
����������	

��������

Distributed Systems

Roger Wattenhofer

wattenhofer@ethz.ch

Autumn 2022

ii

Chapter 1

Introduction to Distributed
Systems

Why Distributed Systems?

Today’s computing and information systems are inherently distributed. Many
companies are operating on a global scale, with thousands or even millions of
machines on all the continents. Data is stored in various data centers, computing
tasks are performed on multiple machines. At the other end of the spectrum,
also your mobile phone is a distributed system. Not only does it probably share
some of your data with the cloud, the phone itself contains multiple processing
and storage units. Your phone is a complicated distributed architecture.

Moreover, computers have come a long way. In the early 1970s, microchips
featured a clock rate of roughly 1 MHz. Ten years later, in the early 1980s,
you could get a computer with a clock rate of roughly 10 MHz. In the early
1990s, clock speed was around 100 MHz. In the early 2000s, the first 1 GHz
processor was shipped to customers. In 2002 one could already buy a processor
with a clock rate between 3 and 4 GHz. If you buy a new computer today,
chances are that the clock rate is still between 3 and 4 GHz, since clock rates
basically stopped increasing. Clock speed can apparently not go beyond a few
GHz without running into physical issues such as overheating. Since 2003,
computing architectures are mostly developing by the multi-core revolution.
Computers are becoming more parallel, concurrent, and distributed.

Finally, data is more reliably stored on multiple geographically distributed
machines. This way, the data can withstand regional disasters such as floods,
fire, meteorites, or electromagnetic pulses, for instance triggered by solar super-
storms. In addition, geographically distributed data is also safer from human
attacks. Recently we learned that computer hardware is pretty insecure. Scary
attacks exist, with scary names such as spectre, meltdown, rowhammer, memory
deduplication. There are even attacks on hardware that is considered secure! If
we store our data on multiple machines, it may be safe assuming hackers can-
not attack all machines concurrently. Moreover, data and software replication
also help availability, as computer systems do not need to be shut down for
maintenance.

In summary, today almost all computer systems are distributed, for different

1

2 CHAPTER 1. INTRODUCTION TO DISTRIBUTED SYSTEMS

reasons:

• Geography: Large organizations and companies are inherently geograph-
ically distributed, and a computer system needs to deal with this issue
anyway.

• Parallelism: To speed up computation, we employ multicore processors or
computing clusters.

• Reliability: Data is replicated on different machines to prevent data loss.

• Availability: Data is replicated on different machines to allow for access
at any time, without bottlenecks, minimizing latency.

Even though distributed systems have many benefits, such as increased stor-
age or computational power, they also introduce challenging coordination prob-
lems. Some say that going from one computer to two is a bit like having a
second child. When you have one child and all cookies are gone from the cookie
jar, you know who did it!

Coordination problems are so prevalent, they come with various flavors and
names. Probably there is a term for every letter of the alphabet: agreement,
blockchain, consensus, consistency, distributed ledger, event sourcing, fault-
tolerance, etc.

Coordination problems will happen quite often in a distributed system. Even
though every single node (node is a general term for anything that computes,
e.g. a computer, a multiprocessor core, a network switch, etc.) of a distributed
system will only fail once every few years, with millions of nodes, you can expect
a failure every minute. On the bright side, one may hope that a distributed
system may have enough redundancy to tolerate node failures and continue to
work correctly.

Distributed Systems Overview

We introduce some basic techniques to building distributed systems, with a
focus on fault-tolerance. We will study different protocols and algorithms that
allow for fault-tolerant operation, and we will discuss practical systems that
implement these techniques.

We will see different models (and even more combinations of models) that
can be studied. We will not discuss them in detail now, but simply define them
when we use them. Towards the end of the course a general picture should
emerge, hopefully!

The focus is on protocols and systems that matter in practice. In other
words, in this course, we do not discuss concepts because they are fun, but
because they are practically relevant.

Nevertheless, have fun!

Chapter Notes

Many good textbooks have been written on the subject, e.g. [AW04, CGR11,
CDKB11, Lyn96, Mul93, Ray13, TS01]. James Aspnes has written an excellent

BIBLIOGRAPHY 3

freely available script on distributed systems [Asp14]. Similarly to our course,
these texts focus on large-scale distributed systems, and hence there is some
overlap with our course. There are also some excellent textbooks focusing on
small-scale multicore systems, e.g. [HS08].

Some chapters of this course have been developed in collaboration with (for-
mer) PhD students, see chapter notes for details. Many colleagues and stu-
dents have helped to improve exercises and script. Thanks go to Georg Bach-
meier, Pascal Bissig, Philipp Brandes, Christian Decker, Manuel Eichelberger,
Klaus-Tycho Förster, Arthur Gervais, Pankaj Khanchandani, Barbara Keller,
Rik Melis, Darya Melnyk, Tejaswi Nadahalli, Peter Robinson, Jakub Sliwinski,
Selma Steinhoff, Julian Steger, David Stolz, and Saravanan Vijayakumaran.
Jinchuan Chen, Qiang Lin, Yunzhi Xue, and Qing Zhu translated this text
into Simplified Chinese, and along the way found improvements to the English
version as well. Thanks!

Bibliography

[Asp14] James Aspnes. Notes on Theory of Distributed Systems, 2014.

[AW04] Hagit Attiya and Jennifer Welch. Distributed Computing: Funda-
mentals, Simulations and Advanced Topics (2nd edition). John Wi-
ley Interscience, March 2004.

[CDKB11] George Coulouris, Jean Dollimore, Tim Kindberg, and Gordon Blair.
Distributed Systems: Concepts and Design. Addison-Wesley Pub-
lishing Company, USA, 5th edition, 2011.

[CGR11] Christian Cachin, Rachid Guerraoui, and Lus Rodrigues. Intro-
duction to Reliable and Secure Distributed Programming. Springer
Publishing Company, Incorporated, 2nd edition, 2011.

[HS08] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Pro-
gramming. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2008.

[Lyn96] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 1996.

[Mul93] Sape Mullender, editor. Distributed Systems (2nd Ed.). ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA, 1993.

[Ray13] Michel Raynal. Distributed Algorithms for Message-Passing Sys-
tems. Springer Publishing Company, Incorporated, 2013.

[TS01] Andrew S. Tanenbaum and Maarten Van Steen. Distributed Sys-
tems: Principles and Paradigms. Prentice Hall PTR, Upper Saddle
River, NJ, USA, 1st edition, 2001.

Chapter 15

Fault-Tolerance & Paxos

How do you create a fault-tolerant distributed system? In this chapter we start
out with simple questions, and, step by step, improve our solutions until we
arrive at a system that works even under adverse circumstances, Paxos.

15.1 Client/Server

Definition 15.1 (node). We call a single actor in the system node. In a
computer network the computers are the nodes, in the classical client-server
model both the server and the client are nodes, and so on. If not stated otherwise,
the total number of nodes in the system is n.

Model 15.2 (message passing). In the message passing model we study
distributed systems that consist of a set of nodes. Each node can perform local
computations, and can send messages to every other node.

Remarks:

• We start with two nodes, the smallest number of nodes in a distributed
system. We have a client node that wants to “manipulate” data (e.g.,
store, update, . . .) on a remote server node.

Algorithm 15.3 Näıve Client-Server Algorithm

1: Client sends commands one at a time to server

Model 15.4 (message loss). In the message passing model with message loss,
for any specific message, it is not guaranteed that it will arrive safely at the
receiver.

Remarks:

• A related problem is message corruption, i.e., a message is received
but the content of the message is corrupted. In practice, in contrast
to message loss, message corruption can be handled quite well, e.g. by
including additional information in the message, such as a checksum.

4

15.1. CLIENT/SERVER 5

• Algorithm 15.3 does not work correctly if there is message loss, so we
need a little improvement.

Algorithm 15.5 Client-Server Algorithm with Acknowledgments

1: Client sends commands one at a time to server
2: Server acknowledges every command
3: If the client does not receive an acknowledgment within a reasonable time,

the client resends the command

Remarks:

• Sending commands “one at a time” means that when the client sent
command c, the client does not send any new command c′ until it
received an acknowledgment for c.

• Since not only messages sent by the client can be lost, but also ac-
knowledgments, the client might resend a message that was already
received and executed on the server. To prevent multiple executions of
the same command, one can add a sequence number to each message,
allowing the receiver to identify duplicates.

• This simple algorithm is the basis of many reliable protocols, e.g.
TCP.

• The algorithm can easily be extended to work with multiple servers:
The client sends each command to every server, and once the client
received an acknowledgment from each server, the command is con-
sidered to be executed successfully.

• What about multiple clients?

Model 15.6 (variable message delay). In practice, messages might experience
different transmission times, even if they are being sent between the same two
nodes.

Remarks:

• Throughout this chapter, we assume the variable message delay model.

Theorem 15.7. If Algorithm 15.5 is used with multiple clients and multiple
servers, the servers might see the commands in different order, leading to an
inconsistent state.

Proof. Assume we have two clients u1 and u2, and two servers s1 and s2. Both
clients issue a command to update a variable x on the servers, initially x = 0.
Client u1 sends command x = x+ 1 and client u2 sends x = 2 · x.

Let both clients send their message at the same time. With variable message
delay, it can happen that s1 receives the message from u1 first, and s2 receives
the message from u2 first.1 Hence, s1 computes x = (0 + 1) · 2 = 2 and s2

computes x = (0 · 2) + 1 = 1.

1For example, u1 and s1 are (geographically) located close to each other, and so are u2

and s2.

6 CHAPTER 15. FAULT-TOLERANCE & PAXOS

Definition 15.8 (state replication). A set of nodes achieves state replication,
if all nodes execute a (potentially infinite) sequence of commands c1, c2, c3, . . . ,
in the same order.

Remarks:

• State replication is a fundamental property for distributed systems.

• For people working in the financial tech industry, state replication is
often synonymous with the term blockchain. The Bitcoin blockchain
we will discuss in Chapter 23 is indeed one way to implement state
replication. However, as we will see in all the other chapters, there
are many alternative concepts that are worth knowing, with different
properties.

• Since state replication is trivial with a single server, we can desig-
nate a single server as a serializer. By letting the serializer distribute
the commands, we automatically order the requests and achieve state
replication!

Algorithm 15.9 State Replication with a Serializer

1: Clients send commands one at a time to the serializer
2: Serializer forwards commands one at a time to all other servers
3: Once the serializer received all acknowledgments, it notifies the client about

the success

Remarks:

• This idea is sometimes also referred to as leader/follower (or par-
ent/child) replication.

• What about node failures? Our serializer is a single point of failure!

• Can we have a more distributed approach of solving state replication?
Instead of directly establishing a consistent order of commands, we
can use a different approach: We make sure that there is always at
most one client sending a command; i.e., we use mutual exclusion,
respectively locking.

Algorithm 15.10 Two-Phase Protocol

Phase 1

1: Client asks all servers for the lock

Phase 2

2: if client receives lock from every server then
3: Client sends command reliably to each server, and gives the lock back
4: else
5: Clients gives the received locks back
6: Client waits, and then starts with Phase 1 again
7: end if

15.2. PAXOS 7

Remarks:

• This idea appears in many contexts and with different names, usually
with slight variations, e.g. two-phase locking (2PL).

• Another example is the two-phase commit (2PC) protocol, typically
presented in a database environment. The first phase is called the
preparation of a transaction, and in the second phase the transaction
is either committed or aborted. The 2PC process is not started at the
client but at a designated server node that is called the coordinator.

• It is often claimed that 2PL and 2PC provide better consistency guar-
antees than a simple serializer if nodes can recover after crashing. In
particular, alive nodes might be kept consistent with crashed nodes,
for transactions that started while the crashed node was still running.
This benefit was even improved in a protocol that uses an additional
phase (3PC).

• The problem with 2PC or 3PC is that they are not well-defined if
exceptions happen.

• Does Algorithm 15.10 really handle node crashes well? No! In fact,
it is even worse than the simple serializer approach (Algorithm 15.9):
Instead of needing one available node, Algorithm 15.10 requires all
servers to be responsive!

• Does Algorithm 15.10 also work if we only get the lock from a subset
of servers? Is a majority of servers enough?

• What if two or more clients concurrently try to acquire a majority
of locks? Do clients have to abandon their already acquired locks, in
order not to run into a deadlock? How? And what if they crash before
they can release the locks?

• Bad news: It seems we need a slightly more complicated concept.

• Good news: We postpone the complexity of achieving state replication
and first show how to execute a single command only.

15.2 Paxos

Definition 15.11 (ticket). A ticket is a weaker form of a lock, with the fol-
lowing properties:

• Reissuable: A server can issue a ticket, even if previously issued tickets
have not yet been returned.

• Ticket expiration: If a client sends a message to a server using a previ-
ously acquired ticket t, the server will only accept t, if t is the most recently
issued ticket.

8 CHAPTER 15. FAULT-TOLERANCE & PAXOS

Remarks:

• There is no problem with crashes: If a client crashes while holding
a ticket, the remaining clients are not affected, as servers can simply
issue new tickets.

• Tickets can be implemented with a counter: Each time a ticket is
requested, the counter is increased. When a client tries to use a ticket,
the server can determine if the ticket is expired.

• What can we do with tickets? Can we simply replace the locks in
Algorithm 15.10 with tickets? We need to add at least one additional
phase, as only the client knows if a majority of the tickets have been
valid in Phase 2.

Algorithm 15.12 Näıve Ticket Protocol

Phase 1

1: Client asks all servers for a ticket

Phase 2

2: if a majority of the servers replied then
3: Client sends command together with ticket to each server
4: Server stores command only if ticket is still valid, and replies to client
5: else
6: Client waits, and then starts with Phase 1 again
7: end if

Phase 3

8: if client hears a positive answer from a majority of the servers then
9: Client tells servers to execute the stored command

10: else
11: Client waits, and then starts with Phase 1 again
12: end if

Remarks:

• There are problems with this algorithm: Let u1 be the first client
that successfully stores its command c1 on a majority of the servers.
Assume that u1 becomes very slow just before it can notify the servers
(Line 9), and a client u2 updates the stored command in some servers
to c2. Afterwards, u1 tells the servers to execute the command. Now
some servers will execute c1 and others c2!

• How can this problem be fixed? We know that every client u2 that
updates the stored command after u1 must have used a newer ticket
than u1. As u1’s ticket was accepted in Phase 2, it follows that u2

must have acquired its ticket after u1 already stored its value in the
respective server.

15.2. PAXOS 9

• Idea: What if a server, instead of only handing out tickets in Phase
1, also notifies clients about its currently stored command? Then, u2

learns that u1 already stored c1 and instead of trying to store c2, u2

could support u1 by also storing c1. As both clients try to store and
execute the same command, the order in which they proceed is no
longer a problem.

• But what if not all servers have the same command stored, and u2

learns multiple stored commands in Phase 1. What command should
u2 support?

• Observe that it is always safe to support the most recently stored
command. As long as there is no majority, clients can support any
command. However, once there is a majority, clients need to support
this value.

• So, in order to determine which command was stored most recently,
servers can remember the ticket number that was used to store the
command, and afterwards tell this number to clients in Phase 1.

• If every server uses its own ticket numbers, the newest ticket does not
necessarily have the largest number. This problem can be solved if
clients suggest the ticket numbers themselves!

10 CHAPTER 15. FAULT-TOLERANCE & PAXOS

Algorithm 15.13 Paxos

Client (Proposer)

Initialization

c / command to execute
t = 0 / ticket number to try

Phase 1

1: t = t+ 1
2: Ask all servers for ticket t

Phase 2

7: if a majority answers ok then
8: Pick (Tstore, C) with largest Tstore

9: if Tstore > 0 then
10: c = C
11: end if
12: Send propose(t, c) to same

majority
13: end if

Phase 3

19: if a majority answers success

then
20: Send execute(c) to every server
21: end if

Server (Acceptor)

Tmax = 0 / largest issued ticket

C = ⊥ / stored command
Tstore = 0 / ticket used to store C

3: if t > Tmax then
4: Tmax = t
5: Answer with ok(Tstore, C)
6: end if

14: if t = Tmax then
15: C = c
16: Tstore = t
17: Answer success
18: end if

Remarks:

• Unlike previously mentioned algorithms, there is no step where a client
explicitly decides to start a new attempt and jumps back to Phase 1.
Note that this is not necessary, as a client can decide to abort the
current attempt and start a new one at any point in the algorithm.
This has the advantage that we do not need to be careful about se-
lecting “good” values for timeouts, as correctness is independent of
the decisions when to start new attempts.

• The performance can be improved by letting the servers send negative

15.2. PAXOS 11

replies in phases 1 and 2 if the ticket expired.

• The contention between different clients can be alleviated by random-
izing the waiting times between consecutive attempts.

Lemma 15.14. We call a message propose(t,c) sent by clients on Line 12 a
proposal for (t,c). A proposal for (t,c) is chosen, if it is stored by a majority
of servers (Line 15). For every issued propose(t′,c′) with t′ > t holds that
c′ = c, if there was a chosen propose(t,c).

Proof. Observe that there can be at most one proposal for every ticket number
τ since clients only send a proposal if they received a majority of the tickets for
τ (Line 7). Hence, every proposal is uniquely identified by its ticket number τ .

