε

#, εÑ ε

0, αÑ ε
1, αÑ ε ε, αÑ ε

ε, αÑ ε

0, $ Ñ ε
1, $ Ñ ε

0, εÑ ε
1, εÑ ε

The automaton halts in q4 when |x| ą |z| and in q5 when |x| ă |z|. Note that we need to
check that x cannot be empty, as x P t0, 1u`. In return, we can save one state by using
a self-loop on q0 to introduce a $ sign on the stack only if necessary. The automaton
may never reach q5 if it does not put a $ sign on the stack initially, and to check whether
|x| ą |z|, we would never read the $ sign anyway.
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3 Tandem-Pumping Lemma (14 points)

Consider the language

L “
 

a#b#c | a, b, c P t0, 1u˚, c “ 2a, #0pbq “ #0pcq
(

for unsigned binary numbers a, b, and c. For example, 0#10#0 P L and 1#00#010 P L.

Recall: #0pwq denotes the number of occurrences of the symbol 0 P Σ in a word w P Σ˚.

a) [4] Show that w “ 1p#0#1p0 is tandem-pumpable in L.

Hint: Split up w “ uvxyz such that x “ #0#.

b) [10] Use the tandem-pumping lemma to show that L is not context-free.

Hint: Choose a string w “ a#b#c where 1 R b, i.e. b P 0˚.

8



Model solution

a) w “ 1p#0#1p0 is tandem-pumpable for the split w “ uvxyz where u “ 1p´1, v “ 1,
x “ #0#, y “ 1, and z “ 1p´10:

• w P L, because ”1p0” “ 2 ¨ ”1p” and #0pbq “ 1 “ #0pcq.

• uv0xy0z “ 1p´1#0#1p´10, which is in L.
(i.e. removing v and y from w does not break any of the language’s rules)

• v and y are part of a’s and c’s leading 1s, respectively. As v “ y “ 1, both numbers
are modified identically, while c’s trailing 0 ensures that c “ 2a remains true.

• v and y do not contain any 0s, so #0pbq “ #0pcq is preserved.

b) We prove that L is not context-free using the tandem-pumping lemma.

1. Assume for contradiction that L was context-free.

2. There must exist some p, s.t. any word w P L with |w| ě p is tandem-pumpable.

3. Choose the string w “ 10p´1#0p#10p P L with length |w| ą p.

4. Consider all ways to split w “ uvxyz s.t. |vxy| ď p and |vy| ě 1.

• First, we observe that if the vxy part was completely part of a, b, or c (for
w “ a#b#c), then uv0xy0z R L.

• Next, as |#b#| ą p, the vxy part cannot span parts from both a and c.

• Hence, while pumping w, we cannot change the (arithmetic) value of a or c as
we could only change one of these values.

• As both a and c do not contain leading 0s, we cannot change either of them.

• Moreover, note that we can neither add nor remove a 0 to/from b as c is fixed.

• Finally, observe that the number of # signs in w is fixed.

5. In conclusion, there is no split w “ uvxyz that satisfies all criteria of the tandem-
pumping lemma – a contradiction to p being a valid tandem-pumping length.

6. Consequently, L cannot be context-free.

Miscellaneous: If we chose any string w “ a#b#c with 1 P b, i.e. b “ b11 b2, it would
be tandem-pumpable.
Proof: Let b “ b11 b2, then w is tandem-pumpable for the split w “ uvxyz where
u “ a#b1, v “ 1, x “ ε, y “ ε, and z “ b2#c.
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4 Queueing Networks (22 points)

We have two tokens, which transit between queues a, b and c (each modeled as M/M/1) in this
Continuous Time Queueing Network:

𝑎 𝑏𝛼

𝛽

𝑐

𝛾 𝛿

a) [6] Draw a Markov chain which precisely models the situation of the two tokens, without
assuming Gordon-Newell’s Theorem. (For example, if one token is in queue a, and one
token is in queue b, we call this the state (1,1,0).)

