
Digital Systems and Design Automation Group

HS 2022 Prof. L. Josipovic / J. Xu
based on Prof. L. Thiele’s material

Discrete Event Systems
Solution to Exercise Sheet 12

1 Structural Properties of Petri Nets and Token Game

a) The Pre and Post sets of a transition are defined as follows:

• Pre set: •t := {p | (p, t) ∈ F}
• Post set: t• := {p | (t, p) ∈ F},

where F is the flow set, i.e., the set of place/transition and transition/place arcs. The Pre
and Post sets of a place are defined analogously.

For the Petri net N1 we obtain the following sets:

•t5 = {p5, p9}, t5• = {p6}
•t8 = {p8}, t8• = {p10, p5}
•p3 = {t2}, p3• = {t3}

b) A transition is enabled if all places in its Pre set contain enough tokens. In the case of N1,
which has only unweighted edges, one token per place suffices. When t2 fires, it consumes
one token out of each place in the Pre set of t2 and produces one token on each place in
the Post set of t2. Hence, the firing of t2 produces one token on place p3 and p9 each, while
the token in p2 is consumed.

As a result, t5 is enabled because both p9 and p5 hold one token. However, t3 is not enabled
because p3 contains a token but p10 does not.

c) Before t2 fires there are two tokens in N1, one in p2 and one in p5. After the firing, there
is one token in places p3, p9 and p5, hence 3 tokens in total.

d) A token traverses the upper cycle until t2 fires. Then one token remains on p3 and waits,
and another one is produced in p9, which enables transition t5. When t5 consumes the
tokens on p9 and p5 and produces a token on p6, this one traverses the lower cycle until t8
is enabled and fired. One token now remains on p5 and waits, another is in p10 and enables
t3, because there is another token on p3. Then one token traverses the upper cycle again
until t2 is enabled, and so on. This Petri net models two alternating processes.

This Petri net is clearly bounded, thus we can construct its reachability tree. Usually the
states of Petri nets are denoted by vectors such that the i-th position in the vector indicates
the number of tokens on place pi of the Petri net, i.e., the marking of the graph. So, for
example, the starting state ~s0 of N1, in which the places p1 and p5 hold one token each, is
denoted by ~s0 = (1, 0, 0, 0, 1, 0, 0, 0, 0, 0).



For better legibility we denote the states in such a way that the index contains the places

that hold a token in this state, for example ~s0 = (1, 0, 0, 0, 1, 0, 0, 0, 0, 0)
4
= s1,5.

Then the reachability graph can also be written as,

s1,5 s2,5 s3,5,9 s3,6 s3,7 s3,8 s3,5,10 s4,5
t1 t2 t5 t6 t7 t8 t3

t4

2 Basic Properties of Petri Nets

A Petri net is k-bounded, if there is no fire sequence that makes the number of tokens in one
place grow larger than k. It is obvious that Petri net N2 is 1-bounded if k ≤ 1. This holds
because in the initial state there is only one token in the net, and in the case k ≤ 1 no transition
increases the number of tokens in N2. If k ≥ 2, the number of tokens in p1 can grow infinitely
large by repeatedly firing t1, t3 and t4. So, the Petri net N2 is unbounded for k ≥ 2.

A Petri net is deadlock free if no fire sequence leads to a state in which no transition is
enabled. If k = 0, N2 is not deadlock-free. The fire sequence t1, t3, t4 causes the only existing
token to be consumed and hence, there is no enabled transition any more. For k ≥ 1, however,
no deadlock can occur.

3 Identifying a deadlock

a) There are an infinite number of blocking sequence: any number of cycles tA0tA1tA2 and/or
tB0tB1tB2 terminated by either tA0tB0 or tB0tA0. It can be read directly from the marking
graph below:

(1,0,0,1,1,1,0,0)M0 =

(0,1,0,0,1,1,0,0)

(0,0,1,0,0,1,0,0)

(1,0,0,1,0,0,1,0)

(1,0,0,0,0,0,0,1)

(0,1,0,0,0,0,1,0)

tA0

tA1

tA2

tB0

tB1

tB2

tB0

tA0

b) From the Petri net structure, we get:

W+ =



0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 1
0 0 1 0 0 1
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0


, W− =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 1 0
0 1 0 1 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


, and

2



A = W+ −W− =



-1 0 1 0 0 0
1 -1 0 0 0 0
0 1 -1 0 0 0

-1 0 1 0 -1 1
0 -1 1 -1 0 1
0 0 0 -1 0 1
0 0 0 1 -1 0
0 0 0 0 1 -1


Consider the firing sequence tA0tB0. It entails:

Mdeadlock = M0 + A ·


1
0
0
1
0
0

 =



1
0
0
1
1
1
0
0


+



-1
1
0

-1
-1
-1
1
0


=



0
1
0
0
0
0
1
0


As expected, we find again the blocking marking from the reachability graph of question
a).