Assume that there is at least one propose(t′,c′) with t′ > t and c′ 6= c; of
such proposals, consider the proposal with the smallest ticket number t′. Since
both this proposal and also the propose(t,c) have been sent to a majority of the
servers, we can denote by S the non-empty intersection of servers that have been
involved in both proposals. Since propose(t,c) has been chosen, this means that
at least one server s ∈ S must have stored command c; thus, when the command
was stored, the ticket number t was still valid. Hence, s must have received the
request for ticket t′ after it already stored propose(t,c), as the request for ticket
t′ invalidates ticket t.

Therefore, the client that sent propose(t′,c′) must have learned from s that
a client already stored propose(t,c). Since a client adapts its proposal to the
command that is stored with the highest ticket number so far (Line 8), the client
must have proposed c as well. There is only one possibility that would lead to
the client not adapting c: If the client received the information from a server
that some client stored propose(t∗,c∗), with c∗ 6= c and t∗ > t. In this case, a
client must have sent propose(t∗,c∗) with t < t∗ < t′, but this contradicts the
assumption that t′ is the smallest ticket number of a proposal issued after t.

Theorem 15.15. If a command c is executed by some servers, all servers (even-
tually) execute c.

Proof. From Lemma 15.14 we know that once a proposal for c is chosen, every
subsequent proposal is for c. As there is exactly one first propose(t,c) that is
chosen, it follows that all successful proposals will be for the command c. Thus,
only proposals for a single command c can be chosen, and since clients only
tell servers to execute a command, when it is chosen (Line 20), each client will
eventually tell every server to execute c.

Remarks:

• If the client with the first successful proposal does not crash, it will
directly tell every server to execute c.

• However, if the client crashes before notifying any of the servers, the
servers will execute the command only once the next client is success-
ful. Once a server received a request to execute c, it can inform every
client that arrives later that there is already a chosen command, so
that the client does not waste time with the proposal process.

12 CHAPTER 15. FAULT-TOLERANCE & PAXOS

• Note that Paxos cannot make progress if half (or more) of the servers
crash, as clients cannot achieve a majority anymore.

• The original description of Paxos uses three roles: Proposers, accep-
tors and learners. Learners have a trivial role: They do nothing, they
just learn from other nodes which command was chosen.

• We assigned every node only one role. In some scenarios, it might
be useful to allow a node to have multiple roles. For example in a
peer-to-peer scenario nodes need to act as both client and server.

• Clients (Proposers) must be trusted to follow the protocol strictly.
However, this is in many scenarios not a reasonable assumption. In
such scenarios, the role of the proposer can be executed by a set of
servers, and clients need to contact proposers, to propose values in
their name.

• So far, we only discussed how a set of nodes can reach decision for a
single command with the help of Paxos. We call such a single decision
an instance of Paxos.

• For state replication as in Definition 15.8, we need to be able to exe-
cute multiple commands, we can extend each instance with an instance
number, that is sent around with every message. Once the 1st com-
mand is chosen, any client can decide to start a new instance and
compete for the 2nd command. If a server did not realize that the 1st

instance already came to a decision, the server can ask other servers
about the decisions to catch up.

Chapter Notes

Two-phase protocols have been around for a long time, and it is unclear if there
is a single source of this idea. One of the earlier descriptions of this concept can
found in the book of Gray [Gra78].

Leslie Lamport introduced Paxos in 1989. But why is it called Paxos? Lam-
port described the algorithm as the solution to a problem of the parliament
of a fictitious Greek society on the island Paxos. He even liked this idea so
much, that he gave some lectures in the persona of an Indiana-Jones-style ar-
chaeologist! When the paper was submitted, many readers were so distracted by
the descriptions of the activities of the legislators, they did not understand the
meaning and purpose of the algorithm. The paper was rejected. But Lamport
refused to rewrite the paper, and he later wrote that he “was quite annoyed at
how humorless everyone working in the field seemed to be”. A few years later,
when the need for a protocol like Paxos arose again, Lamport simply took the
paper out of the drawer and gave it to his colleagues. They liked it. So Lamport
decided to submit the paper (in basically unaltered form!) again, 8 years after
he wrote it – and it got accepted! But as this paper [Lam98] is admittedly hard
to read, he had mercy, and later wrote a simpler description of Paxos [Lam01].

Leslie Lamport is an eminent scholar when it comes to understanding dis-
tributed systems, and we will learn some of his contributions in almost every
chapter. Not surprisingly, Lamport has won the 2013 Turing Award for his

BIBLIOGRAPHY 13

fundamental contributions to the “theory and practice of distributed and con-
current systems, notably the invention of concepts such as causality and logical
clocks, safety and liveness, replicated state machines, and sequential consis-
tency” [Mal13]. One can add arbitrarily to this official citation, for instance
Lamports popular LaTeX typesetting system, based on Donald Knuths TeX.

This chapter was written in collaboration with David Stolz.

Bibliography

[Gra78] James N Gray. Notes on data base operating systems. Springer, 1978.

[Lam98] Leslie Lamport. The part-time parliament. ACM Transactions on
Computer Systems (TOCS), 16(2):133–169, 1998.

[Lam01] Leslie Lamport. Paxos made simple. ACM Sigact News, 32(4):18–25,
2001.

[Mal13] Dahlia Malkhi. Leslie Lamport. ACM webpage, 2013.

Chapter 16

Consensus

16.1 Two Friends

Alice wants to arrange dinner with Bob, and since both of them are very re-
luctant to use the “call” functionality of their phones, she sends a text message
suggesting to meet for dinner at 6pm. However, texting is unreliable, and Alice
cannot be sure that the message arrives at Bob’s phone, hence she will only go
to the meeting point if she receives a confirmation message from Bob. But Bob
cannot be sure that his confirmation message is received; if the confirmation is
lost, Alice cannot determine if Bob did not even receive her suggestion, or if
Bob’s confirmation was lost. Therefore, Bob demands a confirmation message
from Alice, to be sure that she will be there. But as this message can also be
lost. . .

You can see that such a message exchange continues forever, if both Alice
and Bob want to be sure that the other person will come to the meeting point!

Remarks:

• Such a protocol cannot terminate: Assume that there are protocols
which lead to agreement, and P is one of the protocols which require
the least number of messages. As the last confirmation might be lost
and the protocol still needs to guarantee agreement, we can simply
decide to always omit the last message. This gives us a new protocol
P ′ which requires less messages than P , contradicting the assumption
that P required the minimal amount of messages.

• Can Alice and Bob use Paxos?

16.2 Consensus

In Chapter 15 we studied a problem that we vaguely called agreement. We will
now introduce a formally specified variant of this problem, called consensus.

Definition 16.1 (consensus). There are n nodes, of which at most f might
crash, i.e., at least n− f nodes are correct. Node i starts with an input value
vi. The nodes must decide for one of those values, satisfying the following
properties:

14

16.3. IMPOSSIBILITY OF CONSENSUS 15

• Agreement All correct nodes decide for the same value.

• Termination All correct nodes terminate in finite time.

• Validity The decision value must be the input value of a node.

Remarks:

• We assume that every node can send messages to every other node,
and that we have reliable links, i.e., a message that is sent will be
received.

• There is no broadcast medium. If a node wants to send a message
to multiple nodes, it needs to send multiple individual messages. If a
node crashes while broadcasting, not all nodes may receive the broad-
casted message. Later we will call this best-effort broadcast.

• Does Paxos satisfy all three criteria? If you study Paxos carefully, you
will notice that Paxos does not guarantee termination. For example,
the system can be stuck forever if two clients continuously request
tickets, and neither of them ever manages to acquire a majority.

• One may hope to fix Paxos somehow, to guarantee termination. How-
ever, this is impossible. In fact, the consensus problem of Definition
16.1 cannot be solved by any algorithm.

16.3 Impossibility of Consensus

Model 16.2 (asynchronous). In the asynchronous model, algorithms are
event based (“upon receiving message . . . , do . . . ”). Nodes do not have access
to a synchronized wall-clock. A message sent from one node to another will
arrive in a finite but unbounded time.

Remarks:

• The asynchronous time model is a widely used formalization of the
variable message delay model (Model 15.6).

Definition 16.3 (asynchronous runtime). For algorithms in the asynchronous
model, the runtime is the number of time units from the start of the execution
to its completion in the worst case (every legal input, every execution scenario),
assuming that each message has a delay of at most one time unit.

Remarks:

• The maximum delay cannot be used in the algorithm design, i.e., the
algorithm must work independent of the actual delay.

• Asynchronous algorithms can be thought of as systems, where local
computation is significantly faster than message delays, and thus can
be done in no time. Nodes are only active once an event occurs (a
message arrives), and then they perform their actions “immediately”.

16 CHAPTER 16. CONSENSUS

• We will show now that crash failures in the asynchronous model can
be quite harsh. In particular there is no deterministic fault-tolerant
consensus algorithm in the asynchronous model, not even for binary
input.

Definition 16.4 (configuration). We say that a system is fully defined (at any
point during the execution) by its configuration C. The configuration includes
the state of every node, and all messages that are in transit (sent but not yet
received).

Definition 16.5 (univalent). We call a configuration C univalent, if the de-
cision value is determined independently of what happens afterwards.

Remarks:

• We call a configuration that is univalent for value v v-valent.

• Note that a configuration can be univalent, even though no single
node is aware of this. For example, the configuration in which all
nodes start with value 0 is 0-valent (due to the validity requirement).

• As we restricted the input values to be binary, the decision value
of any consensus algorithm will also be binary (due to the validity
requirement).

Definition 16.6 (bivalent). A configuration C is called bivalent if the nodes
might decide for 0 or 1.

Remarks:

• The decision value depends on the order in which messages are re-
ceived or on crash events. I.e., the decision is not yet made.

• We call the initial configuration of an algorithm C0. When nodes are
in C0, all of them executed their initialization code and possibly, based
on their input values, sent some messages. These initial messages are
also included in C0. In other words, in C0 the nodes are now waiting
for the first message to arrive.

Lemma 16.7. There is at least one selection of input values V such that the
according initial configuration C0 is bivalent, if f ≥ 1.

Proof. As explained in the previous remark, C0 only depends on the input values
of the nodes. Let V = [v0, v1, . . . , vn−1] denote the array of input values, where
vi is the input value of node i.

We construct n+1 arrays V0, V1, . . . , Vn, where the index i in Vi denotes the
position in the array up to which all input values are 1. So, V0 = [0, 0, 0, . . . , 0],
V1 = [1, 0, 0, . . . , 0], and so on, up to Vn = [1, 1, 1, . . . , 1].

Note that the configuration corresponding to V0 must be 0-valent so that the
validity requirement is satisfied. Analogously, the configuration corresponding
to Vn must be 1-valent. Assume that all initial configurations with starting
values Vi are univalent. Therefore, there must be at least one index b, such

16.3. IMPOSSIBILITY OF CONSENSUS 17

that the configuration corresponding to Vb−1 is 0-valent, and configuration cor-
responding to Vb is 1-valent. Observe that only the input value of the bth node
differs from Vb−1 to Vb.

Since we assumed that the algorithm can tolerate at least one failure, i.e.,
f ≥ 1, we look at the following execution: All nodes except b start with their
initial value according to Vb−1 respectively Vb. Node b is “extremely slow”;
i.e., all messages sent by b are scheduled in such a way, that all other nodes
must assume that b crashed, in order to satisfy the termination requirement.
Since the nodes cannot determine the value of b, and we assumed that all initial
configurations are univalent, they will decide for a value v independent of the
initial value of b. Since Vb−1 is 0-valent, v must be 0. However we know that
Vb is 1-valent, thus v must be 1. Since v cannot be both 0 and 1, we have a
contradiction.

Definition 16.8 (transition). A transition from configuration C to a following
configuration Cτ is characterized by an event τ = (u,m), i.e., node u receiving
message m.

Remarks:

• Transitions are the formally defined version of the “events” in the
asynchronous model we described before.

• A transition τ = (u,m) is only applicable to C, if m was still in transit
in C.

• Cτ differs from C as follows: m is no longer in transit, u has possibly
a different state (as u can update its state based on m), and there are
(potentially) new messages in transit, sent by u.

Definition 16.9 (configuration tree). The configuration tree is a directed tree
of configurations. Its root is the configuration C0 which is fully characterized by
the input values V . The edges of the tree are the transitions; every configuration
has all applicable transitions as outgoing edges.

Remarks:

• For any algorithm, there is exactly one configuration tree for every
selection of input values.

• Leaves are configurations where the execution of the algorithm termi-
nated. Note that we use termination in the sense that the system as
a whole terminated, i.e., there will not be any transition anymore.

• Every path from the root to a leaf is one possible asynchronous exe-
cution of the algorithm.

• Leaves must be univalent, or the algorithm terminates without agree-
ment.

• If a node u crashes when the system is in C, all transitions (u, ∗) are
removed from C in the configuration tree.

18 CHAPTER 16. CONSENSUS

Lemma 16.10. Assume two transitions τ1 = (u1,m1) and τ2 = (u2,m2) for
u1 6= u2 are both applicable to C. Let Cτ1τ2 be the configuration that follows C
by first applying transition τ1 and then τ2, and let Cτ2τ1 be defined analogously.
It holds that Cτ1τ2 = Cτ2τ1 .

Proof. Observe that τ2 is applicable to Cτ1 , since m2 is still in transit and τ1
cannot change the state of u2. With the same argument τ1 is applicable to Cτ2 ,
and therefore both Cτ1τ2 and Cτ2τ1 are well-defined. Since the two transitions
are completely independent of each other, meaning that they consume the same
messages, lead to the same state transitions and to the same messages being
sent, it follows that Cτ1τ2 = Cτ2τ1 .

Definition 16.11 (critical configuration). We say that a configuration C is
critical, if C is bivalent, but all configurations that are direct children of C in
the configuration tree are univalent.

Remarks:

• Informally, C is critical, if it is the last moment in the execution where
the decision is not yet clear. As soon as the next message is processed
by any node, the decision will be determined.

Lemma 16.12. If a system is in a bivalent configuration, it must reach a critical
configuration within finite time, or it does not always solve consensus.

Proof. Recall that there is at least one bivalent initial configuration (Lemma
16.7). Assuming that this configuration is not critical, there must be at least
one bivalent following configuration; hence, the system may enter this configura-
tion. But if this configuration is not critical as well, the system may afterwards
progress into another bivalent configuration. As long as there is no critical con-
figuration, an unfortunate scheduling (selection of transitions) can always lead
the system into another bivalent configuration. The only way how an algo-
rithm can enforce to arrive in a univalent configuration is by reaching a critical
configuration.

Therefore we can conclude that a system which does not reach a critical
configuration has at least one possible execution where it will terminate in a
bivalent configuration (hence it terminates without agreement), or it will not
terminate at all.

Lemma 16.13. If a configuration tree contains a critical configuration, crashing
a single node can create a bivalent leaf; i.e., a crash prevents the algorithm from
reaching agreement.

Proof. Let C denote critical configuration in a configuration tree, and let T
be the set of transitions applicable to C. Let τ0 = (u0,m0) ∈ T and τ1 =
(u1,m1) ∈ T be two transitions, and let Cτ0 be 0-valent and Cτ1 be 1-valent.
Note that T must contain these transitions, as C is a critical configuration.

Assume that u0 6= u1. Using Lemma 16.10 we know that C has a following
configuration Cτ0τ1 = Cτ1τ0 . Since this configuration follows Cτ0 it must be 0-
valent. However, this configuration also follows Cτ1 and must hence be 1-valent.
This is a contradiction and therefore u0 = u1 must hold.

16.3. IMPOSSIBILITY OF CONSENSUS 19

Therefore we can pick one particular node u for which there is a transition
τ = (u,m) ∈ T which leads to a 0-valent configuration. As shown before, all
transitions in T which lead to a 1-valent configuration must also take place on
u. Since C is critical, there must be at least one such transition. Applying the
same argument again, it follows that all transitions in T that lead to a 0-valent
configuration must take place on u as well, and since C is critical, there is no
transition in T that leads to a bivalent configuration. Therefore all transitions
applicable to C take place on the same node u!

If this node u crashes while the system is in C, all transitions are removed,
and therefore the system is stuck in C, i.e., it terminates in C. But as C is
critical, and therefore bivalent, the algorithm fails to reach an agreement.

Theorem 16.14. There is no deterministic algorithm which always achieves
consensus in the asynchronous model, with f > 0.

Proof. We assume that the input values are binary, as this is the easiest non-
trivial possibility. From Lemma 16.7 we know that there must be at least one
bivalent initial configuration C. Using Lemma 16.12 we know that if an algo-
rithm solves consensus, all executions starting from the bivalent configuration
C must reach a critical configuration. But if the algorithm reaches a critical
configuration, a single crash can prevent agreement (Lemma 16.13).

Remarks:

• If f = 0, then each node can simply send its value to all others, wait
for all values, and choose the minimum.

• But if a single node may crash, there is no deterministic solution to
consensus in the asynchronous model.

• How can the situation be improved? For example by giving each node
access to randomness, i.e., we allow each node to toss a coin.