b) [4] Does the Markov chain always have a unique stationary distribution, given that some
rates might be 0? Explain why (not).
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c) [4] What is the stationary distribution when α “ β “ δ “ 1 and γ “ 0?

d) [4] What is the stationary distribution when α “ 1, β “ 1, γ “ 1, and δ “ 0.

e) [4] If α “ β “ γ “ δ “ 1, in the steady state, what do you think is the least likely
allocation of tokens (i.e., a state in your solution to (a))? Explain convincingly with a
sentence, without computing probabilities.
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Model solution

a) See the graph below:

2,0,0
𝛼 𝛼

𝛽

1,1,0 0,2,0

1,0,1 0,1,1

0,0,2

𝛾

𝛼

𝛽

𝛽𝛾 𝛾

𝛿

𝛿 𝛿

Each state consists of three numbers: (#tokens in a, #tokens in b, #tokens in c)

b) The Markov chain has a unique stationary distribution except: (i) α “ β “ 0. Stationary
distributions are (2, 0, 0), (1, 1, 0), (0, 2, 0). (ii) α “ β “ γ “ δ “ 0. The Markov chain
is stationary at its initial states.

c) When γ “ 0, and α “ β “ δ “ 1, the Markov chain in (a) reduces to three states: (0,2,0),
(0,1,1), and (0,0,2). It is obvious to see that in this case πp0,0,2q “ πp0,2,0q, and from state

(0,1,1) we know 2πp0,1,1q “ πp0,0,2q ` πp0,2,0q. Hence, πp0,1,1q “ πp0,0,2q “ πp0,2,0q “
1
3 .

d) We use π0, π1, π2, π3, π4 and π5 to denote the stationary distribution for state (2,0,0),
(1,1,0), (0,2,0), (1,0,1), (0,1,1) and (0,0,2), respectively.

When α “ 1, β “ 1, γ “ 1, and δ “ 0, the nodes of Markov chain in (1) is symmetric.
Hence, we have π0 “ π1 “ π2 “ π3 “ π4 “ π5 “

1
6 .

e) The least likely allocations of tokens are (0, 0, 2), (2, 0, 0), (1, 0, 1) (Giving any of these
three states is considered correct). By counting the input and output edges of the states,
we can find these three states have the largest “delta” edges.

Alternative explanation for (2, 0, 0): From the original queueing networks we can observe
that the tokens tends to stay more at state b or c, when α “ β “ γ “ δ “ 1. Hence, the
two tokens stay at state a at the same time should be the least unlikely.
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5 Card Game (18 points)

A dealer gives you cards, one card after another. Each card i has a value (an arbitrary positive
integer), no two cards have the same value. You want to collect as many cards as possible.
Only the number of cards matters, not the values on the cards. But there is a restriction: You
can only collect a card with a higher value than the highest value you have collected (in your
hand) already. These are the base rules of the card game. All the variants below follow these
base rules. We study three variants of this game.

Variant 1:
You do not know how many cards the dealer has; at some point the dealer will say that there
are no more cards. You also do not know what the values of the cards are.
You have two possible actions after the dealer deals you a new card i: 1) add card i to your
collection in your hand; or 2) discard card i.

a) [6] Does there exist a strict constant-competitive online algorithm? Prove your claim.

Variant 2:
Before the dealer gives you any cards, the dealer shuffles the cards and randomizes the order
of cards. You use a greedy algorithm to collect cards: you collect every card that the dealer
gives you (if possible).

b) [6] What is the expected number of cards you can collect with the greedy algorithm if
the dealer gives you n cards?
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Variant 3:
You are now required to collect cards consecutively. In other words, if you have collected card
i and skipped card i` 1, you cannot collect any card j, with j ą i` 1. Moreover, your friend
Bob now helps you. Your actions are: 1) drop all cards that you have collected and collect the
new card 2) give the cards you collected to Bob and collect the new card. However, when you
give Bob cards, Bob cannot keep the cards you gave to him previously, and Bob must drop
your previous collection. In this variant, the cards are not shuffled, and you do not know how
many cards the dealer has. You want to collect as many cards as possible (Bob and you have
together).

c) [6] Does there exist a strict constant-competitive online algorithm for this scenario?
Prove your claim.
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Model solution

a) There is no such algorithm. We show this by designing an input sequence. Assume that
card 1 has value v1. Clearly, Alg must collect card 1 as otherwise Opt will collect card 1
and no other cards come, while the competitive ratio will be arbitrarily large.

