Last week, we showed the equivalence of DFA, NFA and REX is equivalent to:

\[
\text{DFA} \simeq \text{NFA} \quad \text{(DFA and NFA are equivalent)}
\]

\[
\text{NFA} \simeq \text{REX} \quad \text{(NFA and REX are equivalent)}
\]
We also started to look at non-regular languages

Pumping lemma

If A is a regular language, then there exist a number p s.t.

Any string in A whose length is at least p can be divided into three pieces xyz s.t.

- $xy^iz \in A$, for each $i \geq 0$ and
- $|y| > 0$ and
- $|xy| \leq p$
To prove that a language A is not regular:

1. Assume that A is regular

2. Since A is regular, it must have a pumping length p

3. Find one string s in A whose length is at least p

4. For any split $s = xyz$,
 Show that you cannot satisfy all three conditions

5. Conclude that s cannot be pumped
To prove that a language A is not regular:

1. Assume that A is regular

2. Since A is regular, it must have a pumping length p

3. Find one string s in A whose length is at least p

4. For any split $s=xyz$,
 Show that you cannot satisfy all three conditions

5. Conclude that s cannot be pumped \rightarrow A is not regular
Pumping lemma

If \(A \) is a regular language, then there exist a number \(p \) s.t.

Any string in \(A \) whose length is at least \(p \) can be divided into three pieces \(xyz \) s.t.

- \(xy^iz \in A \), for each \(i \geq 0 \) and
- \(|y| > 0 \) and
- \(|xy| \leq p \)

Wait…
What happens if \(A \) is a finite language?!
Pumping lemma

If A is a regular language, then there exist a number p s.t.

As we saw two weeks ago, all finite languages are regular...

So what's p?

$p := \text{len(longest_string)} + 1$

makes the lemma hold vacuously
Non-regular languages are not closed under most operations

if \(L_1 \) and \(L_2 \) are regular, then so are

\[
L_1 \cup L_2 \\
L_1 \cdot L_2 \\
L_1^*
\]

if \(L_1 \) and \(L_2 \) are \textbf{not regular}, then

\[
L_1 \cup L_2 \\
L_1 \cdot L_2 \\
L_1^*
\]

may or may not be regular!

\((L_1)^C\) is not regular

non RL are closed under complement
This week is all about

Context-Free Languages

a superset of Regular Languages