20 CHAPTER 16. CONSENSUS

16.4 Randomized Consensus

Algorithm 16.15 Randomized Consensus (assuming f < n/2)

1: vi ∈ {0, 1} / input bit
2: round = 1
3: while true do
4: Broadcast myValue(vi, round)

Propose

5: Wait until a majority of myValue messages of current round arrived
6: if all messages contain the same value v then
7: Broadcast propose(v, round)
8: else
9: Broadcast propose(⊥, round)

10: end if

Vote

11: Wait until a majority of propose messages of current round arrived
12: if all messages propose the same value v then
13: Broadcast myValue(v, round + 1)
14: Broadcast propose(v, round + 1)
15: Decide for v and terminate
16: else if there is at least one proposal for v then
17: vi = v
18: else
19: Choose vi randomly, with Pr[vi = 0] = Pr[vi = 1] = 1/2
20: end if
21: round = round + 1
22: end while

Remarks:

• The idea of Algorithm 16.15 is very simple: Either all nodes start
with the same input bit, which makes consensus easy. Otherwise,
nodes toss a coin until a large number of nodes get – by chance – the
same outcome.

Lemma 16.16. As long as no node decides and terminates, Algorithm 16.15
does not get stuck, independent of which nodes crash.

Proof. The only two steps in the algorithm when a node waits are in Lines 5
and 11. Since a node only waits for a majority of the nodes to send a message,
and since f < n/2, the node will always receive enough messages to continue,
as long as no correct node terminates.

Lemma 16.17. Algorithm 16.15 satisfies the validity requirement.

Proof. Observe that the validity requirement of consensus, when restricted to
binary input values, corresponds to: If all nodes start with v, then v must be

16.4. RANDOMIZED CONSENSUS 21

chosen; otherwise, either 0 or 1 is acceptable, and the validity requirement is
automatically satisfied.

Assume that all nodes start with v. In this case, all nodes propose v in the
first round. As all nodes only hear proposals for v, all nodes decide for v (Line
15) and terminate in the same round.

Lemma 16.18. Algorithm 16.15 satisfies the agreement requirement.

Proof. Observe that proposals for both 0 and 1 cannot occur in the same round,
as nodes only send a proposal for v, if they hear a majority for v in Line 5.

Let u be the first node that decides for a value v in round r. Hence, it received
a majority of proposals for v in r (Line 7). Note that once a node receives a
majority of proposals for a value, it will adapt this value and terminate in the
same round. Since there cannot be a proposal for any other value in r, it follows
that no node decides for a different value in r.

In Lemma 16.16 we only showed that nodes do not get stuck as long as no
node decides, thus we need to be careful that no node gets stuck if u terminates.

Any node u′ 6= u can experience one of two scenarios: Either it also receives
a majority for v in round r and terminates, or it does not receive a majority.
In the first case, the agreement requirement is directly satisfied, and also the
node cannot get stuck. Let us study the latter case. Since u heard a majority
of proposals for v, it follows that every node hears at least one proposal for v.
Hence, all nodes set their value vi to v in round r. The nodes that terminate
in round r also send one additional myValue and one propose message (Lines
13, 14). Therefore, all nodes will broadcast v at the beginning of round r + 1,
all nodes will propose v in the same round and, finally, all nodes will decide for
the same value v.

Lemma 16.19. Algorithm 16.15 satisfies the termination requirement, i.e., all
nodes terminate in expected time O(2n).

Proof. We know from the proof of Lemma 16.18 that once a node hears a ma-
jority of proposals for a value, all nodes will terminate at most one round later.
Hence, we only need to show that a node receives a majority of proposals for
the same value within expected time O(2n).

Assume that no node receives a majority of proposals for the same value.
In such a round, some nodes may update their value to v based on a proposal
(Line 17). As shown before, all nodes that update the value based on a proposal,
adapt the same value v. The rest of the nodes chooses 0 or 1 randomly. The
probability that all nodes choose the same value v in one round is hence at
least 1/2n. Therefore, the expected number of rounds is bounded by O(2n). As
every round consists of two message exchanges, the asymptotic runtime of the
algorithm is equal to the number of rounds.

Theorem 16.20. Algorithm 16.15 achieves binary consensus with expected run-
time O(2n) if up to f < n/2 nodes crash.

22 CHAPTER 16. CONSENSUS

Remarks:

• How good is a fault tolerance of f < n/2?

Theorem 16.21. There is no consensus algorithm for the asynchronous model
that tolerates f ≥ n/2 many failures.

Proof. Assume that there is an algorithm that can handle f = n/2 many fail-
ures. We partition the set of all nodes into two sets N,N ′ both containing n/2
many nodes. Let us look at three different selection of input values: In V0 all
nodes start with 0. In V1 all nodes start with 1. In Vhalf all nodes in N start
with 0, and all nodes in N ′ start with 1.

Assume that nodes start with Vhalf. Since the algorithm must solve consensus
independent of the scheduling of the messages, we study the scenario where
all messages sent from nodes in N to nodes in N ′ (or vice versa) are heavily
delayed. Note that the nodes in N cannot determine if they started with V0 or
Vhalf. Analogously, the nodes in N ′ cannot determine if they started in V1 or
Vhalf. Hence, if the algorithm terminates before any message from the other set
is received, N must decide for 0 and N ′ must decide for 1 (to satisfy the validity
requirement, as they could have started with V0 respectively V1). Therefore,
the algorithm would fail to reach agreement.

The only possibility to overcome this problem is to wait for at least one
message sent from a node of the other set. However, as f = n/2 many nodes
can crash, the entire other set could have crashed before they sent any message.
In that case, the algorithm would wait forever and therefore not satisfy the
termination requirement.

Remarks:

• Algorithm 16.15 solves consensus with optimal fault-tolerance – but it
is awfully slow. The problem is rooted in the individual coin tossing:
If all nodes toss the same coin, they could terminate in a constant
number of rounds.

• Can this problem be fixed by simply always choosing 1 at Line 19?!

• This cannot work: Such a change makes the algorithm deterministic,
and therefore it cannot achieve consensus (Theorem 16.14). Simulat-
ing what happens by always choosing 1, one can see that it might
happen that there is a majority for 0, but a minority with value 1
prevents the nodes from reaching agreement.

• Nevertheless, the algorithm can be improved by tossing a so-called
shared coin. A shared coin is a random variable that is 0 for all nodes
with constant probability, and 1 with constant probability. Of course,
such a coin is not a magic device, but it is simply an algorithm. To
improve the expected runtime of Algorithm 16.15, we replace Line 19
with a function call to the shared coin algorithm.

16.5. SHARED COIN 23

16.5 Shared Coin

Algorithm 16.22 Shared Coin (code for node u)

1: Choose local coin cu = 0 with probability 1/n, else cu = 1
2: Broadcast myCoin(cu)

3: Wait for n− f coins and store them in the local coin set Cu
4: Broadcast mySet(Cu)

5: Wait for n− f coin sets
6: if at least one coin is 0 among all coins in the coin sets then
7: return 0
8: else
9: return 1

10: end if

Remarks:

• Since at most f nodes crash, all nodes will always receive n− f coins
respectively coin sets in Lines 3 and 5. Therefore, all nodes make
progress and termination is guaranteed.

• We show the correctness of the algorithm for f < n/3. To simplify
the proof we assume that n = 3f + 1, i.e., we assume the worst case.

Lemma 16.23. Let u be a node, and let W be the set of coins that u received
in at least f + 1 different coin sets. It holds that |W | ≥ f + 1.

Proof. Let C be the multiset of coins received by u. Observe that u receives
exactly |C| = (n−f)2 many coins, as u waits for n−f coin sets each containing
n− f coins.

Assume that the lemma does not hold. Then, at most f coins are in all n−f
coin sets, and all other coins (n− f) are in at most f coin sets. In other words,
the total number of coins that u received is bounded by

|C| ≤ f · (n− f) + (n− f) · f = 2f(n− f).

Our assumption was that n > 3f , i.e., n−f > 2f . Therefore |C| ≤ 2f(n−f) <
(n− f)2 = |C|, which is a contradiction.

Lemma 16.24. All coins in W are seen by all correct nodes.

Proof. Let w ∈ W be such a coin. By definition of W we know that w is in at
least f + 1 sets received by u. Since every other node also waits for n− f sets
before terminating, each node will receive at least one of these sets, and hence
w must be seen by every node that terminates.

Theorem 16.25. If f < n/3 nodes crash, Algorithm 16.22 implements a shared
coin.

Proof. Let us first bound the probability that the algorithm returns 1 for all
nodes. With probability (1 − 1/n)n ≈ 1/e ≈ 0.37 all nodes chose their local

24 CHAPTER 16. CONSENSUS

coin equal to 1 (Line 1), and in that case 1 will be decided. This is only a lower
bound on the probability that all nodes return 1, as there are also other scenarios
based on message scheduling and crashes which lead to a global decision for 1.
But a probability of 0.37 is good enough, so we do not need to consider these
scenarios.

With probability 1 − (1 − 1/n)|W | there is at least one 0 in W . Using
Lemma 16.23 we know that |W | ≥ f + 1 ≈ n/3, hence the probability is about
1 − (1 − 1/n)n/3 ≈ 1 − (1/e)1/3 ≈ 0.28. We know that this 0 is seen by all
nodes (Lemma 16.24), and hence everybody will decide 0. Thus Algorithm
16.22 implements a shared coin.

Remarks:

• We only proved the worst case. By choosing f fairly small, it is clear
that f + 1 6≈ n/3. However, Lemma 16.23 can be proved for |W | ≥
n − 2f . To prove this claim you need to substitute the expressions
in the contradictory statement: At most n − 2f − 1 coins can be in
all n− f coin sets, and n− (n− 2f − 1) = 2f + 1 coins can be in at
most f coin sets. The remainder of the proof is analogous, the only
difference is that the math is not as neat. Using the modified Lemma
we know that |W | ≥ n/3, and therefore Theorem 16.25 also holds for
any f < n/3.

• We implicitly assumed that message scheduling was random; if we
need a 0 but the nodes that want to propose 0 are “slow”, nobody is
going to see these 0’s, and we do not have progress. There exist more
complicated protocols that solve this problem.

Theorem 16.26. Plugging Algorithm 16.22 into Algorithm 16.15 we get a ran-
domized consensus algorithm which terminates in a constant expected number
of rounds tolerating up to f < n/3 crash failures.

Chapter Notes

The problem of two friends arranging a meeting was presented and studied under
many different names; nowadays, it is usually referred to as the Two Generals
Problem. The impossibility proof was established in 1975 by Akkoyunlu et
al. [AEH75].

The proof that there is no deterministic algorithm that always solves con-
sensus is based on the proof of Fischer, Lynch and Paterson [FLP85], known as
FLP, which they established in 1985. This result was awarded the 2001 PODC
Influential Paper Award (now called Dijkstra Prize). The idea for the ran-
domized consensus algorithm was originally presented by Ben-Or [Ben83]. The
concept of a shared coin was introduced by Bracha [Bra87]. The shared coin
algorithm in this chapter was proposed by [AW04]and it assumes randomized
scheduling. A shared coin that can withstand worst-case scheduling has been
developed by Alistarh et al. [AAKS14]; this shared coin was inspired by earlier
shared coin solutions in the shared memory model [Cha96].

Apart from randomization, there are other techniques to still get consensus.
One possibility is to drop asynchrony and rely on time more, e.g. by assuming

BIBLIOGRAPHY 25

partial synchrony [DLS88] or timed asynchrony [CF98]. Another possibility is
to add failure detectors [CT96].

This chapter was written in collaboration with David Stolz.

Bibliography

[AAKS14] Dan Alistarh, James Aspnes, Valerie King, and Jared Saia.
Communication-efficient randomized consensus. In 28th Interna-
tional Symposium of Distributed Computing (DISC), Austin, TX,
USA, October 12-15, 2014, pages 61–75, 2014.

[AEH75] EA Akkoyunlu, K Ekanadham, and RV Huber. Some constraints
and tradeoffs in the design of network communications. In ACM
SIGOPS Operating Systems Review, volume 9, pages 67–74. ACM,
1975.

[AW04] Hagit Attiya and Jennifer Welch. Distributed Computing: Funda-
mentals, Simulations and Advanced Topics (2nd edition). John Wi-
ley Interscience, March 2004.

[Ben83] Michael Ben-Or. Another advantage of free choice (extended ab-
stract): Completely asynchronous agreement protocols. In Proceed-
ings of the second annual ACM symposium on Principles of distrib-
uted computing, pages 27–30. ACM, 1983.

[Bra87] Gabriel Bracha. Asynchronous byzantine agreement protocols. In-
formation and Computation, 75(2):130–143, 1987.

[CF98] Flaviu Cristian and Christof Fetzer. The timed asynchronous dis-
tributed system model. In Digest of Papers: FTCS-28, The Twenty-
Eigth Annual International Symposium on Fault-Tolerant Comput-
ing, Munich, Germany, June 23-25, 1998, pages 140–149, 1998.

[Cha96] Tushar Deepak Chandra. Polylog randomized wait-free consensus. In
Proceedings of the Fifteenth Annual ACM Symposium on Principles
of Distributed Computing, Philadelphia, Pennsylvania, USA, pages
166–175, 1996.

[CT96] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors
for reliable distributed systems. J. ACM, 43(2):225–267, 1996.

[DLS88] Cynthia Dwork, Nancy A. Lynch, and Larry J. Stockmeyer. Con-
sensus in the presence of partial synchrony. J. ACM, 35(2):288–323,
1988.

[FLP85] Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossi-
bility of Distributed Consensus with One Faulty Process. J. ACM,
32(2):374–382, 1985.

Chapter 17

Byzantine Agreement

In order to make flying safer, researchers studied possible failures of various
sensors and machines used in airplanes. While trying to model the failures,
they were confronted with the following problem: Failing machines did not
just crash, instead they sometimes showed an unusual behavior before stopping
completely. With these insights researchers proposed a more general failure
model.

Definition 17.1 (Byzantine). A node which can have arbitrary behavior is
called byzantine. This includes “anything imaginable”, e.g., not sending any
messages at all, or sending different and wrong messages to different neighbors,
or lying about the input value.

Remarks:

• Byzantine behavior also includes collusion, i.e., all byzantine nodes
are being controlled by the same adversary.

• We assume that any two nodes communicate directly, and that no
node can forge an incorrect sender address. This is a requirement, such
that a single byzantine node cannot simply impersonate all nodes!

• We call non-byzantine nodes correct nodes.

Definition 17.2 (Byzantine Agreement). Finding consensus as in Definition
16.1 in a system with byzantine nodes is called byzantine agreement. An
algorithm is f -resilient if it still works correctly with f byzantine nodes.

Remarks:

• As for consensus (Definition 16.1) we also need agreement, termination
and validity. Agreement and termination are straight-forward, but
what about validity?

26

17.1. VALIDITY 27

17.1 Validity

Definition 17.3 (Any-Input Validity). The decision value must be the input
value of any node.

Remarks:

• This is the validity definition we used for consensus, in Definition 16.1.

• Does this definition still make sense in the presence of byzantine
nodes? What if byzantine nodes lie about their inputs?

• We would wish for a validity definition that differentiates between
byzantine and correct inputs.

Definition 17.4 (Correct-Input Validity). The decision value must be the input
value of a correct node.

Remarks:

• Unfortunately, implementing correct-input validity does not seem to
be easy, as a byzantine node following the protocol but lying about
its input value is indistinguishable from a correct node. Here is an
alternative.

Definition 17.5 (All-Same Validity). If all correct nodes start with the same
input v, the decision value must be v.

Remarks:

• If the decision values are binary, then correct-input validity is induced
by all-same validity.

• If the input values are not binary, but for example from sensors that
deliver values in R, all-same validity is in most scenarios not really
useful.

Definition 17.6 (Median Validity). If the input values are orderable, e.g.
v ∈ R, byzantine outliers can be prevented by agreeing on a value close to the
median of the correct input values – how close depends on the number of byzan-
tine nodes f .

Remarks:

• Is byzantine agreement possible? If yes, with what validity condition?

• Let us try to find an algorithm which tolerates 1 single byzantine node,
first restricting to the so-called synchronous model.

Model 17.7 (synchronous). In the synchronous model, nodes operate in
synchronous rounds. In each round, each node may send a message to the
other nodes, receive the messages sent by the other nodes, and do some local
computation.

Definition 17.8 (synchronous runtime). For algorithms in the synchronous
model, the runtime is simply the number of rounds from the start of the ex-
ecution to its completion in the worst case (every legal input, every execution
scenario).

28 CHAPTER 17. BYZANTINE AGREEMENT

17.2 How Many Byzantine Nodes?

Algorithm 17.9 Byzantine Agreement with f = 1.

1: Code for node u, with input value x:

Round 1

2: Send tuple(u, x) to all other nodes
3: Receive tuple(v, y) from all other nodes v
4: Store all received tuple(v, y) in a set Su

Round 2

5: Send set Su to all other nodes
6: Receive sets Sv from all nodes v
7: T = set of tuple(v, y) seen in at least two sets Sv, including own Su
8: Let tuple(v, y) ∈ T be the tuple with the smallest value y
9: Decide on value y

Remarks:

• Byzantine nodes may not follow the protocol and send syntactically
incorrect messages. Such messages can easily be detected and dis-
carded. It is worse if byzantine nodes send syntactically correct mes-
sages, but with bogus content, e.g., they send different messages to
different nodes.

