Computer Systems/
Distributed Systems

Exercise Session 7
HS 2022

FDGRA NND4e 3

FPGA DOR4 1

PGA_PCle_x16
cau JTAG ,1 4

SIHIL B

TR
g
'II'I.II ‘ a,

P e

N w0

2 NVIZN3
wira/z0

-

oo
§

=3

|5 2‘
l§=

=

[—cou £oc

BMC FPGA

....... mn, A 1_1,15, 1’11‘ sasabEm

<

..g--_ _UL-.“_...uu iddd ddid uauEE.

W0 Sann SR w WA e . WARTY -
P e T o X R A AL L

& UsR LD

[o e L

s:j.llllll!_,

L anaalaaea™

-

o

,?:r

.:é.x't.t»i:‘u i j{

—_————

‘WMQV]INC
.. .

\

/

mZurlch yﬁm; Distributed ‘/“:“- :

Computing W55 o

s

Consistency models:

e Linearizable

* Sequentially Consistency

* (Quiescent Consistency

Theorem:

Linearizable implies both sequentially and quiescent consistency.

o ey . Vs ‘g‘
ETHzirich BF pswbuted (o,

Linearizable:
 “one global order”
* Linearizable = put points on a “line”

e Stronges assumption, implies other two

s——

ETHziirich B2 osued fas.,
\

Computing % %%

Linearizable:
 “one global order”
* Linearizable = put points on a “line”

e Stronges assumption, implies other two

write x=1 write x=3 read x=2

read x=1 write y=1

write x=2 read y=1

ETHzurich BE pitributed [,

Computing

Linearizable:
 “one global order”
* Linearizable = put points on a “line”

e Stronges assumption, implies other two

write x=1 write x=3 read x=2
read x=1 write y=1
I .
write x=2 read v=1
.— s () S—
® o o-0—0 o-0

write x=1 < read x=1< write x=3 < write x=2 < write y=1 < read y=1< read x=1

s 1] //’ii“
ETHz(irich B3 pistibuted fiut.,

.8
Computing W%

Sequential Consistency:

 ”“per thread order”

* Sequential consistency =2 build “sequences”

E ' " ZUric h Eﬂ Distributed "/:if_'_ S5

.
Computing '$§ %% 55

Sequential Consistency:

 ”“per thread order”

* Sequential consistency =2 build “sequences”

write x=1 read x=2

read y=2

write x=2 write y=1

write y=2 read y=2

zurich E s Distributed "/:if_'_ 3.

Computing &
Sequential Consistency:

 ”“per thread order”

* Sequential consistency =2 build “sequences”

write x=1 read x=2 read y=2
—@ o o —_—
write x=2 write y=1
I‘_ ‘
write y=2 read y=2
y ®- fe y
® o o ® o—00

write x=1 < write x=2 < write y=2 <read x=2 < read y=2 < read y=2 < write y=1

A"
7
7P
/s

s £
E’H h n; Distributed ~ fféqes®
ziirich BR omued fufe,

Quiscent Consistency

* Synchronizes all threads on quiescent point, i.e. point where no execution

happens
read x=1 read y=1
write x=1 write y=1

write x=2 read y=1

. » A5
ETHziirich E5 osinted flas.,

.
Computing '$§ %% 55

Quiscent Consistency

* Synchronizes all threads on quiescent point, i.e. point where no execution

happens
read x=1 read y=1
write x=1 write y=1

write x=2 read y=1

. » A5
ETHziirich E5 osinted flas.,

.
Computing '$§ %% 55

Quiscent Consistency

* Synchronizes all threads on quiescent point, i.e. point where no execution

happens
read x=1 read y=1
write x=1 write y=1
write x=2 read y=1

write x=2 < write x=1 . < write y=1 <read y=1 < read x=1 <read y=1

/

mZurlch yﬁm; Distributed ‘/“:“; :

Computing '$$%% ci

s

Composable Consistency

* Definition: If you only look at all operations concerning any object and the
execution is consistent, then also the whole execution is consistent

* Sequentially consistent is not composable

* Linearizability is composable

* Quiescent consistency is composable

[N " . . /"!-“‘
ETHziirich BESR oistributed fiacts,

.
Computing ¥ %

AT

Composable Consistency

* Definition: If you only look at all operations concerning any object and the
execution is consistent, then also the whole execution is consistent

* Sequentially consistent is not composable

* Linearizability is composable

* Quiescent consistency is composable

write x=1 read x=3 read x=2

read x=1 write y=1

write x=2 read y=1

zurich E s Distributed 4’;?’,’.,_‘.__

Computing WEs% a0

Logical Clocks:
* Happened before relation “=>” holds
1) IF f < g on the same node

2) Send happens before receive

3) If f 2> gand g =2 h, then f> h (transitivity)

zurich E s Distributed 4’;?’,’.,_‘.__

Computing WEs% a0

Logical Clocks:

* Happened before relation “=>” holds
1) IF f < g on the same node
2) Send happens before receive

3) If f 2> gand g =2 h, then f> h (transitivity)

 (C(a): timestamp of event a

P

ETHzirich BS owmwer fou

Computing WEs% a0

Logical Clocks:
* Happened before relation “=>” holds

1) IF f < g on the same node

2) Send happens before receive

3) If f 2 gand g =2 h, then f= h (transitivity)
 (C(a): timestamp of event a

* logical clocks: a=> b implies c(a) < c(b)

Strong logical clock: c(a) < ¢(b) implies a=> b (in addition)

.y 45
ETHziirich B2 osued fas.,

\
Computing %% 5

Lamport Clocks:

max(1,2) + 1
o E o I\
0o —&r]
P,)

store own clock

——

" — 0

fime

™

%
s,
| |

ETHzurich BF oistributed

Computing

=
‘(
'f
‘I
!

Lamport Clocks:

max(1,2) +1

(—*ﬁ ﬁ*ﬂ
PO

V
E} b ¢
>(send currenttl\m/
P W)
1 S R
f 1 ;

3

RN

Q

store own clock

P \’}1 O

»
fime

Weak logical clock: a 2 b implies c(a) < c(b) but not vice versa

Distributed ~ j#gw%,
Computing "W %% 50

ETHzurich E=

Vector Clocks:

now vector of clocks increase own clock for event

(5,1,2)(6,1.2) (7,1,2)

A \
(f |
(1,0,0) (2,0,0) (3,1,0) (4,1,0)
PO o~ 7~ 7\ oY
av b C d

send current timestamp

P P N\
1 N N N
(0,10 (220 kK (632
increase own by one and
take max of received and own
P ., for every other one
2 N ~
1(0,0,1) m (0,0.2)
— >

zurich E s Distributed 4/:?"'_;,_‘

Computing WEs% a0

Vector Clocks:

 What does c(a) < ¢(b) mean now?

- if all the entries in a<= b and at least one entry wherea <b
* |s alogical clock (so if a 2 b then c(a) < c(b))

* |s also a strong logical clock (if c(a) < c(b) ->a =2 b)

intuitionL because in order to achive c(a) < c(b), all entries have to be

at least as big, so a message from a must have reached b (not
necessarily directly) so that b has the right value

zUurich B= Distributed fos..

B
Computing WEs% a0

Consistent Snapshot:

* Cut: prefix of a distributed execution

 Consistent Snapshot:

a cut where for every operation h in that cut, if f 2 g, then the cut
contains f

= if all “connected” preceding operations are included

With number of consistent snapshots, one can make conclusions about

degrees of concurrency in system

" o . /,’,’iéi‘\
ETH:Z(irich BF oitibuted fats,
| |

Computing

Mutal exclusion

e (Centralized mutual exclusion

455,
ETHZiirich BE= pitributed fias
Systems @ ETHz "“\ ' | |

Computing %% s

Mutal exclusion
e (Centralized mutual exclusion

* Token-based mutual exclusion

2
[\

Bl

T4

T1 /

455,
ETHZiirich BE= pitributed fias
Systems @ ETHz "“\ ' | |

Computing %% s

Mutal exclusion
e (Centralized mutual exclusion

* Token-based mutual exclusion
2

j \T T3
Bl

T4

T1 /

" o . 4’:=’§i—\
ETH:Z(irich BF oitibuted fats,

Computing 5 %%

Mutal exclusion
e (Centralized mutual exclusion

e Token-based mutual exclusion

T2

[\
N

T4

T1 /

T=T37

- enter critical section
T3>T7?

- send token to T2
T=null|| T3<T

-setT=T3

- sned token to T2

ETHZirich BER pstributed fia
Ur I C Systems@ ETH .z 6“‘\ “‘ .

Computing s

Mutal exclusion

Centralized mutual exclusion
Token-based mutual exclusion

Distributed mutual exclusion

T T2

1<)

T4

T3

ETH:ziirich B3 ostiued (o,

Computing '$$ %50

Mutal exclusion

Centralized mutual exclusion
Token-based mutual exclusion

Distributed mutual exclusion

1,T1
T T2
1T1 j v 1T1
1, T1

T4

T3

ETHZirich BER pstributed fia
Ur I C Systems@ ETH .z 6“‘\ “‘ .

Computing s

Mutal exclusion

Centralized mutual exclusion
Token-based mutual exclusion

Distributed mutual exclusion

T T2

15

T4

ETHZirich BER pstributed fia
Ur I C Systems@ ETH .z 6“‘\ “‘ .