After Alg accepts card 1 with value v1, there will be a sequence of cards with values from
1 to v1 ´ 1, which Alg will have to skip all of them. However, Opt will skip card 1 and
collect all the others. Thus, we have utilityOPT “ v1 ´ 1 and utilityAlg “ 1. For any
given constant r, we can choose v1 so that utilityOPT ą r· The competitive ratio will be
larger than r.

b) The expected number of cards that can be collected is
řn

i“1
1
i .

We prove this by induction.

If n “ 1, then the expected number of card that can be collected with the greedy algorithm
is 1.

Then, assume that the expected number of cards that the greedy algorithm collects with
n ´ 1 cards is Npn ´ 1q “

řn´1
i“1

1
i . Consider that we add a card with a value lower

than other n ´ 1 cards to the sequence randomly. With probability 1
n , the new card is

inserted at the beginning of the sequence and the number of collected cards increases 1.
Otherwise, the card is inserted in the middle of the sequence and cannot be collected by
the greedy algorithm with probability n´1

n .

Therefore, the expected number of cards that the greedy algorithm collects with n cards
is Npnq “ 1

npNpn´ 1q ` 1q ` n´1
n Npn´ 1q “ Npn´ 1q ` 1

n “
řn

i“1
1
i .

c) There is a greedy algorithm with a competitive ratio of 2.

You collect cards until it is not possible to collect new cards. Then you compare the
number of cards that you have collected in this round with the number of cards that Bob
has. If you have more cards than Bob, then you give all your cards to Bob. Otherwise,
you drop all cards and start another round of collecting.

Lower bound: any sequence of cards.

Upper bound: you will collect all consecutive ascending sequences and compare the length
with the register (Bob), and only the longest one will be kept in the register until the
end of the game.
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6 Multiple-Choice on Model Checking (6 points)

For each of the following statements, indicate whether they are TRUE or FALSE and tick the
corresponding box. No justification is needed. There is always one correct answer. Each block
of questions is awarded up to 2 points: 2 points for 2 correct answers, and 0 points otherwise.

6.1 General Questions [2 points]

Which of the following statements are true? TRUE FALSE

a) Model-checking is a technique to verify that a system’s
model matches its implementation.
Model-checking verifies if a model satisfies a specification.

l Xl

b) Standard Petri nets are strictly more expressive than Finite
Automata.
Petri nets can have an unbounded amount of tokens.

Xl l

6.2 Petri Nets [2 points]

Consider the following Petri net P:

p1

t1 p2

t2 p3

t3
2

TRUE FALSE

a) A valid execution trace of a Time Petri net is also a valid
trace of the non-time version of the same Petri net.
A transition in an untimed Petri net can fire at any time.
The Time Petri net puts constraints on the transitions.

Xl l

b) The transition t1 in the given Petri net P is L3-Live.
In the firing sequence rt1, t1, t1, . . .s, the transition t1 fires
infinitely often.

Xl l
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6.3 Computation Tree Logic [2 points]

Consider the following automaton A, where the property p
is satisfied only in states 3, 4 and 5:

1 2 3

4 5 6

In the following, v φ w denotes the set of states which satisfy
property φ. For example for automaton A, v p w “ t 3, 4, 5 u.