• Some of these mistakes cannot easily be detected: For example, if a
byzantine node sends different values to different nodes in the first
round; such values will be put into Su. However, some mistakes can
and must be detected: Observe that all nodes only relay information
in Round 2, and do not repeat their own value. So, if a byzantine
node sends a set Sv which contains a tuple(v, y), this tuple must be
removed by u from Sv upon receiving it (Line 6).

• Recall that we assumed that nodes cannot forge their source address;
thus, if a node receives tuple(v, y) in Round 1, it is guaranteed that
this message was sent by v.

Lemma 17.10. If n ≥ 4, all correct nodes have the same set T .

Proof. With f = 1 and n ≥ 4 we have at least 3 correct nodes. A correct node
will see every correct value at least twice, once directly from another correct
node, and once through the third correct node. So all correct values are in T .
If the byzantine node sends the same value to at least 2 other (correct) nodes,
all correct nodes will see the value twice, so all add it to set T . If the byzantine
node sends all different values to the correct nodes, none of these values will
end up in any set T .

Theorem 17.11. Algorithm 17.9 reaches byzantine agreement if n ≥ 4.

Proof. We need to show agreement, any-input validity and termination. With
Lemma 17.10 we know that all correct nodes have the same set T , and therefore

17.2. HOW MANY BYZANTINE NODES? 29

agree on the same minimum value. The nodes agree on a value proposed by any
node, so any-input validity holds. Moreover, the algorithm terminates after two
rounds.

Remarks:

• If n > 4 the byzantine node can put multiple values into T .

• Algorithm 17.9 only provides any-input agreement, which is question-
able in the byzantine context: Assume a byzantine node sends different
values to different nodes, what is its input value in that case?

• Algorithm 17.9 can be slightly modified to achieve all-same validity
by choosing the smallest value that occurs at least twice.

• The idea of this algorithm can be generalized for any f and n >
3f . In the generalization, every node sends in every of f + 1 rounds
all information it learned so far to all other nodes. In other words,
message size increases exponentially with f .

• Does Algorithm 17.9 also work with n = 3?

Theorem 17.12. Three nodes cannot reach byzantine agreement with all-same
validity if one node among them is byzantine.

Proof. We will assume that the three nodes satisfy all-same validity and show
that they will violate the agreement condition under this assumption.

In order to achieve all-same validity, nodes have to deterministically decide
for a value x if it is the input value of every correct node. Recall that a Byzantine
node which follows the protocol is indistinguishable from a correct node. Assume
a correct node sees that n−f nodes including itself have an input value x. Then,
by all-same validity, this correct node must deterministically decide for x.

In the case of three nodes (n − f = 2), a node has to decide on its own
input value if another node has the same input value. Let us call the three
nodes u, v and w. If correct node u has input 0 and correct node v has input
1, the byzantine node w can fool them by telling u that its value is 0 and
simultaneously telling v that its value is 1. By all-same validity, this leads to u
and v deciding on two different values, which violates the agreement condition.
Even if u talks to v, and they figure out that they have different assumptions
about w’s value, u cannot distinguish whether w or v is byzantine.

Theorem 17.13. A network with n nodes cannot reach byzantine agreement
with f ≥ n/3 byzantine nodes.

Proof. Assume (for the sake of contradiction) that there exists an algorithm
A that reaches byzantine agreement for n nodes with f ≥ dn/3e byzantine
nodes. We will show that A cannot satisfy all-same validity and agreement
simultaneously.

Let us divide the n nodes into three groups of size n/3 (either bn/3c or
dn/3e, if n is not divisible by 3). Assume that one group of size dn/3e ≥ n/3
contains only Byzantine and the other two groups only correct nodes. Let
one group of correct nodes start with input value 0 and the other with input
value 1. As in Lemma 17.12, the group of Byzantine nodes supports the input

30 CHAPTER 17. BYZANTINE AGREEMENT

value of each node, so each correct node observes at least n − f nodes who
support its own input value. Because of all-same validity, every correct node
has to deterministically decide on its own input value. Since the two groups
of correct nodes had different input values, the nodes will decide on different
values respectively, thus violating the agreement property.

17.3 The King Algorithm

Algorithm 17.14 King Algorithm (for f < n/3)

1: x = my input value
2: for phase = 1 to f + 1 do

Vote

3: Broadcast value(x)

Propose

4: if some value(y) received at least n− f times then
5: Broadcast propose(y)
6: end if
7: if some propose(z) received more than f times then
8: x = z
9: end if

King

10: Let node vi be the predefined king of this phase i
11: The king vi broadcasts its current value w
12: if received strictly less than n− f propose(y) then
13: x = w
14: end if
15: end for

Lemma 17.15. Algorithm 17.14 fulfills the all-same validity.

Proof. If all correct nodes start with the same value, all correct nodes propose it
in Line 5. All correct nodes will receive at least n− f proposals, i.e., all correct
nodes will stick with this value, and never change it to the king’s value. This
holds for all phases.

Lemma 17.16. If a correct node proposes x, no other correct node proposes y,
with y 6= x, if n > 3f .

Proof. Assume (for the sake of contradiction) that a correct node proposes value
x and another correct node proposes value y. Since a good node only proposes
a value if it heard at least n−f value messages, we know that both nodes must
have received their value from at least n− 2f distinct correct nodes (as at most
f nodes can behave byzantine and send x to one node and y to the other one).
Hence, there must be a total of at least 2(n − 2f) + f = 2n − 3f nodes in the
system. Using 3f < n, we have 2n− 3f > n nodes, a contradiction.

17.4. LOWER BOUND ON NUMBER OF ROUNDS 31

Lemma 17.17. There is at least one phase with a correct king.

Proof. There are f + 1 phases, each with a different king. As there are only f
byzantine nodes, one king must be correct.

Lemma 17.18. After a phase with a correct king, the correct nodes will not
change their values v anymore, if n > 3f .

Proof. If all correct nodes change their values to the king’s value, all correct
nodes have the same value. If some correct node does not change its value to
the king’s value, it received a proposal at least n − f times, therefore at least
n−2f correct nodes broadcasted this proposal. Thus, all correct nodes received
it at least n − 2f > f times (using n > 3f), therefore all correct nodes set
their value to the proposed value, including the correct king. Note that only
one value can be proposed more than f times, which follows from Lemma 17.16.
With Lemma 17.15, no node will change its value after this phase.

Theorem 17.19. Algorithm 17.14 solves byzantine agreement.

Proof. The king algorithm reaches agreement as either all correct nodes start
with the same value, or they agree on the same value latest after the phase
where a correct node was king according to Lemmas 17.17 and 17.18. Because
of Lemma 17.15 we know that they will stick with this value. Termination is
guaranteed after 3(f + 1) rounds, and all-same validity is proved in Lemma
17.15.

Remarks:

• Algorithm 17.14 requires f + 1 predefined kings. We assume that the
kings (and their order) are given. Finding the kings indeed would be
a byzantine agreement task by itself, so this must be done before the
execution of the King algorithm.

• Do algorithms exist which do not need predefined kings? Yes, see
Section 17.5.

• Can we solve byzantine agreement (or at least consensus) in less than
f + 1 rounds?

17.4 Lower Bound on Number of Rounds

Theorem 17.20. A synchronous algorithm solving consensus in the presence
of f crashing nodes needs at least f+1 rounds, if nodes decide for the minimum
seen value.

Proof. Let us assume (for the sake of contradiction) that some algorithm A
solves consensus in f rounds. Some node u1 has the smallest input value x, but
in the first round u1 can send its information (including information about its
value x) to only some other node u2 before u1 crashes. Unfortunately, in the
second round, the only witness u2 of x also sends x to exactly one other node u3

before u2 crashes. This will be repeated, so in round f only node uf+1 knows
about the smallest value x. As the algorithm terminates in round f , node uf+1

will decide on value x, all other surviving (correct) nodes will decide on values
larger than x.

32 CHAPTER 17. BYZANTINE AGREEMENT

Remarks:

• A general proof without the restriction to decide for the minimum
value exists as well.

• Since byzantine nodes can also just crash, this lower bound also holds
for byzantine agreement, so Algorithm 17.14 has an asymptotically
optimal runtime.

• So far all our byzantine agreement algorithms assume the synchronous
model. Can byzantine agreement be solved in the asynchronous model?

17.5 Asynchronous Byzantine Agreement

Algorithm 17.21 Asynchronous Byzantine Agreement (Ben-Or, for f < n/10)

1: xu ∈ {0, 1} / input bit
2: round = 1 / round
3: while true do
4: Broadcast propose(xu,round)
5: Wait until n− f propose messages of current round arrived
6: if at least n/2 + 3f + 1 propose messages contain same value x then
7: Broadcast propose(x,round + 1)
8: Decide for x and terminate
9: else if at least n/2+f +1 propose messages contain same value x then

10: xu = x
11: else
12: choose xu randomly, with Pr[xu = 0] = Pr[xu = 1] = 1/2
13: end if
14: round = round + 1
15: end while

Lemma 17.22. Let a correct node choose value x in Line 10, then no other
correct node chooses value y 6= x in Line 10.

Proof. For the sake of contradiction, assume that both 0 and 1 are chosen
in Line 10. This means that both 0 and 1 had been proposed by at least
n/2 + 1 out of n− f correct nodes. In other words, we have a total of at least
2 · n/2 + 2 = n+ 2 > n− f correct nodes. Contradiction!

Theorem 17.23. Algorithm 17.21 solves binary byzantine agreement as in Def-
inition 17.2 for up to f < n/10 byzantine nodes.

Proof. First note that it is not a problem to wait for n− f propose messages in
Line 5, since at most f nodes are byzantine. If all correct nodes have the same
input value x, then all (except the f byzantine nodes) will propose the same
value x. Thus, every node receives at least n− 2f propose messages containing
x. Observe that for f < n/10, we get n − 2f > n/2 + 3f and the nodes will
decide on x in the first round already. We have established all-same validity!
If the correct nodes have different (binary) input values, the validity condition
becomes trivial as any result is fine.

17.6. RANDOM ORACLE AND BITSTRING 33

What about agreement? Let u be the first node to decide on value x (in
Line 8). Due to asynchrony, another node v received messages from a different
subset of the nodes, however, at most f senders may be different. Taking
into account that byzantine nodes may lie (send different propose messages to
different nodes), f additional propose messages received by v may differ from
those received by u. Since node u had at least n/2 + 3f + 1 propose messages
with value x, node v has at least n/2 + f + 1 propose messages with value x.
Hence every correct node will propose x in the next round and then decide on
x.

So we only need to worry about termination: We have already seen that
as soon as one correct node terminates (Line 8) everybody terminates in the
next round. So what are the chances that some node u terminates in Line 8?
Well, we can hope that all correct nodes randomly propose the same value (in
Line 12). Maybe there are some nodes not choosing randomly (entering Line 10
instead of 12), but according to Lemma 17.22 they will all propose the same.

Thus, at worst all n−f correct nodes need to randomly choose the same bit,
which happens with probability 2−(n−f)+1. If so, all correct nodes will send the
same propose message, and the algorithm terminates. So the expected running
time is exponential in the number of nodes n in the worst case.

Remarks:

• This Algorithm is a proof of concept that asynchronous byzantine
agreement can be achieved. Unfortunately this algorithm is not useful
in practice, because of its runtime.

• Note that for f ∈ O(
√
n), the probability for some node to terminate

in Line 8 is greater than some positive constant. Thus, Algorithm
17.21 terminates within expected constant number of rounds for small
values of f .

• Local coinflips are responsible for the slow runtime of Algorithm 17.21
and 16.15. Is there a simple way to replace the local coinflips by
randomness that does not cause exponential runtime?

17.6 Random Oracle and Bitstring

Definition 17.24 (Random Oracle). A random oracle is a trusted (non-byzantine)
random source which can generate random values.

Algorithm 17.25 Algorithm 17.21 with a Magic Random Oracle

1: Replace Line 12 in Algorithm 17.21 by
2: return ci, where ci is ith random bit by oracle

34 CHAPTER 17. BYZANTINE AGREEMENT

Remarks:

• Algorithm 17.25, as well as the upcoming Algorithm 17.28 will be
called in Line 12 of Algorithm 17.21. So instead of every node throwing
a local coin (and hoping that they all show the same), the nodes will
base their random decision on the proposed algorithm.

Theorem 17.26. Algorithm 17.25 plugged into Algorithm 17.21 solves asyn-
chronous byzantine agreement in expected constant number of rounds.

Proof. If there is a large majority for one of the input values in the system, all
nodes will decide within two rounds since Algorithm 17.21 satisfies all-same-
validity; the coin is not even used.

If there is no significant majority for any of the input values at the beginning
of algorithm 17.21, all correct nodes will run Algorithm 17.25. Therefore, they
will set their new value to the bit given by the random oracle and terminate in
the following round.

If neither of the above cases holds, some of the nodes see an n/2 + f + 1
majority for one of the input values, while other nodes rely on the oracle. With
probability 1/2, the value of the oracle will coincide with the deterministic ma-
jority value of the other nodes. Therefore, with probability 1/2, the nodes will
terminate in the following round. The expected number of rounds for termina-
tion in this case is 3.

Remarks:

• Unfortunately, random oracles are a bit like pink fluffy unicorns: they
do not really exist in the real world. Can we fix that?

Definition 17.27 (Random Bitstring). A random bitstring is a string of
random binary values, known to all participating nodes when starting a protocol.

Algorithm 17.28 Algorithm 17.21 with Random Bitstring

1: Replace Line 12 in Algorithm 17.21 by
2: return bi, where bi is ith bit in common random bitstring

Remarks:

• But is such a precomputed bitstring really random enough? We should
be worried because of Theorem 16.14.

Theorem 17.29. If the scheduling is worst-case, Algorithm 17.28 plugged into
Algorithm 17.21 does not terminate.

Proof. We start Algorithm 17.28 with the following input: n/2 + f + 1 nodes
have input value 1, and n/2− f − 1 nodes have input value 0. Assume w.l.o.g.
that the first bit of the random bitstring is 0.

If the second random bit in the bitstring is also 0, then a worst-case scheduler
will let n/2 + f + 1 nodes see all n/2 + f + 1 values 1, these will therefore
deterministically choose the value 1 as their new value. Because of scheduling
(or byzantine nodes), the remaining n/2− f − 1 nodes receive strictly less than

17.6. RANDOM ORACLE AND BITSTRING 35

n/2 + f + 1 values 1 and therefore have to rely on the value of the shared coin,
which is 0. The nodes will not come to a decision in this round. Moreover, we
have created the very same distribution of values for the next round (which has
also random bit 0).

If the second random bit in the bitstring is 1, then a worst-case scheduler can
let n/2−f −1 nodes see all n/2+f +1 values 1, and therefore deterministically
choose the value 1 as their new value. Because of scheduling (or byzantine
nodes), the remaining n/2 + f + 1 nodes receive strictly less than n/2 + f + 1
values 1 and therefore have to rely on the value of the shared coin, which is 0.
The nodes will not decide in this round. And we have created the symmetric
situation for input value 1 that is coming in the next round.

So if the current and the next random bit are known, worst-case scheduling
will keep the system in one of two symmetric states that never decide.

Remarks:

• Theorem 17.29 shows that a worst-case scheduler cannot be allowed
to know the random bits of the future.

• Note that in the proof of Theorem 17.29 we did not even use any
byzantine nodes. Just bad scheduling was enough to prevent termi-
nation.

Chapter Notes

The project which started the study of byzantine failures was called SIFT and
was founded by NASA [WLG+78], and the research regarding byzantine agree-
ment started to get significant attention with the results by Pease, Shostak, and
Lamport [PSL80, LSP82]. In [PSL80] they presented the generalized version
of Algorithm 17.9 and also showed that byzantine agreement is unsolvable for
n ≤ 3f . The algorithm presented in that paper is nowadays called Exponential
Information Gathering (EIG), due to the exponential size of the messages.

There are many algorithms for the byzantine agreement problem. For ex-
ample the Queen Algorithm [BG89] which has a better runtime than the King
algorithm [BGP89], but tolerates less failures. That byzantine agreement re-
quires at least f + 1 many rounds was shown by Dolev and Strong [DS83],
based on a more complicated proof from Fischer and Lynch [FL82].

While many algorithms for the synchronous model have been around for a
long time, the asynchronous model is a lot harder. The only results were by
Ben-Or and Bracha. Ben-Or [Ben83] was able to tolerate f < n/5. Bracha
[BT85] improved this tolerance to f < n/3.

Nearly all developed algorithms only satisfy all-same validity. There are a
few exceptions, e.g., correct-input validity [FG03], available if the initial values
are from a finite domain, median validity [SW15, MW18, DGM+11] if the input
values are orderable, or values inside the convex hull of all correct input values
[VG13, MH13, MHVG15] if the input is multidimensional.