Computing s

Mutal exclusion
e Centralized mutual exclusion
e Token-based mutual exclusion

e Distributed mutual exclusion

T « T3 <T &&want access ?
defer response

\ Else
T3 send response

T4

T1

15

ETHZirich BER pstributed fia
Ur I C Systems@ ETH .z 6“‘\ “‘ .

Computing s

Mutal exclusion
e Centralized mutual exclusion
e Token-based mutual exclusion

e Distributed mutual exclusion

T e T3 <T &&want access ?
defer response

\ Else
T3 send response

» All responses received?
enter critical section

T1

15

T4

E , H e
| Y]])] "5' “

Z U I I C /) m Distributed “:A_,‘-_-

- Computing WS ..

Time & Clocks
- Wall clock time: “true” time

- clock error

AR LT Ao iy e e sy
T L RS VA L B L L

Figure 20.8: Drift (left) and Jitter (right). On top is a square wave, the wall-
clock time t*.

%
s’
| |

C\)
||

ETHzirich BF vstibuted fu

Computing

e
==
)

0

a

NTP

0O

: t-5 S:t

‘fl ‘1IIII»
| —}
request
0 \
15

20
response

25

Propagation delay = ((25-0) — (20-15)) /2 =10

s

[N]] . . s .
ETHziirich B2 ostinued flus..
Systems@ ETHo “‘\ ‘-\ ;

Computing ' wnil

(S

NTP

0O

: t-5 S:t

o
1
i request
\ Propagation delay = ((25-0) — (20-15)) / 2 = 10
15

Assumed to be symmetric!

20
response

25

\ %
=\
%
-\
| |

ETHzurich né? Distributed g 5

Computing

NTP

0O

: t-5 S:t

o
—
i request
\ Propagation delay = ((25-0) — (20-15)) / 2 = 10
15

Assumed to be symmetric!

20 Skew = ((15-0) + (20-25))/2 = 5

—> Adjus clock by skew

response

25

/

mZurlch yﬁm; Distributed /‘,:_:‘ .

Computing W5 %55 ia

v

Alternative Synchronization Protocols

* Precision Time Protocol
* Local Time Synchronization

* Wireless Clock Synchronization with Known Delays

m Z l..j r i C h E; Distributed “fi‘;‘

l
Computing st s

GPS - General Idea

Satellite 2

\°

A are here

Satelktjj))

Satel |te

ETHziirich B2 osued fas.,
A\

(SS

Computing

GPS - General Idea

_ . _ Satellite 2
Satellites transmit location e

and timestamp when sent S S reihere

ETH:zirich EZ ostibuted find,
\ \ |/

GPS - General Idea

_ . _ Satellite 2
Satellites transmit location e

and timestamp when sent - S S reihere

- Compare satellite
timestamp to local timestamp
and calculate distance

1ri E; Distributed /fi’i i":“
ETHzurich B3 (i

GPS - General Idea

Problem: Quadratic equation
results in two possible locations

_ .] Satellite Satellite 2
Satellites transmit location e j)) e
and timestamp when sent S5re here

- Compare satellite
timestamp to local timestamp
and calculate distance

P
T
8 g

Computing "$<% 50

GPS - General Idea

Problem: Quadratic equation
results in two possible locations

] . . Satellite Satellite 2
Satellites transmit location .j))) e
and timestamp when sent i here Solution: Generally, only one

close to Earth’s surface
- Compare satellite
timestamp to local timestamp
and calculate distance

v 5
ETHziirich B2 osued fas.,

. e
Computing '$§ %% 55

GPS - General Idea

Problem: e do not have the same
time as the satellite, so calculating

. .] Satellite Satellite 2 _ .
Satellites transmit location oj)) (o the distance might not be accurate
and timestamp when sent e here

- Compare satellite
timestamp to local timestamp
and calculate distance

“\
-“ y

ETHz(irich B3 oitrisute / i

Computing 'S %%. 5

GPS - General Idea

Problem: e do not have the same
time as the satellite, so calculating

)) . Satellit Satellite 2 _ .
Satellites transmit location oj))) \\ ° the distance might not be accurate

l

and timestamp when sent = here
Solution: take measurements from

- Compare satellite forth satellite!

timestamp to local timestamp
and calculate distance

. o S
ETHziirich B2 osued fas.,

R
Computing e

“_-i | /]

GPS - Redifined

/

mZurlch yﬁm; Distributed ‘/“:“- :

Computing W55 o

s

Quiz

1. Does sequential consistency imply quiescent consistency?

2. Are there guarantees a Lamport clock can achieve a vector clock cannot?

3. Does a high number of consistent snapshots imply a high level of

concurrency?