TRUE FALSE

a) For automaton A, v EX ppAX pq _ pAF pqq w “ t 2, 3, 5 u.
The correct answer is t 1, 2, 3, 4, 5, 6 u

l Xl

b) Automaton A satisfies AF p.
The sequence of states r 1, 2, 2, . . . s never reaches a state
that satisfies p.

l Xl
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7 Binary Decision Diagram (10 points)

a) [5] Given the Boolean expression of function f and the ordering of variables
x1 ă x2 ă x3 ă x4, construct the reduced ordered binary decision diagram (ROBDD) of
f . Merge all equivalent nodes, including the leaves.
Note: Use solid lines for True arcs and dashed lines for False arcs.

fpx1, x2, x3, x4q “
´

p x1 ` x2 q ¨ x3 ` x4

¯

¨

´

x1 ¨ x2 ` x3 ` x4

¯
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b) [2] Consider the BDD of the function g in Figure 1. Express g as a boolean function.

x1g

x2

x3

x4

10

Figure 1: BDD of the Boolean function g
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c) [3] Consider the ROBDD of the function h in Figure 2. Construct the ROBDD of
the function h1px1, x2, x3q “ Dpx4, x5q : hpx1, x2, x3, x4, x5q. Merge all equivalent nodes,
including the leaves.
Note: Use solid lines for True arcs and dashed lines for False arcs.

x1h

x2 x2

x3 x3

x4

x5

1 0

Figure 2: ROBDD of the Boolean function h
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Model solution

a) The BDD of f is shown below;

x1f

x2

x3

x4 x4

0 1

b) The function g can be expressed by the following boolean expression

gpx1, x2, x3, x4q “ x1 ¨ x3 ` x1 ¨ x2 ¨ x3 ` x1 ¨ x2 ¨ x4

c) Finally, the ROBDD of h1 is shown below;

x1h1

x2

x3

1 0

22
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8 Computation Tree Logic (8 points)

Throughout this question, we will consider the execution of a program. The following properties
are defined on the state of the program:

• r: The program is in an initial state.

• e: The program is in an error state.

• i: The program is reading an input from the user.

• t: The program is in a termination state.

In this question, a CTL formula can contain the CTL operators, as well as logical operators
like ^ (and), _ (or),  (not), and ùñ (implication), and the properties r, e, i, and t.
Note: The two sub-questions (8.1 and 8.2) are independent.

8.1 From Text to CTL [4 points]

For each of the following sentences, write a CTL formula that describes the sentence.

a) [1] The set of states from which, in every future, there always exists a possibility to reach
the initial state.

b) [3] The set of states where an input is read, and there exists a successor state (i.e., a
specific input from the user), for which every future execution will result in the program
terminating without reaching an error state.
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8.2 From CTL to Text [4 points]

For each of the following CTL formulas, describe the set of states for which the CTL expression
is satisfied.

a) [2] t ùñ AG t

b) [2] r ^
`

 e AU i
˘

25



Model solution

From Text to CTL

a) AG EF r

b) Multiple valid solutions [3]:

• i^EX
`

AF t^AG  e
˘

• i^EX
`

AF t^ e AU t
˘

Solutions that only give a single point [1]:

• i^EX
`

 e AU t
˘

• EX
`

AF t^AG  e
˘

• EX
`

AF t^ e AU t
˘

From CTL to Text

a) t ùñ AG t describes all states in which the program has not terminated ( t), plus
those in which the program has terminated and remains terminated in every possible
future.

b) r ^
`

 e AU i
˘

describes all initial states for which there exists no future where the
program can reach an error state before it is reading an input form the user. This
means it includes the initial state if there exists no future where an error state is reached.
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9 Petri Nets (16 points)

Throughout this question, we use the following notations.

• MJ “ rm1,m2,m3, . . .s and UJ “ ru1, u2, u3, . . .s are marking and firing vectors of P,
respectively.

• mi denotes the number of tokens in place pi.

• ui denotes the number of firings of transition ti.

Note: The two sub-questions (9.1 and 9.2) are independent.

9.1 Reachability [8 points]

Let us consider the Petri net P1 in Figure 3.

p1

t1 p2

t2 p3

t3

t4p4t5
2

Figure 3: Petri net P1 – Circles, dots and bars represent places, tokens and transitions,
respectively. Edge weights are marked close to the edge when they are different from 1.

a) [2] Derive the incidence matrix A of the Petri net P1 from Figure 3.