Before the term byzantine was coined, the terms Albanian Generals or Chi-
nese Generals were used in order to describe malicious behavior. When the

36 CHAPTER 17. BYZANTINE AGREEMENT

involved researchers met people from these countries they moved – for obvious
reasons – to the historic term byzantine [LSP82].

Hat tip to Peter Robinson for noting how to improve Algorithm 17.9 to all-
same validity. This chapter was written in collaboration with Barbara Keller.

Bibliography

[Ben83] Michael Ben-Or. Another advantage of free choice (extended ab-
stract): Completely asynchronous agreement protocols. In Proceed-
ings of the second annual ACM symposium on Principles of distrib-
uted computing, pages 27–30. ACM, 1983.

[BG89] Piotr Berman and Juan A Garay. Asymptotically optimal distributed
consensus. Springer, 1989.

[BGP89] Piotr Berman, Juan A. Garay, and Kenneth J. Perry. Towards
optimal distributed consensus (extended abstract). In 30th Annual
Symposium on Foundations of Computer Science, Research Triangle
Park, North Carolina, USA, 30 October - 1 November 1989, pages
410–415, 1989.

[BT85] Gabriel Bracha and Sam Toueg. Asynchronous consensus and
broadcast protocols. Journal of the ACM (JACM), 32(4):824–840,
1985.

[DGM+11] Benjamin Doerr, Leslie Ann Goldberg, Lorenz Minder, Thomas
Sauerwald, and Christian Scheideler. Stabilizing Consensus with the
Power of Two Choices. In Proceedings of the Twenty-third Annual
ACM Symposium on Parallelism in Algorithms and Architectures,
SPAA, June 2011.

[DS83] Danny Dolev and H. Raymond Strong. Authenticated algorithms for
byzantine agreement. SIAM Journal on Computing, 12(4):656–666,
1983.

[FG03] Matthias Fitzi and Juan A Garay. Efficient player-optimal protocols
for strong and differential consensus. In Proceedings of the twenty-
second annual symposium on Principles of distributed computing,
pages 211–220. ACM, 2003.

[FL82] Michael J. Fischer and Nancy A. Lynch. A lower bound for the time
to assure interactive consistency. 14(4):183–186, June 1982.

[LSP82] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The
byzantine generals problem. ACM Trans. Program. Lang. Syst.,
4(3):382–401, 1982.

[MH13] Hammurabi Mendes and Maurice Herlihy. Multidimensional Ap-
proximate Agreement in Byzantine Asynchronous Systems. In Pro-
ceedings of the Forty-fifth Annual ACM Symposium on Theory of
Computing, STOC, June 2013.

BIBLIOGRAPHY 37

[MHVG15] Hammurabi Mendes, Maurice Herlihy, Nitin Vaidya, and Vijay K.
Garg. Multidimensional agreement in Byzantine systems. Distrib-
uted Computing, 28(6):423–441, January 2015.

[MW18] Darya Melnyk and Roger Wattenhofer. Byzantine Agreement with
Interval Validity. In 37th Annual IEEE International Symposium
on Reliable Distributed Systems (SRDS), Salvador, Bahia, Brazil,
October 2018.

[PSL80] Marshall C. Pease, Robert E. Shostak, and Leslie Lamport. Reach-
ing agreement in the presence of faults. J. ACM, 27(2):228–234,
1980.

[SW15] David Stolz and Roger Wattenhofer. Byzantine Agreement with
Median Validity. In 19th International Conference on Priniciples of
Distributed Systems (OPODIS), Rennes, France, 2015.

[VG13] Nitin H. Vaidya and Vijay K. Garg. Byzantine Vector Consensus in
Complete Graphs. In Proceedings of the 2013 ACM Symposium on
Principles of Distributed Computing, PODC, July 2013.

[WLG+78] John H. Wensley, Leslie Lamport, Jack Goldberg, Milton W. Green,
Karl N. Levitt, P. M. Melliar-Smith, Robert E. Shostak, and
Charles B. Weinstock. Sift: Design and analysis of a fault-tolerant
computer for aircraft control. In Proceedings of the IEEE, pages
1240–1255, 1978.

Chapter 18

Broadcast & Shared Coins

In Chapter 17 we have developed a fast solution for synchronous byzantine
agreement (Algorithm 17.14), yet our asynchronous byzantine agreement solu-
tion (Algorithm 17.21) is still awfully slow. Some simple methods to speed up
the algorithms did not work, mostly due to unrealistic assumptions. Can we at
least solve asynchronous (assuming worst-case scheduling) consensus if we have
crash failures? Possibly based on some advanced communication methods?

18.1 Shared Coin on a Blackboard

Definition 18.1 (Shared Coin). A shared coin is a binary random variable
shared among all nodes. It is 0 for all nodes with constant probability and 1 for
all nodes with constant probability. The shared coin is allowed to fail (be 0 for
some nodes and 1 for other nodes) with constant probability.

Remarks:

• In Chapter 16, we have already seen a shared coin in Algorithm 16.22.
For that shared coin, we implicitly assumed that message scheduling
was random.

• Worst-case scheduling is an issue that we have only briefly considered
so far, in particular, to show that the random bitstring does not help
to speed up Algorithm 17.21.

• What if scheduling is worst-case in Algorithm 16.22?

Lemma 18.2. Algorithm 16.22 has exponential expected running time under
worst-case scheduling.

Proof. In Algorithm 16.22, worst-case scheduling may hide up to f rare zero
coinflips. In order to receive a zero as the outcome of the shared coin, the
nodes need to generate at least f + 1 zeros. The probability for this to happen
is (1/n)f+1, which is exponentially small for f ∈ Ω(n). In other words, with
worst-case scheduling, with probability 1− (1/n)f+1 the shared coin will be 1.
The worst-case scheduler must make sure that some nodes will always determin-
istically go for 0, and the algorithm needs nf+1 rounds until it terminates.

38

18.1. SHARED COIN ON A BLACKBOARD 39

Definition 18.3 (Blackboard Model). The blackboard is a trusted authority
which supports two operations. A node can write its message to the blackboard
and a node can read all the values that have been written to the blackboard so
far.

Remarks:

• We assume that the nodes cannot reconstruct the order in which the
messages are written to the blackboard since the system is asynchro-
nous.

Algorithm 18.4 Crash-Resilient Shared Coin with Blackboard (for node u)

1: while true do
2: Choose new local coin cu = +1 with probability 1/2, else cu = −1
3: Write cu to the blackboard
4: Set C = Read all coinflips on the blackboard
5: if |C| ≥ n2 then
6: return sign(sum(C))
7: end if
8: end while

Remarks:

• In Algorithm 18.4 the outcome of a coinflip is −1 or +1 instead of 0
or 1 because it simplifies the analysis, i.e., “−1 ≈ 0”.

• The sign function is used for the decision values. The sign function
returns +1 if the sum of all coinflips in C is positive, and −1 if it is
negative.

• The algorithm is unusual compared to other asynchronous algorithms
we have dealt with so far. So far we often waited for n − f mes-
sages from other nodes. In Algorithm 18.4, a single node can single-
handedly generate all n2 coinflips, without waiting.

• If a node does not need to wait for other nodes, we call the algorithm
wait-free.

• Many similar definitions beyond wait-free exist: lock-free, deadlock-
free, starvation-free, and generally non-blocking algorithms.

Theorem 18.5 (Central Limit Theorem). Let {X1, X2, . . . , XN} be a sequence
of independent random variables with Pr[Xi = −1] = Pr[Xi = 1] = 1/2 for all
i = 1, . . . , N . Then for every positive real number z,

lim
N→∞

Pr

[
N∑
i=1

Xi ≥ z
√
N

]
= 1− Φ(z) >

1√
2π

z

z2 + 1
e−z

2/2,

where Φ(z) is the cumulative distribution function of the standard normal dis-
tribution evaluated at z.

40 CHAPTER 18. BROADCAST & SHARED COINS

Theorem 18.6. Algorithm 18.4 implements a polynomial shared coin.

Proof. Each node in the algorithm terminates once at least n2 coinflips are
written to the blackboard. Before terminating, nodes may write one additional
coinflip. Therefore, every node decides after reading at least n2 and at most
n2 + n − 1 coinflips. The power of the adversary lies in the fact that it can
prevent n − 1 nodes from writing their coinflips to the blackboard by delaying
their writes. Here, we will consider an even stronger adversary that can hide up
to n coinflips which were written on the blackboard.

We need to show that both outcomes for the shared coin (+1 or −1 in Line
6) will occur with constant probability, as in Definition 18.1. Let X be the sum
of all coinflips that are visible to every node. Since some of the nodes might read
n more values from the blackboard than others, the nodes cannot be prevented
from deciding if |X| > n. By applying Theorem 18.5 with N = n2 and z = 1,
we get:

Pr(X ≤ −n) = Pr(X ≥ n) = 1− Φ(1) > 0.15.

Lemma 18.7. Algorithm 18.4 uses n2 coinflips, which is optimal in this model.

Proof. The proof for showing quadratic lower bound makes use of configurations
that are indistinguishable to all nodes, similar to Theorem 16.14. It requires
involved stochastic methods and we therefore will only sketch the idea of where
the n2 comes from.

The basic idea follows from Theorem 18.5. The standard deviation of the
sum of n2 coinflips is n. The central limit theorem tells us that with constant
probability the sum of the coinflips will be only a constant factor away from
the standard deviation. As we showed in Theorem 18.6, this is large enough
to disarm a worst-case scheduler. However, with much less than n2 coinflips, a
worst-case scheduler is still too powerful. If it sees a positive sum forming on
the blackboard, it delays messages trying to write +1 in order to turn the sum
temporarily negative, so the nodes finishing first see a negative sum, and the
delayed nodes see a positive sum.

Remarks:

• Algorithm 18.4 cannot tolerate even one byzantine failure: assume
the byzantine node generates all the n2 coinflips in every round due
to worst-case scheduling. Then this byzantine node can make sure
that its coinflips always sum up to a value larger than n, thus making
the outcome −1 impossible.

• In Algorithm 18.4, we assume that the blackboard is a trusted central
authority. Like the random oracle of Definition 17.24, assuming a
blackboard does not seem practical. However, fortunately, we can use
advanced broadcast methods in order to implement something like a
blackboard with just messages.

18.2. BROADCAST ABSTRACTIONS 41

18.2 Broadcast Abstractions

Definition 18.8 (Accept). A message received by a node v is called accepted
if node v can consider this message for its computation.

Definition 18.9 (Best-Effort Broadcast). Best-effort broadcast ensures that
a message that is sent from a correct node u to another correct node v will
eventually be received and accepted by v.

Remarks:

• Note that best-effort broadcast is equivalent to the simple broadcast
primitive that we have used so far.

• Reliable broadcast is a stronger paradigm which implies that byzantine
nodes cannot send different values to different nodes. Such behavior
will be detected.

Definition 18.10 (Reliable Broadcast). Reliable broadcast ensures that the
nodes eventually agree on all accepted messages. That is, if a correct node v
considers message m as accepted, then every other node will eventually consider
message m as accepted.

Algorithm 18.11 Asynchronous Reliable Broadcast (code for node u)

1: Broadcast own message msg(u)
2: upon receiving msg(v) from v or echo(w,msg(v)) from n− 2f nodes w:
3: Broadcast echo(u,msg(v))
4: end upon
5: upon receiving echo(w,msg(v)) from n− f nodes w:
6: Accept msg(v)
7: end upon

Theorem 18.12. Algorithm 18.11 satisfies the following properties:

1. If a correct node broadcasts a message reliably, it will eventually be accepted
by every other correct node.

2. If a correct node has not broadcast a message, it will not be accepted by
any other correct node.

3. If a correct node accepts a message, it will be eventually accepted by every
correct node

This algorithm can tolerate f < n/3 byzantine nodes or f < n/2 crash failures.

Proof. We start with the first property. Assume a correct node broadcasts a
message msg(v), then every correct node will receive msg(v) eventually. In Line
3, every correct node (including the originator of the message) will echo the
message and, eventually, every correct node will receive at least n − f echoes,
thus accepting msg(v).

The second property holds for the case with crash failures, as all correct
nodes follow the algorithm. In the byzantine case, byzantine nodes are not able

42 CHAPTER 18. BROADCAST & SHARED COINS

to forge an incorrect sender address, see Definition 17.1. Instead, they can echo
messages from correct nodes with a wrong input value. If all byzantine nodes
echo a message that has not been broadcast by a correct node, each correct
node will receive at most f < n − 2f echo messages and thus no correct node
will accept such a message.

For the third property, assume that some message originated from a byzan-
tine node b, or a node b that has crashed in the process of sending its message.
If a correct node accepted message msg(b), this node must have received at least
n− f echoes for this message in Line 5. If at most f nodes are faulty, at least
n−2f correct nodes must have broadcast an echo message for msg(b). Therefore,
every correct node will receive these n−2f echoes eventually and will broadcast
an echo. Finally, all n− f correct nodes will have broadcast an echo for msg(b)
and every correct node will accept msg(b).

Remarks:

• Algorithm 18.11 does not solve consensus according to Definition 16.1.
It only makes sure that all messages of correct nodes will be accepted
eventually. For correct nodes, this corresponds to sending and receiv-
ing messages in the asynchronous model (Model 16.2).

• The algorithm has a linear message overhead since every node again
broadcasts every message.

• Note that byzantine nodes can issue arbitrarily many messages. This
may be a problem for protocols where each node is only allowed to
send one message (per round). Can we fix this, for instance with
sequence numbers?

Definition 18.13 (FIFO Reliable Broadcast). The FIFO (reliable) broad-
cast defines an order in which the messages are accepted in the system. If a
node u broadcasts message m1 before m2, then any node v will accept message
m1 before m2.

Algorithm 18.14 FIFO Reliable Broadcast (code for node u)

1: Broadcast own round r message msg(u, r)
2: upon receiving first message msg(v, r) from node v for round r or n − 2f

echo(w,msg(v, r)) messages:
3: Broadcast echo(u,msg(v, r))
4: end upon
5: upon receiving echo(w,msg(v, r)) from n− f nodes w:
6: if accepted msg(v, r − 1) then
7: Accept msg(v, r)
8: end if
9: end upon

Theorem 18.15. Algorithm 18.14 satisfies the properties of Theorem 18.12.
Additionally, Algorithm 18.14 makes sure that no two messages msg(v, r) and
msg’(v, r) are accepted from the same node. It can tolerate f < n/5 byzantine
nodes or f < n/2 crash failures.

18.3. BLACKBOARD WITH MESSAGE PASSING 43

Proof. Just as reliable broadcast, Algorithm 18.14 satisfies the three properties
of Theorem 18.12 by simply following the flow of messages of a correct node.
It remains to show that at most one message will be accepted from some node
v in round r. In the crash failure case, this property holds because all nodes
follow the algorithm and therefore send at most one message in a round. For
the byzantine case, assume some correct node u has accepted msg(v, r) in Line
7. This node must have received n− f echo messages for this message, n− 2f
of which were sent from the correct nodes. At least n − 2f − f = n − 3f of
those messages are sent for the first time by correct nodes. Now, assume for
contradiction that another correct node accepts msg’(v, r). Similarly, n − 3f
of those messages are sent for the first time by correct nodes. So, we have
n−3f +n−3f > n−f (for f < n/5) correct nodes sent echo for the first time.
A contradiction.

Definition 18.16 (Atomic Broadcast). Atomic broadcast makes sure that
all messages are accepted in the same order by every node. That is, for any pair
of nodes u, v, and for any two messages m1 and m2, node u accepts m1 before
m2 if and only if node v accepts m1 before m2.

Remarks:

• Definition 18.16 is equivalent to Definition 15.8, i.e., atomic broadcast
= state replication.

• Now we have all the tools to finally solve asynchronous consensus.

18.3 Blackboard with Message Passing

Algorithm 18.17 Crash-Resilient Shared Coin (code for node u)

1: while true do
2: Choose local coin cu = +1 with probability 1/2, else cu = −1
3: FIFO-broadcast coin(cu, r) to all nodes
4: Save all accepted coins coin(cv, r) in a set Cu
5: Wait until accepted own coin(cu)
6: Request Cv from n− f nodes v, and add newly seen coins to Cu
7: if |Cu| ≥ n2 then
8: return sign(sum(Cu))
9: end if

10: end while

Theorem 18.18. Algorithm 18.17 solves asynchronous binary agreement for
f < n/2 crash failures.

Proof. The upper bound for the number of crash failures results from the upper
bound in 18.15. The idea of this algorithm is to simulate the read and write
operations from Algorithm 18.4.

Line 3 simulates a write operation: by accepting its own coinflip, a node
verifies that n − f correct nodes have received its most recent generated coin-
flip coin(cu, r). At least n − 2f > 1 of these nodes will never crash and the

44 CHAPTER 18. BROADCAST & SHARED COINS

value therefore can be considered as stored on the blackboard. While a value
is not accepted and therefore not stored, node u will not generate new coin-
flips. Therefore, at any point of the algorithm, there are at most n additional
generated coinflips next to the accepted coins.

Line 6 of the algorithm corresponds to a read operation. A node reads a
value by requesting Cv from at least n− f nodes v. Assume that for a coinflip
coin(cu, r), f nodes that participated in the FIFO broadcast of this message
have crashed. When requesting n − f sets of coinflips, there will be at least
(n − 2f) + (n − f) − (n − f) = n − 2f > 1 sets among the requested ones
containing coin(cu, r). Therefore, a node will always read all values that were
accepted so far.

