
Computer Systems/
Distributed Systems

Exercise Session 6
HS 2022

Slides last updated:
15.11.2022

Distributed
 Computing

Distributed
 Computing

Program:

1. Lecture Recap

a) Byzantine Agreement

b) King’s Algorithm

c) Ben-Or’s Algorithm

d) Reliable Broadcast

2. Quiz

3. Assignment Preview

Distributed
 Computing

Set-Up

Node

Node

Node

Node

Node

Node: single actor in a distributed system

Distributed
 Computing

Previous Challenges in Consensus

- Messages can get lost

- Nodes may crash

- Messages can have various delay

New Challenge in Byzantine Agreement

- Byzantine nodes = Nodes can have arbitrary behaviour

Byzantine Agreement

We want:
1. Agreement:

All (correct) nodes decide on the same value.

Distributed
 Computing

Byzantine Agreement

We want:
1. Agreement:

All (correct) nodes decide on the same value.
2. Termination:

All (correct) nodes terminate.

Distributed
 Computing

Byzantine Agreement

We want:
1. Agreement:

All (correct) nodes decide on the same value.
2. Termination:

All (correct) nodes terminate.
3. All-same Validity:

If all correct nodes start with the same value “v”, the decision value must be “v”.

Distributed
 Computing

(Synchronous) King’s Algorithm

Distributed
 Computing

• Example: n = 4, f=1
• Phase 1:

All processes choose
the king’ value

0

1 1

0,0,1,1

1
0

0

0,0,1,1 0,1,1,1

0

1 11*

0* 1

0 1

1
0

1

0* = “Propose 0”
1* = “Propose 1”

Round 1 Round 2 Round 3

1*
1*

1*
1*

2 propose 1 2 propose 1

1 proposal each

“Propose 1”

(Synchronous) King’s Algorithm

Distributed
 Computing

• Example: n = 4, f=1
• Phase 2:

1

0 1

0,1,1,1

1
0

1

0,0,1,1 0,1,1,1

1

1 11*

1

1 1

1
1

1

0* = “Propose 0”
1* = “Propose 1”

Round 1 Round 2 Round 3

1*
1*

1*

2 propose 1 2 propose 1

3 propose 1

1*

“Propose 1”

“Propose 1”

1*

I take the
king’s value!

I keep my
own value!

Agreement!

Distributed
 Computing

(Asynchronous) Ben-Or’s Algorithm

• Example: n = 11, f=1
• Byzantine node has no power

1

1

1

1

1

1

1

1

1

1Agreement!

0

0

Distributed
 Computing

(Asynchronous) Ben-Or’s Algorithm

• Example: n = 11, f=1

1

1

1
1

1

1

0

0

0

0

0

0

Distributed
 Computing

(Asynchronous) Ben-Or’s Algorithm

• Example: n = 11, f=1
• Byzantine node has no power

1

1

1
1

1

1

0

0

0

0

0

0

I will ask the
oracle!

I will ask the
oracle!

Distributed
 Computing

(Asynchronous) Ben-Or’s Algorithm
• Example: n = 11, f=1
• Different views:

Inputs do not change

1 0

1

0

0

00

1

1

1

1

1

0,0,0,1,1,1,1,1,1,1

0,0,0,0,1,1,1,1,1,1

propose 1
I will ask the

oracle!

Distributed
 Computing

(Asynchronous) Ben-Or’s Algorithm
• Example: n = 11, f=1
• Different views:

Inputs flip

1 0

1

0

0

00

1

1

1

1

1

0,0,0,1,1,1,1,1,1,1

0,0,0,0,1,1,1,1,1,1

propose 1
I will ask the

oracle!

(Asynchronous) Reliable Broadcast

Distributed
 Computing

1
1

1 1

1 11*

1

1 1

1* = “Echo 1”

Part 1 Part 2 Part 3

1*
1*1*1*

1*1 1

1*

1* 1*

1*

1

3 times 1* = Accept 1

• Example: n = 4, f=1

(Asynchronous) Reliable Broadcast

Distributed
 Computing

1
1

1 1

1 11*

1

1 1

1* = “Echo 1”

Part 1 Part 2 Part 3

1*
1*1*1*

1*1 1

1*

1* 1*

1*

1

3 times 1* = Accept 1

• Example: n = 4, f=1
• If correct node broadcasts, it will eventually be accepted by every correct node

(Asynchronous) Reliable Broadcast

Distributed
 Computing

1
1

1 1

0 10*

1

1 1

1* = “Echo 1”
0* = “Echo 0”

Part 1 Part 2 Part 3

1*
1*0*0*

1*1 1

0*

1* 1*

1*

1

3 times 1* = Accept 1

• Example: n = 4, f=1
• If correct node broadcasts, it will eventually be accepted by every correct node
• If a correct node hasn’t broadcast a message, will not be accepted by any other correct node.

• Example: n = 4, f=1
• If a correct node broadcasts, it will eventually be accepted by every correct node
• If a correct node hasn’t broadcast a message, will not be accepted by any other correct node.
• Sender corrupted?

(Asynchronous) Reliable Broadcast

Distributed
 Computing

1
0

1

Part 1 ?

(Asynchronous) Reliable Broadcast

Distributed
 Computing

1
1

0 0

1 11*

1

1 1

1* = “Echo 1”

Part 1 Part 2 Part 3

1*1*

0*

1* 1*

1

• Example: n = 4, f=1
• If a correct node broadcasts, it will eventually be accepted by every correct node
• If a correct node hasn’t broadcast a message, will not be accepted by any other correct node.
• If a correct node accepts a message, it will be eventually accepted by every correct node

2 times 1* => “Echo 1”

1* 1*

…Part 4, accepts

Quiz questions (choose the right answer)

1. No algorithm satisfies byzantine agreement with n = 3f. T/F?

2. A single byzantine node can prevent any deterministic algorithm from reaching agreement in asynchronous model. T/F?

3. If in the first phase of the King algorithm the first king is honest, then:
1. Every honest node will decide for the initial input of the king. T/F?
2. An honest node will propose a value in the first phase. T/F?
3. The king himself can change its own value in the first phase. T/F?
4. The nodes might change the value in future phases if there are other honest kings later. T/F?

4. In reliable broadcast:
1. All honest nodes accept at most one message. T/F?
2. All honest nodes accept at least one message. T/F?
3. All honest nodes echo at least one message. T/F?
4. It might happen that no honest node accepts a message. T/F?

Distributed
 Computing

Quiz questions (choose the right answer)

1. No algorithm satisfies byzantine agreement with n = 3f. T/F

2. A single byzantine node can prevent any deterministic algorithm from reaching agreement in asynchronous model. T/F

3. If in the first phase of the King algorithm the first king is honest, then:
1. Every honest node will decide for the initial input of the king. T/F
2. An honest node will propose a value in the first phase. T/F
3. The king himself can change its own value in the first phase. T/F
4. The nodes might change the value in future phases if there are other honest kings later. T/F

4. In reliable broadcast:
1. All honest nodes accept at most one message. T/F
2. All honest nodes accept at least one message. T/F
3. All honest nodes echo at least one message. T/F
4. It might happen that no honest node accepts a message. T/F

Distributed
 Computing

Assignment Preview

Distributed
 Computing

Assignment Preview

Distributed
 Computing

Assignment Preview

Distributed
 Computing

Assignment Preview

Distributed
 Computing

Assignment Preview

Distributed
 Computing

