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Program:

1. Lecture Recap

a) Byzantine Agreement

b) King’s Algorithm

c) Ben-Or’s Algorithm

d) Reliable Broadcast

2. Quiz

3. Assignment Preview
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Set-Up

Node

Node

Node

Node

Node

Node: single actor in a distributed system
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Previous Challenges in Consensus

- Messages can get lost

- Nodes may crash

- Messages can have various delay

New Challenge in Byzantine Agreement

- Byzantine nodes = Nodes can have arbitrary behaviour



Byzantine Agreement

We want:
1. Agreement: 

All (correct) nodes decide on the same value.

Distributed
    Computing 



Byzantine Agreement

We want:
1. Agreement: 

All (correct) nodes decide on the same value.
2. Termination: 

All (correct) nodes terminate.

Distributed
    Computing 



Byzantine Agreement

We want:
1. Agreement: 

All (correct) nodes decide on the same value.
2. Termination: 

All (correct) nodes terminate.
3. All-same Validity:

If all correct nodes start with the same value “v”, the decision value must be “v”.
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(Synchronous) King’s Algorithm
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• Example: n = 4, f=1
• Phase 1:

All processes choose 
the king’ value
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(Synchronous) King’s Algorithm
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• Example: n = 4, f=1
• Phase 2:
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(Asynchronous) Ben-Or’s Algorithm

• Example: n = 11, f=1
• Byzantine node has no power
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(Asynchronous) Ben-Or’s Algorithm

• Example: n = 11, f=1
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(Asynchronous) Ben-Or’s Algorithm

• Example: n = 11, f=1
• Byzantine node has no power
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(Asynchronous) Ben-Or’s Algorithm
• Example: n = 11, f=1
• Different views:

Inputs do not change
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(Asynchronous) Ben-Or’s Algorithm
• Example: n = 11, f=1
• Different views:

Inputs flip
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(Asynchronous) Reliable Broadcast
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• Example: n = 4, f=1
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• If correct node broadcasts, it will eventually be accepted by every correct node



(Asynchronous) Reliable Broadcast
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• Example: n = 4, f=1
• If correct node broadcasts, it will eventually be accepted by every correct node
• If a correct node hasn’t broadcast a message, will not be accepted by any other correct node. 



• Example: n = 4, f=1
• If a correct node broadcasts, it will eventually be accepted by every correct node
• If a correct node hasn’t broadcast a message, will not be accepted by any other correct node.
• Sender corrupted?

(Asynchronous) Reliable Broadcast
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(Asynchronous) Reliable Broadcast

Distributed
    Computing 

1
1

0 0

1 11*

1

1 1

1* = “Echo 1”

Part 1 Part 2 Part 3

1*1*

0*

1* 1*

1

• Example: n = 4, f=1
• If a correct node broadcasts, it will eventually be accepted by every correct node
• If a correct node hasn’t broadcast a message, will not be accepted by any other correct node.
• If a correct node accepts a message, it will be eventually accepted by every correct node 

2 times 1* => “Echo 1”

1* 1*

…Part 4, accepts



Quiz questions (choose the right answer)

1. No algorithm satisfies byzantine agreement with n = 3f. T/F?

2. A single byzantine node can prevent any deterministic algorithm from reaching agreement in asynchronous model. T/F?

3. If in the first phase of the King algorithm the first king is honest, then: 
1. Every honest node will decide for the initial input of the king.  T/F?
2. An honest node will propose a value in the first phase. T/F?
3. The king himself can change its own value in the first phase. T/F?
4. The nodes might change the value in future phases if there are other honest kings later. T/F?

4. In reliable broadcast: 
1. All honest nodes accept at most one message. T/F?
2. All honest nodes accept at least one message. T/F? 
3. All honest nodes echo at least one message. T/F?
4. It might happen that no honest node accepts a message. T/F? 
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