This shows that the read and write operations are equivalent to the same op-
erations in Algorithm 18.4. Assume now that some correct node has terminated
after reading n2 coinflips. Since each node reads the stored coinflips before gen-
erating a new one in the next round, there will be at most n additional coins
accepted by any other node before termination. This setting is equivalent to
Theorem 18.6 and the rest of the analysis is therefore analogous to the analysis
in that theorem.

Remarks:

• So finally we can deal with worst-case crash failures and worst-case
scheduling.

• But what about byzantine agreement? We need even more powerful
methods!

18.4 Using Cryptography

Definition 18.19 (Threshold Secret Sharing). Let t, n ∈ N with 1 ≤ t ≤ n.
An algorithm that distributes a secret among n participants such that t partici-
pants need to collaborate to recover the secret is called a (t, n)-threshold secret
sharing scheme.

Definition 18.20 (Signature). Every node can sign its messages in a way
that no other node can forge, thus nodes can reliably determine which node a
signed message originated from. We denote a message x signed by node u with
msg(x)u.

18.4. USING CRYPTOGRAPHY 45

Algorithm 18.21 (t, n)-Threshold Secret Sharing

1: Input: A secret s, represented as a real number.

Secret distribution by dealer d

2: Generate t− 1 random numbers a1, . . . , at−1 ∈ R
3: Obtain a polynomial p of degree t− 1 with p(x) = s+ a1x+ · · ·+ at−1x

t−1

4: Generate n distinct x1, . . . , xn ∈ R \ {0}
5: Distribute share msg(x1, p(x1))d to node v1, . . . , msg(xn, p(xn))d to node vn

Secret recovery

6: Collect t shares msg(xu, p(xu))d from at least t nodes
7: Use Lagrange’s interpolation formula to obtain p(0) = s

Remarks:

• Algorithm 18.21 relies on a trusted dealer, who broadcasts the secret
shares to the nodes.

• Note that the communication between the dealer and the nodes must
be private, i.e., a byzantine party cannot see the shares sent to the
correct nodes.

• Using an (f + 1, n)-threshold secret sharing scheme, we can encrypt
messages in such a way that byzantine nodes alone cannot decrypt
them.

Algorithm 18.22 Preprocessing Step for Algorithm 18.23 (code for dealer d)

1: According to Algorithm 18.21, choose polynomial p of degree f
2: for i = 1, . . . , n do
3: Choose coinflip ci, where ci = 0 with probability 1/2, else ci = 1
4: Using Algorithm 18.21, generate n shares (xi1, p(x

i
1)), . . . , (xin, p(x

i
n)) for

ci
5: end for
6: Send shares msg(x1

u, p(x
1
u))d, . . . , msg(xnu, p(x

n
u))d to node u

Algorithm 18.23 Shared Coin using Secret Sharing (ith iteration)

1: Replace Line 12 in Algorithm 17.21 by
2: Request shares from at least f + 1 nodes
3: Using Algorithm 18.21, let ci be the value reconstructed from the shares
4: return ci

Theorem 18.24. Algorithm 17.21 together with Algorithm 18.22 and Algo-
rithm 18.23 solves asynchronous byzantine agreement for f < n/10 in expected
3 number of rounds.

Proof. In Line 2 of Algorithm 18.23, the nodes collect shares from f + 1 nodes.
Since a byzantine node cannot forge the signature of the dealer, it is restricted

46 CHAPTER 18. BROADCAST & SHARED COINS

to either send its own share or decide to not send it at all. Therefore, each
correct node will eventually be able to reconstruct secret ci of round i correctly
in Line 3 of the algorithm. The running time analysis follows then from the
analysis of Theorem 17.26.

Remarks:

• In Algorithm 18.22 we assume that the dealer generates the random
bitstring. This assumption is not necessary if the communication be-
tween any pair of nodes is private: In a setup phase of the algorithm,
each node can generate a local coinflip and broadcast the secret shares
of its coinflip to all other nodes. The corresponding secret will only
be revealed in a designated round of the algorithm, thus keeping the
outcome of the coinflip secret to a byzantine adversary.

• We showed that cryptographic assumptions can speed up asynchro-
nous byzantine agreement.

• Algorithm 17.21 can also be implemented in the synchronous setting.

• A randomized version of a synchronous byzantine agreement algorithm
can improve on the lower bound of f + 1 rounds for the deterministic
algorithms.

Definition 18.25 (Cryptographic Hash Function). A hash function hash :
U → S is called cryptographic, if for a given z ∈ S it is computationally hard
to find an element x ∈ U with hash(x) = z.

Remarks:

• Popular hash functions used in cryptography include the Secure Hash
Algorithm (SHA) and the Message-Digest Algorithm (MD).

Algorithm 18.26 Simple Synchronous Byzantine Shared Coin (for node u)

1: Each node has a public key that is known to all nodes.
2: Let r be the current round of Algorithm 17.21
3: Broadcast msg(r)u, i.e., round number r signed by node u
4: Compute hv = hash(msg(r)v) for all received messages msg(r)v
5: Let hmin = minv hv
6: return least significant bit of hmin

Remarks:

• In Algorithm 18.26, Line 3 each node can verify the correctness of the
signed message using the public key.

• Just as in Algorithm 17.9, the decision value is the minimum of all
received values. While the minimum value is received by all nodes
after 2 rounds there, we can only guarantee to receive the minimum
with constant probability in this algorithm.

18.4. USING CRYPTOGRAPHY 47

• Hashing helps to restrict byzantine power, since a byzantine node
cannot compute the smallest hash.

Theorem 18.27. Algorithm 18.26 plugged into Algorithm 17.21 solves syn-
chronous byzantine agreement in expected 3 rounds (roughly) for up to f < n/10
byzantine failures.

Proof. With probability 1/10 the minimum hash value is generated by a byzan-
tine node. In such a case, we can assume that not all correct nodes will receive
the byzantine value and thus, different nodes might compute different values for
the shared coin.

With probability 9/10, the shared coin will be from a correct node, and
with probability 1/2 the value of the shared coin will correspond to the value
which was deterministically chosen by some of the correct nodes. Therefore,
with probability 9/20 the nodes will reach consensus in the next iteration of
Algorithm 17.21. Thus, the expected number of rounds is around 3 (expected
number of rounds to be lucky in a round is 20/9 plus one more iteration to
terminate).

Chapter Notes

Asynchronous byzantine agreement is usually considered in one out of two com-
munication models – shared memory or message passing. The first polynomial
algorithm for the shared memory model that uses a shared coin was proposed by
Aspnes and Herlihy [AH90] and required exchanging O(n4) messages in total.
Algorithm 18.4 is also an implementation of the shared coin in the shared mem-
ory model and it requires exchanging O(n3) messages. This variant is due to
Saks, Shavit and Woll [SSW91]. Bracha and Rachman [BR92] later reduced the
number of messages exchanged to O(n2 log n). The tight lower bound of Ω(n2)
on the number of coinflips was proposed by Attiya and Censor [AC08] and
improved the first non-trivial lower bound of Ω(n2/ log2 n) by Aspnes [Asp98].

In the message passing model, the shared coin is usually implemented using
reliable broadcast. Reliable broadcast was first proposed by Srikanth and Toueg
[ST87] as a method to simulate authenticated broadcast. There is also another
implementation which was proposed by Bracha [Bra87]. Today, a lot of variants
of reliable broadcast exist, including FIFO broadcast [AAD05], which was con-
sidered in this chapter. A good overview over the broadcast routines is given
by Cachin et al. [CGR14]. A possible way to reduce message complexity is
by simulating the read and write commands [ABND95] as in Algorithm 18.17.
The message complexity of this method is O(n3). Alistarh et al. [AAKS14]
improved the number of exchanged messages to O(n2 log2 n) using a binary tree
that restricts the number of communicating nodes according to the depth of the
tree.

It remains an open question whether asynchronous byzantine agreement can
be solved in the message passing model without cryptographic assumptions.
If cryptographic assumptions are however used, byzantine agreement can be
solved in expected constant number of rounds. Algorithm 18.22 presents the
first implementation due to Rabin [Rab83] using threshold secret sharing. This
algorithm relies on the fact that the dealer provides the random bitstring. Chor
et al. [CGMA85] proposed the first algorithm where the nodes use verifiable

48 CHAPTER 18. BROADCAST & SHARED COINS

secret sharing in order to generate random bits. Later work focuses on improving
resilience [CR93] and practicability [CKS00]. Algorithm 18.26 by Micali [Mic18]
shows that cryptographic assumptions can also help to improve the running time
in the synchronous model.

This chapter was written in collaboration with Darya Melnyk.

Bibliography

[AAD05] Ittai Abraham, Yonatan Amit, and Danny Dolev. Optimal re-
silience asynchronous approximate agreement. In Proceedings of the
8th International Conference on Principles of Distributed Systems,
OPODIS’04, pages 229–239, Berlin, Heidelberg, 2005. Springer-
Verlag.

[AAKS14] Dan Alistarh, James Aspnes, Valerie King, and Jared Saia.
Communication-efficient randomized consensus. In Fabian Kuhn,
editor, Distributed Computing, pages 61–75, Berlin, Heidelberg,
2014. Springer Berlin Heidelberg.

[ABND95] Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing mem-
ory robustly in message-passing systems. J. ACM, 42(1):124–142,
January 1995.

[AC08] Hagit Attiya and Keren Censor. Tight bounds for asynchronous
randomized consensus. J. ACM, 55(5):20:1–20:26, November 2008.

[AH90] James Aspnes and Maurice Herlihy. Fast randomized consensus
using shared memory. Journal of Algorithms, 11(3):441 – 461, 1990.

[Asp98] James Aspnes. Lower bounds for distributed coin-flipping and ran-
domized consensus. J. ACM, 45(3):415–450, May 1998.

[BR92] Gabriel Bracha and Ophir Rachman. Randomized consensus in ex-
pected o(n2logn) operations. In Proceedings of the 5th International
Workshop on Distributed Algorithms, WDAG ’91, pages 143–150,
Berlin, Heidelberg, 1992. Springer-Verlag.

[Bra87] Gabriel Bracha. Asynchronous byzantine agreement protocols. In-
formation and Computation, 75(2):130 – 143, 1987.

[CGMA85] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch. Verifiable
secret sharing and achieving simultaneity in the presence of faults.
In 26th Annual Symposium on Foundations of Computer Science
(sfcs 1985), pages 383–395, Oct 1985.

[CGR14] Christian Cachin, Rachid Guerraoui, and Lus Rodrigues. Intro-
duction to Reliable and Secure Distributed Programming. Springer
Publishing Company, Incorporated, 2nd edition, 2014.

[CKS00] Christian Cachin, Klaus Kursawe, and Victor Shoup. Random ora-
cles in constantinople: Practical asynchronous byzantine agreement
using cryptography. Journal of Cryptology, 18:219–246, 2000.

BIBLIOGRAPHY 49

[CR93] Ran Canetti and Tal Rabin. Fast asynchronous byzantine agreement
with optimal resilience. In Proceedings of the Twenty-fifth Annual
ACM Symposium on Theory of Computing, STOC ’93, pages 42–51,
New York, NY, USA, 1993. ACM.

[Mic18] Silvio Micali. Byzantine agreement , made trivial. 2018.

[Rab83] M. O. Rabin. Randomized byzantine generals. In 24th Annual
Symposium on Foundations of Computer Science (sfcs 1983), pages
403–409, Nov 1983.

[SSW91] Michael Saks, Nir Shavit, and Heather Woll. Optimal time ran-
domized consensus – making resilient algorithms fast in practice.
In Proceedings of the Second Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’91, pages 351–362, Philadelphia, PA,
USA, 1991. Society for Industrial and Applied Mathematics.

[ST87] T. K. Srikanth and S. Toueg. Optimal Clock Synchronization. Jour-
nal of the ACM, 34:626–645, 1987.

Chapter 19

Consistency & Logical Time

You submit a comment on your favorite social media platform using your phone.
The comment is immediately visible on the phone, but not on your laptop. Is
this level of consistency acceptable?

19.1 Consistency Models

Definition 19.1 (Object). An object is a variable or a data structure storing
information.

Remarks:

• Object is a general term for any entity that can be modified, like a
queue, stack, memory slot, file system, etc.

Definition 19.2 (Operation). An operation f accesses or manipulates an
object. The operation f starts at wall-clock time f∗ and ends at wall-clock time
f†.

Remarks:

• An operation can be as simple as extracting an element from a data
structure, but an operation may also be more complex, like fetching
an element, modifying it and storing it again.

• If f† < g∗, we simply write f < g.

Definition 19.3 (Execution). An execution E is a set of operations on one
or multiple objects that are executed by a set of nodes.

Definition 19.4 (Sequential Execution). An execution restricted to a single
node is a sequential execution. All operations are executed sequentially, which
means that no two operations f and g are concurrent, i.e., we have f < g or
g < f .

50

19.1. CONSISTENCY MODELS 51

Remarks:

• Arguing about correctness of executions is generally difficult. Even
in the much simpler case of sequential executions there are advanced
tools to argue about correctness, such as model checking or formal
methods. We consider a sequential execution to be correct if the
operations manipulate the objects as expected, e.g. if we add 2+2 we
want to see a result of 4.

Definition 19.5 (Semantic Equivalence). Two executions are semantically
equivalent if they contain exactly the same operations. Moreover, each pair of
corresponding operations has the same effect in both executions.

Remarks:

• For example, when dealing with a stack object, corresponding pop

operations in two different semantically equivalent executions must
yield the same element of the stack.

• In general, the notion of semantic equivalence is non-trivial and de-
pendent on the type of the object.

Definition 19.6 (Linearizability). An execution E is called linearizable (or
atomically consistent), if there is a sequence of operations (sequential execution)
S such that:

• S is correct and semantically equivalent to E.

• Whenever f < g for two operations f, g in E, then also f < g in S.

Definition 19.7. A linearization point of operation f is some f• ∈ [f∗, f†].

Lemma 19.8. An execution E is linearizable if and only if there exist lin-
earization points such that the sequential execution S that results in ordering
the operations according to those linearization points is semantically equivalent
to E.

Proof. Let f and g be two operations in E with f† < g∗. Then by definition of
linearization points we also have f• < g• and therefore f < g in S.

Definition 19.9 (Sequential Consistency). An execution E is called sequen-
tially consistent, if there is a sequence of operations S such that:

• S is correct and semantically equivalent to E.

• Whenever f < g for two operations f, g on the same node in E, then
also f < g in S.

Lemma 19.10. Every linearizable execution is also sequentially consistent, i.e.,
linearizability =⇒ sequential consistency.

Proof. Since linearizability (order of operations on any nodes must be respected)
is stricter than sequential consistency (only order of operations on the same node
must be respected), the lemma follows immediately.

52 CHAPTER 19. CONSISTENCY & LOGICAL TIME

Definition 19.11 (Quiescent Consistency). An execution E is called quies-
cently consistent, if there is a sequence of operations S such that:

• S is correct and semantically equivalent to E.

• Let t be some quiescent point, i.e., for all operations f we have f† < t or
f∗ > t. Then for every t and every pair of operations g, h with g† < t and
h∗ > t we also have g < h in S.

Lemma 19.12. Every linearizable execution is also quiescently consistent, i.e.,
linearizability =⇒ quiescent consistency.

Proof. Let E be the original execution and S be the semantically equivalent
sequential execution. Let t be a quiescent point and consider two operations
g, h with g† < t < h∗. Then we have g < h in S. This order is also guaranteed
by linearizability since g† < t < h∗ implies g < h.

Lemma 19.13. Sequentially consistent and quiescent consistency do not imply
one another.

Proof. There are executions that are sequentially consistent but not quiescently
consistent. An object initially has value 2. We apply two operations to this
object: inc (increment the object by 1) and double (multiply the object by 2).
Assume that inc < double, but inc and double are executed on different nodes.
Then a result of 5 (first double, then inc) is sequentially consistent but not
quiescently consistent.

There are executions that are quiescently consistent but not sequentially
consistent. An object initially has value 2. Assume to have three operations on
two nodes u and v. Node u calls first inc then double, node v calls inc once
with incv∗ < incu† < doubleu∗ < incv† . Since there is no quiescent point, quiescent
consistency is okay with a sequential execution that doubles first, resulting in
((2 · 2) + 1) + 1 = 6. The sequential execution demands that incu < doubleu,
hence the result should be strictly larger than 6 (either 7 or 8).

Definition 19.14. A system or an implementation is called linearizable if it
ensures that every possible execution is linearizable. Analogous definitions exist
for sequential and quiescent consistency.

Remarks:

• In the introductory social media example, a linearizable implementa-
tion would have to make sure that the comment is immediately visible
on any device, as the read operation starts after the write operation
finishes. If the system is only sequentially consistent, the comment
does not need to be immediately visible on every device.

Definition 19.15 (restricted execution). Let E be an execution involving oper-
ations on multiple objects. For some object o we let the restricted execution
E|o be the execution E filtered to only contain operations involving object o.