27



b) [2] Given initial marking MJ
0 “ r2, 0, 0, 1s, is the Petri net deadlock-free? If so, provide

a brief proof. If not, provide a valid firing sequence that leads the net into a deadlock.

c) [2] Consider the firing vector UJS “ r1, 1, 0, 1, 1s, where S denotes a firing sequence
containing the firing of t1, t2, t4 and t5 once.
Use the incidence matrix and the state equation of the Petri net P1 to compute the
marking MJ

1 obtained from the initial marking MJ
0 “ r2, 0, 0, 1s after firing S.

d) [2] Given initial marking MJ
0 “ r2, 0, 0, 1s and assume MJ

1 computed in (c) is a valid
marking (i.e., all elements are non-negative). Is it true that all firing sequences S with
firing vector UJS “ r1, 1, 0, 1, 1s are feasible? Justify your answer.
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Model solution

a) A “

»

—

—

—

—

—

—

—

—

–

-1 -1 1 -1 1

1 0 -1 0 0

0 1 -1 0 0

0 0 0 1 -1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

b) Deadlocks with r0, 1, 0, 1s or r0, 0, 1, 1s. Valid solutions are:

• t1, t2, t3 t1

• t1, t2, t3 t2

• t2, t1, t3 t1

• t2, t1, t3 t2

• Any of the above, that have pt4, t5q
˚ either at the beginning, or right after t3.

c)

M1 “ A ¨ TS `

»

—

—

—

—

—

—

—

—

–

2

0

0

1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

—

–

0

1

1

1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

d) Not necessary a valid firing sequence. If t1 and t2 fire first, then t4 can never fire.
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9.2 Coverability [8 points]

Let us consider the Petri net P2 in Figure 4.

p2

p1

t1

t2

t3

p3

p4

2

3

3

Figure 4: Petri net P2 – Circles, dots and bars represent places, tokens and transitions,
respectively. Edge weights are marked close to the edge when they are different from 1.

a) [4] Construct the coverability graph of the Petri net P2 by filling out the provided
skeleton.

Notes:

• Some transitions in the skeleton are not needed. Clearly mark the transitions you
do not use by crossing out the transition arrow and the box.

• The coverability graph is obtained from the coverability tree by merging nodes with
the same marking.

p1, 1, 0, 0q

p , , , q

p , , , q

p , , , q

p , , , q

p , , , q

p , , , q

t2
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b) [1] Is MJ “ r2, 13, 27, 2s reachable? Justify.

c) [3] Is MJ “ r0, 18, 26, 0s reachable? Justify.
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Model solution

a)

p1, 1, 0, 0q

p1, 0, 3, 1q

p0, 0, 2, 0q

p1, ω, ω, 0q

p1, ω, ω, ωq

p0, ω, ω, 0q

p0, ω, ω, ωq

t1

t2

t3

t2

t1

t2, t3
t1

t2, t3

t2

b) No, MJ “ r2, 13, 27, 2s is not reachable from MT
0 “ r1, 1, 0, 0s, because it is not covered

in the coverability graph. A different, valid explanation is that place p1 has only outgoing
arcs to transitions, and no incoming arcs from any transitions. So any transition firing
either removes tokens from p1, or does not change the token count in p1.

c) No, MJ “ r0, 18, 26, 0s is not reachable from MT
0 “ r1, 1, 0, 0s. If p1 still has one token,

then p3 contains 3k tokens, where k is the number of times t2 has fired. Since p4 has no
tokens (still assuming p1 has a single token), place p2 contains 1` 2k tokens. If at some
point t1 fires, then p2 contains one token less, and p3 contains two tokens more. Hence,
at the end, if p1 and p4 both have no tokens, then r0,m2,m3, 0s

T is a valid marking only
if there exists a k P N0, such that m2 “ 2k and m3 “ 3k ` 2. This does not hold for
MT “ r0, 18, 26, 0s.
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