ETHzlrich BF ostributed fuge,

Computing '
Quiz

1. Does sequential consistency imply quiescent consistency? - Wrong
X=2%x e.g. x=1.5 is a valid outcome for

1 sequential consistency, but not quiescent
X=X

2. Are there guarantees a Lamport clock can achieve a vector clock cannot?
No, because the concept of a Lamport clock is included in the vector clock concept
3. Does a high number of consistent snapshots imply a high level of

concurrency? - True

i ' . L. fi7*"'s
ETHz(rich B ostivuted e,

Computing 5 %% e

Quiz
4. What is the difference between jitter and drift?

uSgus

s " . . /“5' >“
ETHz(rich B ostivuted e,

Computing ¥ %5 o

8

Quiz
4. What is the difference between jitter and drift?

e Shift: | || LI L] Jitter:

' . Distributed /,t
ETH:zirich BF ostibuted fhuce,

Computing

Assignment 9 Outlook:

1 Clock Sync

Quiz

1.1
a)

b)

d)

Clock Synchronization

Assume you run NTP to synchronize speakers in a soccer stadium. Each speaker has a
radio downlink to receive digital audio data. However, there is no uplink! You decide to
use an acoustic signal transmit by the speaker. To synchronize its clock, a speaker first
plays back an acoustic signal. This signal is picked up by the NTP server which responds
via radio. The speaker measures the exact time that passes between audio playback and
radio downlink response. What is likely the largest source of error?

What are strategies to reduce the effect of this error source?

Prove or disprove the following statement: If the average local skew is smaller than x, then
so is the average global skew.

Prove or disprove the following statement: If the average global skew is smaller than z,
then so is the average local skew.

m oo h Ej Distributed '{/"“; »
Z u r I C Sytemse BT Computing !‘«:“\‘ “‘\..4:.

Assignment 9 Outlook:

1.2 Time Difference of Arrival

Assume you are located on a line y = —z + 8 km in the two dimensional plane. You receive the
GPS signals from satellites A and B. Both signals are transmitted exactly at the same time ¢ by
both satellites. You receive the signal from satellite A 3.3 s before the signal of satellite B. At
time ¢, satellite A is located at p4 = (6 km, 6 km) and satellite B is located at pp = (2 km, 1 km),

in the plane.
a) Formulate the least squares problem to find your location.
b) Are you more likely to be at position (2 km, 6 km) or (4 km, 4 km)?

c) What is the time when receiving the signal from satellite B?

m 1l h Ej Distributed — [fiqes® s
ZUric e Computing ;:}‘“ v s

Assignment 9 Outlook:

1.3 Clock Synchronization: Spanning Tree

Common clock synchronization algorithms (e.g. TPSN, FTSP) rely on a spanning tree to perform
clock synchronization. Finding a good spanning tree for clock synchronization is not trivial.
Nodes which are neighbors in the network graph should also be close-by in the resulting tree.
Show that in a grid of n = m X m nodes there exists at least a pair of nodes with a stretch of
at least m. The stretch is defined as the hop distance in the tree divided by the distance in the

grid.

E"‘ZUf'ICh n;; Distributed %{:

Computing s %5 i

Assignment 9 Outlook:

1.4 NTP Programming

Write a Linux program that prints the current UTC time and the maximum error.

Hint: Have a look at the manpage for adjtimex.

E"‘ZUf'ICh n;; Distributed %{:

Computing s %5 i

Assignment 9 Outlook:

1.4 NTP Programming

Write a Linux program that prints the current UTC time and the maximum error.

Hint: Have a look at the manpage for adjtimex.

E"‘ZUf'ICh n;; Distributed %{:

Computing W% 10

Assignment 9 Outlook:

2 Consistency and Logical Clocks

Quiz

2.1 Different Consistencies
Prove or disprove the following statements:
a) Neither sequential consistency nor quiescent consistency imply linearizability.

b) If a system has sequential consistency and quiescent consistency, it is linearizable.

'y " . . 45® “
ETHzlrich EF Distibuted fed,
N

Computing '

Assignment 9 Outlook:

2.2 Measure of Concurrency from Vector Clocks

You are given two nodes that each have a vector logical clock that additionally logs the clock
state upon receiving a message (see Algorithm 1).

Algorithm 1 Vector clocks with logging

(Code for node u)

Initialize ¢, [v] := 0 for all other nodes v.

Upon local operation: Increment current local time ¢, [u] := ¢,[u] + 1.

Upon send operation: Increment c¢,[u] := ¢,[u] + 1 and include the whole vector ¢, as d in
message.

5: Upon receive operation: Extract vector d from message and update ¢, [v] := max(d[v], c,[v])
for all entries v. Increment ¢, [u] := ¢, [u] + 1. Save the vector ¢, to the log file of node u.

Assume that exactly one message gets send from one to the other node. Given the logs
and current vector states of both nodes, write a short program that calculates the measure of
concurrency as defined in the script (Definition 19.30). You can use your favorite programming
language. The example solution will be in Python.

Advanced

Generalize your program to any number of messages exchanged between the nodes.