Definition 19.16. A consistency model is called composable if the following
holds: If for every object o the restricted execution E|o is consistent, then also
E is consistent.

19.2. LOGICAL CLOCKS 53

Remarks:

• Composability enables to implement, verify and execute multiple con-
current objects independently.

Lemma 19.17. Sequential consistency is not composable.

Proof. We consider an execution E with two nodes u and v, which operate on
two objects x and y initially set to 0. The operations are as follows: u1 reads
x = 1, u2 writes y := 1, v1 reads y = 1, v2 writes x := 1 with u1 < u2 on node
u and v1 < v2 on node v. It is clear that E|x as well as E|y are sequentially
consistent as the write operations may be before the respective read operations.
In contrast, execution E is not sequentially consistent: Neither u1 nor v1 can
possibly be the initial operation in any correct semantically equivalent sequential
execution S, as that would imply reading 1 when the variable is still 0.

Theorem 19.18. Linearizability is composable.

Proof. Let E be an execution composed of multiple restricted executions E|x.
For any object x there is a sequential execution S|x that is semantically con-
sistent to E|x and in which the operations are ordered according to wall-clock-
linearization points. Let S be the sequential execution ordered according to all
linearization points of all executions E|x. S is semantically equivalent to E as
S|x is semantically equivalent to E|x for all objects x and two object-disjoint
executions cannot interfere. Furthermore, if f† < g∗ in E, then also f• < g• in
E and therefore also f < g in S.

19.2 Logical Clocks

To capture dependencies between nodes in an implementation, we can use logical
clocks. These are supposed to respect the so-called happened-before relation.

Definition 19.19. Let Su be a sequence of operations on some node u and
define “→” to be the happened-before relation on E := S1 ∪ · · · ∪ Sn that
satisfies the following three conditions:

1. If a local operation f occurs before operation g on the same node (f < g),
then f → g.

2. If f is a send operation of one node, and g is the corresponding receive
operation of another node, then f → g.

3. If f, g, h are operations such that f → g and g → h then also f → h.

Remarks:

• If for two distinct operations f, g neither f → g nor g → f , then
we also say f and g are independent and write f ∼ g. Sequential
computations are characterized by→ being a total order, whereas the
computation is entirely concurrent if no operations f, g with f → g
exist.

Definition 19.20 (Happened-before consistency). An execution E is called
happened-before consistent, if there is a sequence of operations S such that:

54 CHAPTER 19. CONSISTENCY & LOGICAL TIME

• S is correct and semantically equivalent to E.

• Whenever f → g for two operations f, g in E, then also f < g in S.

Lemma 19.21. Happened-before consistency = sequential consistency.

Proof. Both consistency models execute all operations of a single node in the se-
quential order. In addition, happened-before consistency also respects messages
between nodes. However, messages are also ordered by sequential consistency
because of semantic equivalence (a receive cannot be before the corresponding
send). Finally, even though transitivity is defined more formally in happened-
before consistency, also sequential consistency respects transitivity.

In addition, sequential consistency orders two operations ou, ov on two dif-
ferent nodes u, v if ov can see a state change caused by ou. Such a state change
does not happen out of the blue, in practice some messages between u and v
(maybe via “shared blackboard” or some other form of communication) will be
involved to communicate the state change.

Definition 19.22 (Logical clock). A logical clock is a family of functions cu
that map every operation f ∈ E on node u to some logical time cu(f) such that
the happened-before relation → is respected, i.e., for two operations g on node
u and h on node v

g → h =⇒ cu(g) < cv(h).

Definition 19.23. If it additionally holds that cu(g) < cv(h) =⇒ g → h, then
the clock is called a strong logical clock.

Remarks:

• In algorithms we write cu for the current logical time of node u.

• The simplest logical clock is the Lamport clock, given in Algorithm 19.24.
Every message includes a timestamp, such that the receiving node may
update its current logical time.

Algorithm 19.24 Lamport clock (code for node u)

1: Initialize cu := 0.
2: Upon local operation: Increment current local time cu := cu + 1.
3: Upon send operation: Increment cu := cu+1 and include cu as T in message

4: Upon receive operation: Extract T from message and update cu :=
max(cu, T) + 1.

Theorem 19.25. Lamport clocks are logical clocks.

Proof. If for two operations f, g it holds that f → g, then according to the
definition three cases are possible.

1. If f < g on the same node u, then cu(f) < cu(g).

2. Let g be a receive operation on node v corresponding to some send oper-
ation f on another node u. We have cv(g) ≥ T + 1 = cu(f) + 1 > cu(f).

19.2. LOGICAL CLOCKS 55

3. Transitivity follows with f → g and g → h ⇒ f → h, and the first two
cases.

Remarks:

• Lamport logical clocks are not strong logical clocks, which means we
cannot completely reconstruct → from the family of clocks cu.

• To achieve a strong logical clock, nodes also have to gather informa-
tion about other clocks in the system, i.e., node u needs to have a
idea of node v’s clock, for every u, v. This is what vector clocks in
Algorithm 19.26 do: Each node u stores its knowledge about other
node’s logical clocks in an n-dimensional vector cu.

Algorithm 19.26 Vector clocks (code for node u)

1: Initialize cu[v] := 0 for all other nodes v.
2: Upon local operation: Increment current local time cu[u] := cu[u] + 1.
3: Upon send operation: Increment cu[u] := cu[u] + 1 and include the whole

vector cu as d in message.
4: Upon receive operation: Extract vector d from message and update cu[v] :=

max(d[v], cu[v]) for all entries v. Increment cu[u] := cu[u] + 1.

Theorem 19.27. Define cu < cv if and only if cu[w] ≤ cv[w] for all entries
w, and cu[x] < cv[x] for at least one entry x. Then the vector clocks are strong
logical clocks.

Proof. We are given two operations f, g, with operation f on node u, and op-
eration g on node v, possibly v = u.

If we have f → g, then there must be a happened-before-path of operations
and messages from f to g. According to Algorithm 19.26, cv(g) must include
at least the values of the vector cu(f), and the value cv(g)[v] > cu(f)[v].

If we do not have f → g, then cv(g)[u] cannot know about cu(f)[u], and
hence cv(g)[u] < cu(f)[u], since cu(f)[u] was incremented when executing f on
node u.

Remarks:

• Usually the number of interacting nodes is small compared to the
overall number of nodes. Therefore we do not need to send the full
length clock vector, but only a vector containing the entries of the
nodes that are actually communicating. This optimization is called
the differential technique.

56 CHAPTER 19. CONSISTENCY & LOGICAL TIME

19.3 Consistent Snapshots

Definition 19.28 (cut). A cut is some prefix of a distributed execution. More
precisely, if a cut contains an operation f on some node u, then it also contains
all the preceding operations of u. The set of last operations on every node
included in the cut is called the frontier of the cut. A cut C is called consistent
if for every operation g in C with f → g, C also contains f .

Definition 19.29 (consistent snapshot). A consistent snapshot is a consis-
tent cut C plus all messages in transit at the frontier of C.

Remarks:

• In a consistent snapshot it is forbidden to see an effect without its
cause.

• Imagine a bank having lots of accounts with transactions all over the
world. The bank wants to make sure that at no point in time money
gets created or destroyed. This is where consistent snapshots come in:
They are supposed to capture the state of the system. Theoretically,
we have already used snapshots when we discussed configurations in
Definition 16.4:

Definition 19.30 (configuration). We say that a system is fully defined (at any
point during the execution) by its configuration. The configuration includes
the state of every node, and all messages that are in transit (sent but not yet
received).

Remarks:

• While a configuration describes the intractable state of a system at one
point in time, a snapshot extracts all relevant tractable information
of the systems state.

• One application of consistent snapshots is to check if certain invariants
hold in a distributed setting. Other applications include distributed
debugging or determining global states of a distributed system.

• In Algorithm 19.31 we assume that a node can record only its internal
state and the messages it sends and receives. There is no common
clock so it is not possible to just let each node record all information
at precisely the same time.

Theorem 19.32. Algorithm 19.31 collects a consistent snapshot.

Proof. Let C be the cut induced by the frontier of all states and messages
forwarded to the initiator. For every node u, let tu be the time when u gets
the first snap message m (either by the initiator, or as a message tag). Then C
contains all of u’s operations before tu, and none after tu (also not the message
m which arrives together with the tag at tu).

Assume for the sake of contradiction we have operations f, g on nodes u, v
respectively, with f → g, f /∈ C and g ∈ C, hence tu ≤ f and g < tv. If
u = v we have tu ≤ f < g < tv = tu, which is a contradiction. On the other

19.3. CONSISTENT SNAPSHOTS 57

Algorithm 19.31 Distributed Snapshot Algorithm

1: Initiator: Save local state, send a snap message to all other nodes and collect
incoming states and messages of all other nodes.

2: All other nodes:
3: Upon receiving a snap message for the first time: send own state (before

message) to the initiator and propagate snap by adding snap tag to future
messages.

4: If afterwards receiving a message m without snap tag: Forward m to the
initiator.

hand, if u 6= v: Since tu ≤ f we know that all following send operations must
have included the snap tag. Because of f → g we know there is a path of
messages between f and g, all including the snap tag. So the snap tag must
have been received by node v before or with operation g, hence tv ≤ g, which is
a contradiction to tv > g.

Remarks:

• It may of course happen that a node u sends a message m before
receiving the first snap message at time tu (hence not containing the
snap tag), and this message m is only received by node v after tv.
Such a message m will be reported by v, and is as such included in
the consistent snapshot (as a message that was in transit during the
snapshot).

• The number of possible consistent snapshots gives also information
about the degree of concurrency of the system.

• One extreme is a sequential computation, where stopping one node
halts the whole system. Let qu be the number of operations on node
u ∈ {1, . . . , n}. Then the number of consistent snapshots (including
the empty cut) in the sequential case is µs := 1 + q1 + q2 + · · ·+ qn.

• On the other hand, in an entirely concurrent computation the nodes
are not dependent on one another and therefore stopping one node
does not impact others. The number of consistent snapshots in this
case is µc := (1 + q1) · (1 + q2) · · · (1 + qn).

Definition 19.33 (measure of concurrency). The concurrency measure of an
execution E = (S1, . . . , Sn) is defined as the ratio

m(E) :=
µ− µs
µc − µs

,

where µ denotes the number of consistent snapshot of E.

Remarks:

• This measure of concurrency is normalized to [0, 1].

• In order to evaluate the extent to which a computation is concurrent,
we need to compute the number of consistent snapshots µ. This can
be done via vector clocks.

58 CHAPTER 19. CONSISTENCY & LOGICAL TIME

19.4 Distributed Tracing

Definition 19.34 (Microservice Architecture). A microservice architecture
refers to a system composed of loosely coupled services. These services commu-
nicate by various protocols and are either decentrally coordinated (also known
as “choreography”) or centrally (“orchestration”).

Remarks:

• There is no exact definition for microservices. A rule of thumb is that
you should be able to program a microservice from scratch within two
weeks.

• Microservices are the architecture of choice to implement a cloud based
distributed system, as they allow for different technology stacks, often
also simplifying scalability issues.

• In contrast to a monolithic architecture, debugging and optimizing get
trickier as it is difficult to detect which component exactly is causing
problems.

• Due to the often heterogeneous technology, a uniform debugging frame-
work is not feasible.

• Tracing enables tracking the set of services which participate in some
task, and their interactions.

Definition 19.35 (Span). A span s is a named and timed operation represent-
ing a contiguous sequence of operations on one node. A span s has a start time
s∗ and finish time s†.

Remarks:

• Spans represent tasks, like a client submitting a request or a server
processing this request. Spans often trigger several child spans or
forwards the work to another service.

Definition 19.36 (Span Reference). A span may causally depend on other
spans. The two possible relations are ChildOf and FollowsFrom references.
In a ChildOf reference, the parent span depends on the result of the child (the
parents asks the child and the child answers), and therefore parent and child
span must overlap. In FollowsFrom references parent spans do not depend in
any way on the result of their child spans (the parent just invokes the child).

Definition 19.37 (Trace). A trace is a series-parallel directed acyclic graph
representing the hierarchy of spans that are executed to serve some request.
Edges are annotated by the type of the reference, either ChildOf or Follows-
From.

19.4. DISTRIBUTED TRACING 59

Remarks:

• The advantage of using an open source definition like opentracing
is that it is easy to replace a specific tracing by another one. This
mitigates the lock-in effect that is often experienced when using some
specific technology.

• Algorithm 19.38 shows what is needed if you want to trace requests
to your system.

Algorithm 19.38 Inter-Service Tracing

1: Upon requesting another service: Inject information of current trace and
span (IDs or timing information) into the request header.

2: Upon receiving request from another service: Extract trace and span infor-
mation from the request header and create new span as child span.

Remarks:

• All tracing information is collected and has to be sent to some tracing
backend which stores the traces and usually provides a frontend to
understand what is going on.

• Opentracing implementations are available for the most commonly
used programming frameworks and can therefore be used for hetero-
geneous collections of microservices.

Chapter Notes

In his seminal work, Leslie Lamport came up with the happened-before relation
and gave the first logical clock algorithm [Lam78]. This paper also laid the
foundation for the theory of logical clocks. Fidge came some time later up with
vector clocks [JF88]. An obvious drawback of vector clocks is the overhead
caused by including the whole vector. Can we do better? In general, we cannot
if we need strong logical clocks [CB91].

Lamport also introduced the algorithm for distributed snapshots, together
with Chandy [CL85]. Besides this very basic algorithm, there exist several other
algorithms, e.g., [LY87], [SK86].

Throughout the literature the definitions for, e.g., consistency or atomicity
slightly differ. These concepts are studied in different communities, e.g., lin-
earizability hails from the distributed systems community whereas the notion
of serializability was first treated by the database community. As the two areas
converged, the terminology got overloaded.

Our definitions for distributed tracing follow the OpenTracing API 1. The
opentracing API only gives high-level definitions of how a tracing system is sup-
posed to work. Only the implementation specifies how it works internally.There
are several systems that implement these generic definitions, like Uber’s open
source tracer called Jaeger, or Zipkin, which was first developed by Twitter.
This technology is relevant for the growing number of companies that embrace

1http://opentracing.io/documentation/

60 CHAPTER 19. CONSISTENCY & LOGICAL TIME

a microservice architecture. Netflix for example has a growing number of over
1,000 microservices.

This chapter was written in collaboration with Julian Steger.

Bibliography

[CB91] Bernadette Charron-Bost. Concerning the size of logical clocks in dis-
tributed systems. Inf. Process. Lett., 39(1):11–16, July 1991.

[CL85] K Chandy and Leslie Lamport. Distributed snapshots: Determining
global states of distributed systems. 3:63–75, 02 1985.

[JF88] Colin J. Fidge. Timestamps in message-passing systems that preserve
partial ordering. 10:56–66, 02 1988.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a distrib-
uted system. Commun. ACM, 21(7):558–565, jul 1978.

[LY87] Ten H. Lai and Tao H. Yang. On distributed snapshots. Information
Processing Letters, 25(3):153 – 158, 1987.

[SK86] Madalene Spezialetti and Phil Kearns. Efficient distributed snapshots.
In ICDCS, pages 382–388. IEEE Computer Society, 1986.

Chapter 20

Time, Clocks & GPS

“A man with a clock knows what time it is – a man with two is
never sure.” (Segal’s Law)

20.1 Time & Clocks

Definition 20.1 (Second). A second is the time that passes during 9,192,631,770
oscillation cycles of a caesium-133 atom.

Remarks:

• This definition is a bit simplified. The official definition is given by
the Bureau International des Poids et Mesures.

• Historically, a second was defined as one in 86,400 parts of a day,
dividing the day into 24 hours, 60 minutes and 60 seconds.

• Since the duration of a day depends on the unsteady rotation cycle
of the Earth, the novel oscillation-based definition has been adopted.
Leap seconds are used to keep time synchronized to Earth’s rotation.

Definition 20.2 (Wall-Clock Time). The wall-clock time t∗ is the true time
(a perfectly accurate clock would show).

Definition 20.3 (Clock). A clock is a device which tracks and indicates time.

Remarks:

• A clock’s time t is a function of the wall-clock time t∗, i.e., t = f(t∗).
Ideally, t = t∗, but in reality there are often errors.

Definition 20.4 (Clock Error). The clock error or clock skew is the difference
between two clocks, e.g., t−t∗ or t−t′. In practice the clock error is often modeled
as t = (1 + δ)t∗ + ξ(t∗).

61

62 CHAPTER 20. TIME, CLOCKS & GPS

Figure 20.8: Drift (left) and Jitter (right). On top is a square wave, the wall-
clock time t∗.

Remarks:

• The importance of accurate timekeeping and clock synchronization
is reflected in the following statement by physicist Steven Jefferts:
“We’ve learned that every time we build a better clock, somebody
comes up with a use for it that you couldn’t have foreseen.”

Definition 20.5 (Drift). The drift δ is the predictable clock error.

Remarks:

• Drift is relatively constant over time, but may change with supply
voltage, temperature and age of an oscillator.

• Stable clock sources, which offer a low drift, are generally preferred,
but also more expensive, larger and more power hungry, which is why
many consumer products feature inaccurate clocks.