c) A deadlock state is a state at which no transition in enabled. Hence, one can use the
upstream transition matrix W− to assess whether or not a marking is blocking. It is the
case if and only if the marking vector does not cover (i.e., is bigger or equal to) any
column of W−. Otherwise, it implies the transition associated to such column is enabled,
and therefore this marking is not blocking.

d) In order to avoid such deadlock, it suffices to forbid both process to run concurrently. This
can be solved easily using a semaphore, as illustrated thereafter:

pA0

pA1

pA2

tA0

tA1

tA2

pR1 pR2

pB0

pB1

pB2

tB0

tB1

tB2

semaphore

3



4 From mutual exclusion to starvation

a) For each process we introduce two places (p1, p2, p3 and p4) representing the process
within the normal program execution (p1, p2) as well as in the critical section (p3, p4).
For each process, we have a token indicating which section of the program is currently
executed. Additionally, we introduce a place p0 representing the mutex variable. If the
mutex variable is 0, then we have a token at p0. We have to make sure that a process can
only enter its critical section if there is a token at the mutex place. The resulting Petri net
looks as follows.

p0

p1

t1

t3

p3

p2

t2

t4

p4

Assume that initially, both processes are in an non-critical section (in the Petri net, this is
denoted by a token in place p1 and p2 respectively). A process can only enter its critical
section (p3/p4) if there is a token at p0. In this case, the token is consumed when entering
the critical section. A new mutex token at p0 is not created until the process leaves its
critical section. Hence, both processes exclude each other mutually from the concurrent
access to the critical section.

This is a classical benefit of Petri nets over other DES models. It models very efficiently
the sharing of resources, the concurrency of processes, and so on...

b) In order to avoid starvation of either of the process, one option is to count the number of
execution the each of them, or more precisely the difference between them. Assume that
at initial state, none has been previously run. According to the specification, we can allow
one to the process (say A) to run twice by creating a ”counter-resource” with 2 tokens in
the initial marking. Running the process A consumes one of these tokens. A new token
is produced in this place on completion of process B. Doing that symmetrically (for each
process) binds the number of executions of each process together...

Not so clear? Okay, just have a look to the net :-)

4



p0sem1 sem2

p1

t1

t3

p3

p2

t2

t4

p4

c) With such mechanism, A will not starve B. However, if for some reason, B does not execute
anymore, then A will have to stop as well once it has two executions more than B. This
would a pretty bad design in most cases.

The naive idea would be to say that ”if both processes want to access the resource, they
get it in turns”.

5 Coverability tree and graph

Following the procedure from the lecture note, we can construct the following coverability tree:

(1,0,0)M0 = (1,ω,0) (1,ω,0)

(1,ω,0)

(1,ω,ω) (1,ω,ω)

(1,ω,ω)

(1,ω,ω)

t1 t2

t1

t3

t2

t1

t3

One can merge the equivalent node and obtain the coverability graph:

(1,0,0)M0 = (1,ω,0) (1,ω,ω)
t1 t3

t1, t2 t1, t2, t3

It follows that for this net with initial marking (1, 0, 0), places p2 and p3 are unbounded.

5



6 Reachability Analysis for Petri Nets

a) Petri nets may possess infinite reachability graphs, e.g. N2 with k ≥ 2. If a marking is
actually reachable in such a Petri net, the reachability check will eventually terminate. But
if it is not reachable, the algorithm may not be able to determine reachability with absolute
certainty (cf. halting problem).

Constructing a coverability tree or graph is guaranteed to terminate. It can be used to prove
that a given marking is not reachable, in the case where the marking you are interested
is not covered by any marking in the coverability tree/graph. However, this is not
a sufficient to prove reachability in the general case: a marking may be covered by the
coverability graph, and yet not being reachable.

b) We determine the incidence matrix of the Petri net as explained in the lecture.

A =

−1 1 0 2
1 −1 −1 0
0 0 1 −1


We are interested in whether the state ~s = (101, 99, 4) is reachable from the initial state

~s0 = (1, 0, 0). If the equation system A · ~f = ~s− ~s0 has no solution, we know for sure that
the state ~s is not reachable from s0. “Unfortunately”,

−1 1 0 2
1 −1 −1 0
0 0 1 −1

 ·

f1
f2
f3
f4

 =

100
99
4


is satisfiable. Using linear algebra, the solutions to this system can be computed (here,
f1 = Q, f2 = Q − 306, f3 = 207, f4 = 203, for any Q ∈ N). If ~s is reachable from ~s0,
the firing sequence will be of this form. However, there is no guarantee that it is actually
feasible for the net! Ultimately, one has to look at the net and propose a suitable firing
sequence (although the solution to the previous system of equations gives us the ”shape”
of the firing sequence we are looking for).

So, to prove that ~s is reachable from ~s0, we have to give a firing sequence through which
we get from ~s0 to ~s. Considering the Petri net, we can see that – starting from ~s0 – the
number of tokens in p1 increases by one after firing the sequence t1, t3, t4. Repeating this
for 203 times yields the state (204, 0, 0). Firing t1 for 103 more times, followed by firing t3
for four times finally yields state ~s.

6