Definition 20.6 (Parts Per Million). Clock drift is indicated in parts per mil-
lion (ppm). One ppm corresponds to a time error growth of one microsecond
per second.

Remarks:

• In PCs, the so-called real-time clock normally is a crystal oscillator
with a maximum drift between 5 and 100 ppm.

• Applications in signal processing, for instance GPS, need more accu-
rate clocks. Common drift values are 0.5 to 2 ppm.

Definition 20.7 (Jitter). The jitter ξ is the unpredictable, random noise of
the clock error.

Remarks:

• In other words, jitter is the irregularity of the clock. Unlike drift,
jitter can vary fast.

• Jitter captures all the errors that are not explained by drift. Fig-
ure 20.8 visualizes the concepts.

20.2. CLOCK SYNCHRONIZATION 63

20.2 Clock Synchronization

Definition 20.9 (Clock Synchronization). Clock synchronization is the pro-
cess of matching multiple clocks (nodes) to have a common time.

Remarks:

• A trade-off exists between synchronization accuracy, convergence time,
and cost.

• Different clock synchronization variants may tolerate crashing, erro-
neous or byzantine nodes.

Algorithm 20.10 Network Time Protocol NTP

1: Two nodes, client u and server v

2: while true do
3: Node u sends request to v at time tu
4: Node v receives request at time tv
5: Node v processes the request and replies at time t′v
6: Node u receives the response at time t′u

7: Propagation delay δ =
(t′u−tu)−(t′v−tv)

2 (assumption: symmetric)

8: Clock skew θ =
(tv−(tu+δ))−(t′u−(t′v+δ))

2 =
(tv−tu)+(t′v−t

′
u)

2
9: Node u adjusts clock by +θ

10: Sleep before next synchronization
11: end while

Remarks:

• Many NTP servers are public, answering to UDP packets.

• The most accurate NTP servers derive their time from atomic clocks,
synchronized to UTC. To reduce those server’s load, a hierarchy of
NTP servers is available in a forest (multiple trees) structure.

• The regular synchronization of NTP limits the maximum error despite
unpredictable clock errors. Synchronizing clocks just once is only suf-
ficient for a short time period.

Definition 20.11 (PTP). The Precision Time Protocol (PTP) is a clock
synchronization protocol similar to NTP, but which uses medium access con-
trol (MAC) layer timestamps.

Remarks:

• MAC layer timestamping removes the unknown time delay incurred
through messages passing through the software stack.

• PTP can achieve sub-microsecond accuracy in local networks.

Definition 20.12 (Global Synchronization). Global synchronization estab-
lishes a common time between any two nodes in the system.

64 CHAPTER 20. TIME, CLOCKS & GPS

Remarks:

• For example, email needs global timestamps. Also, event detection
for power grid control and earthquake localization need global times-
tamps.

• Earthquake localization does not need real-time synchronization; it is
sufficient if a common time can be reconstructed when needed, also
known as “post factum” synchronization.

• NTP and PTP are both examples of clock synchronization algorithms
that optimize for global synchronization.

• However, two nodes that constantly communicate may receive their
timestamps through different paths of the NTP forest, and hence they
may accumulate different errors. Because of the clock skew, a message
sent by node u might arrive at node v with a timestamp in the future.

Algorithm 20.13 Local Time Synchronization

1: while true do
2: Exchange current time with neighbors
3: Adapt time to neighbors, e.g., to average or median
4: Sleep before next synchronization
5: end while

Remarks:

• Local synchronization is the method of choice to establish time-division
multiple access (TDMA) and coordination of wake-up and sleeping
times in wireless networks. Only close-by nodes matter as far-away
nodes will not interfere with their transmissions.

• Local synchronization is also relevant for precise event localization.
For instance, using the speed of sound, measured sound arrival times
from co-located sensors can be used to localize a shooter.

• While global synchronization algorithm such as NTP usually synchro-
nize to an external time standard, local algorithms often just synchro-
nize among themselves, i.e., the notion of time does not reflect any
time standards.

• In wireless networks, one can simplify and improve synchronization.

20.3. TIME STANDARDS 65

Algorithm 20.14 Wireless Clock Synchronization with Known Delays

1: Given: transmitter s, receivers u, v, with known transmission delays du, dv
from transmitter s, respectively.

2: s sends signal at time ts
3: u receives signal at time tu
4: v receives signal at time tv

5: ∆u = tu − (ts + du)
6: ∆v = tv − (ts + dv)

7: Clock skew between u and v: θ = ∆v −∆u = tv − dv + du − tu

20.3 Time Standards

Definition 20.15 (TAI). The International Atomic Time (TAI) is a time
standard derived from over 400 atomic clocks distributed worldwide.

Remarks:

• Using a weighted average of all involved clocks, TAI is an order of
magnitude more stable than the best clock.

• The involved clocks are synchronized using simultaneous observations
of GPS or geostationary satellite transmissions using Algorithm 20.14.

• While a single satellite measurement has a time uncertainty on the
order of nanoseconds, averaging over a month improves the accuracy
by several orders of magnitude.

Definition 20.16 (Leap Second). A leap second is an extra second added to a
minute to make it irregularly 61 instead of 60 seconds long.

Remarks:

• Time standards use leap seconds to compensate for the slowing of the
Earth’s rotation. In theory, also negative leap seconds can be used to
make some minutes only 59 seconds long. But so far, this was never
necessary.

• For easy implementation, not all time standards use leap seconds, for
instance TAI and GPS time do not.

Definition 20.17 (UTC). The Coordinated Universal Time (UTC) is a
time standard based on TAI with leap seconds added at irregular intervals to
keep it close to mean solar time at 0◦ longitude.

66 CHAPTER 20. TIME, CLOCKS & GPS

Remarks:

• The global time standard Greenwich Mean Time (GMT) was already
established in 1884. With the invention of caesium atomic clocks and
the subsequent redefinition of the SI second, UTC replaced GMT in
1967.

• Before time standards existed, each city set their own time according
to the local mean solar time, which is difficult to measure exactly.
This was changed by the upcoming rail and communication networks.

• Different notations for time and date are in use. A standardized format
for timestamps, mostly used for processing by computers, is the ISO
8601 standard. According to this standard, a UTC timestamp looks
like this: 1712-02-30T07:39:52Z. T separates the date and time parts
while Z indicates the time zone with zero offset from UTC.

• Why UTC and not “CUT”? Because France insisted. Same for other
abbreviations in this domain, e.g. TAI.

Definition 20.18 (Time Zone). A time zone is a geographical region in which
the same time offset from UTC is officially used.

Remarks:

• Time zones serve to roughly synchronize noon with the sun reaching
the day’s highest apparent elevation angle.

• Some time zones’ offset is not a whole number of hours, e.g. India.

20.4 Clock Sources

Definition 20.19 (Atomic Clock). An atomic clock is a clock which keeps
time by counting oscillations of atoms.

Remarks:

• Atomic clocks are the most accurate clocks known. They can have a
drift of only about one second in 150 million years, about 2e-10 ppm!

• Many atomic clocks are based on caesium atoms, which led to the
current definition of a second. Others use hydrogen-1 or rubidium-87.

• In the future, atoms with higher frequency oscillations could yield
even more accurate clocks.

• Atomic clocks are getting smaller and more energy efficient. Chip-
scale atomic clocks (CSAC) are currently being produced for space
applications and may eventually find their way into consumer elec-
tronics.

Definition 20.20 (System Clock). The system clock in a computer is an
oscillator used to synchronize all components on the motherboard.

20.4. CLOCK SOURCES 67

Remarks:

• Usually, a quartz crystal oscillator with a frequency of some tens to
hundreds MHz is used.

• Therefore, the system clock can achieve a precision of some ns!

• The CPU clock is usually a multiple of the system clock, generated
from the system clock through a clock multiplier.

• To guarantee nominal operation of the computer, the system clock
must have low jitter. Otherwise, some components might not get
enough time to complete their operation before the next (early) clock
pulse arrives.

• Drift however is not critical for system stability.

• Applications of the system clock include thread scheduling and ensur-
ing smooth media playback.

• If a computer is shut down, the system clock is not running; it is
reinitialized when starting the computer.

Definition 20.21 (RTC). The real-time clock (RTC) in a computer is a
battery backed oscillator which is running even if the computer is shut down or
unplugged.

Remarks:

• The RTC is read at system startup to initialize the system clock.

• This keeps the computer’s time close to UTC even when the time
cannot be synchronized over a network.

• RTCs are relatively inaccurate, with a common maximum drift of 5,
20 or even 100 ppm, depending on quality and temperature.

• In many cases, the RTC frequency is 32.768 kHz, which allows for
simple timekeeping based on binary counter circuits because the fre-
quency is exactly 215 Hz.

Definition 20.22 (Radio Time Signal). A Radio Time Signal is a time code
transmitted via radio waves by a time signal station, referring to a time in a
given standard such as UTC.

Remarks:

• Time signal stations use atomic clocks to send as accurate time codes
as possible.

• Radio-controlled clocks are an example application of radio signal time
synchronization.

• In Europe, most radio-controlled clocks use the signal transmitted by
the DCF77 station near Frankfurt, Germany.

68 CHAPTER 20. TIME, CLOCKS & GPS

• Radio time signals can be received much farther than the horizon of
the transmitter due to signal reflections at the ionosphere. DCF77 for
instance has an official range of 2,000 km.

• The time synchronization accuracy when using radio time signals is
limited by the propagation delay of the signal. For instance the delay
Frankfurt-Zurich is about 1 ms.

Definition 20.23 (Power Line Clock). A power line clock measures the os-
cillations from electric AC power lines, e.g. 50 Hz.

Remarks:

• Clocks in kitchen ovens are usually driven by power line oscillations.

• AC power line oscillations drift about 10 ppm, which is remarkably
stable.

• The magnetic field radiating from power lines is strong enough that
power line clocks can work wirelessly.

• Power line clocks can be synchronized by matching the observed noisy
power line oscillation patterns.

• Power line clocks operate with as little as a few ten µW.

Definition 20.24 (Sunlight Time Synchronization). Sunlight time synchro-
nization is a method of reconstructing global timestamps by correlating annual
solar patterns from light sensors’ length of day measurements.

Remarks:

• Sunlight time synchronization is relatively inaccurate.

• Due to low data rates from length of day measurements, sunlight time
synchronization is well-suited for long-time measurements with data
storage and post-processing, requiring no communication at the time
of measurement.

• Historically, sun and lunar observations were the first measurements
used for time determination. Some clock towers still feature sun dials.

• . . . but today, the most popular source of time is probably GPS!

20.5 GPS

Definition 20.25 (Global Positioning System). The Global Positioning Sys-
tem (GPS) is a Global Navigation Satellite System (GNSS), consisting
of at least 24 satellites orbiting around the Earth, each continuously transmitting
its position and time code.

20.5. GPS 69

Remarks:

• Positioning is done in space and time!

• GPS provides position and time information to receivers anywhere on
Earth where at least four satellite signals can be received.

• Line of sight (LOS) between satellite and receiver is advantageous.
GPS works poorly indoors, or with reflections.

• Besides the US GPS, three other GNSS exist: the European Galileo,
the Russian GLONASS and the Chinese BeiDou.

• GPS satellites orbit around Earth approximately 20,000 km above the
surface, circling Earth twice a day. The signals take between 64 and
89 ms to reach Earth.

• The orbits are precisely determined by ground control stations, op-
timized for a high number of satellites being concurrently above the
horizon at any place on Earth.

Algorithm 20.26 GPS Satellite

1: Given: Each satellite has a unique 1023 bit (±1, see below) PRN sequence,
plus some current navigation data D (also ±1).

2: The code below is a bit simplified, concentrating on the digital aspects,
ignoring that the data is sent on a carrier frequency of 1575.42 MHz.

3: while true do
4: for all bits Di ∈ D do
5: for j = 0 . . . 19 do
6: for k = 0 . . . 1022 do {this loop takes exactly 1 ms}
7: Send bit PRNk ·Di

8: end for
9: end for

10: end for
11: end while

Definition 20.27 (PRN). Pseudo-Random Noise (PRN) sequences are
pseudo-random bit strings. Each GPS satellite uses a unique PRN sequence
with a length of 1023 bits for its signal transmissions.

Remarks:

• The GPS PRN sequences are so-called Gold codes, which have low
cross-correlation with each other.

• To simplify our math (abstract from modulation), each PRN bit is
either 1 or −1.

Definition 20.28 (Navigation Data). Navigation Data is the data transmit-
ted from satellites, which includes orbit parameters to determine satellite po-
sitions, timestamps of signal transmission, atmospheric delay estimations and
status information of the satellites and GPS as a whole, such as the accuracy
and validity of the data.

70 CHAPTER 20. TIME, CLOCKS & GPS

Remarks:

• As seen in Algorithm 20.26 each bit is repeated 20 times for better
robustness. Thus, the navigation data rate is only 50 bit/s.

• Due to this limited data rate, timestamps are sent every 6 seconds,
satellite orbit parameters (function of the satellite position over time)
only every 30 seconds. As a result, the latency of a first position
estimate after turning on a receiver, which is called time-to-first-fix
(TTFF), can be high.

Definition 20.29 (Circular Cross-Correlation). The circular cross-correlation
is a similarity measure between two vectors of length N , circularly shifted by
a given displacement d:

cxcorr(a, b, d) =

N−1∑
i=0

ai · bi+d mod N

Remarks:

• The two vectors are most similar at the displacement d where the sum
(cross-correlation value) is maximum.

• The vector of cross-correlation values with all N displacements can ef-
ficiently be computed using a fast Fourier transform (FFT) inO(N logN)
instead of O(N2) time.

Algorithm 20.30 Acquisition

1: Received 1 ms signal s with sampling rate r · 1, 023 kHz
2: Possible Doppler shifts F , e.g. {-10 kHz, -9.8 kHz, . . . , +10 kHz}
3: Tensor A = 0: Satellite × carrier frequency × time

4: for all satellites i do
5: PRN ′i = PRNi stretched with ratio r
6: for all Doppler shifts f ∈ F do
7: Build modulated PRN ′′i with PRN ′i and Doppler frequency f
8: for all delays d ∈ {0, 1, . . . , 1, 023 · r − 1} do
9: Ai(f, d) = |cxcorr(s,PRN ′′

i , d)|
10: end for
11: end for
12: Select d∗ that maximizes maxd maxf Ai(f, d)
13: Signal arrival time ri = d∗/(r · 1, 023 kHz)
14: end for

Remarks:

• Multiple milliseconds of acquisition can be summed up to average out
noise and therefore improve the arrival time detection probability.

Definition 20.31 (Acquisition). Acquisition is the process in a GPS receiver
that finds the visible satellite signals and detects the delays of the PRN sequences
and the Doppler shifts of the signals.

20.5. GPS 71

Remarks:

• The relative speed between satellite and receiver introduces a signif-
icant Doppler shift to the carrier frequency. In order to decode the
signal, a frequency search for the Doppler shift is necessary.

• The nested loops make acquisition the computationally most intensive
part of a GPS receiver.

Algorithm 20.32 Classic GPS Receiver

1: h: Unknown receiver handset position
2: θ: Unknown handset time offset to GPS system time
3: ri: measured signal arrival time in handset time system
4: c: signal propagation speed (GPS: speed of light)

5: Perform Acquisition (Algorithm 20.30)
6: Track signals and decode navigation data
7: for all satellites i do
8: Using navigation data, determine signal transmit time si and position pi
9: Measured satellite transmission delay di = ri − si

10: end for
11: Solve the following system of equations for h and θ:
12: ||pi − h||/c = di − θ, for all i

Remarks:

• GPS satellites carry precise atomic clocks, but the receiver is not syn-
chronized with the satellites. The arrival times of the signals at the
receiver are determined in the receiver’s local time. Therefore, even
though the satellite signals include transmit timestamps, the exact
distance between satellites and receiver is unknown.

• In total, the positioning problem contains four unknown variables,
three for the handset’s spatial position and one for its time offset from
the system time. Therefore, signals from at least four transmitters are
needed to find the correct solution.

• Since the equations are quadratic (distance), with as many observa-
tions as variables, the system of equations has two solutions in princi-
ple. For GPS however, in practice one of the solutions is far from the
Earth surface, so the correct solution can always be identified without
a fifth satellite.

• More received signals help reducing the measurement noise and thus
improving the accuracy.

• Since the positioning solution, which is also called position fix, in-
cludes the handset’s time offset ∆, this establishes a global time for
all handsets. Thus, GPS is useful for global time synchronization.

72 CHAPTER 20. TIME, CLOCKS & GPS

• For a handset with unknown position, GPS timing is more accurate
than time synchronization with a single transmitter, like a time signal
station (cf. Definition 20.22). With the latter, the unknown signal
propagation delays cannot be accounted for.

Definition 20.33 (A-GPS). An Assisted GPS (A-GPS) receiver fetches
the satellite orbit parameters and other navigation data from the Internet, for
instance via a cellular network.

Remarks:

• A-GPS reduces the data transmission time, and thus the TTFF, from
a maximum of 30 seconds per satellite to a maximum of 6 seconds.

• Smartphones regularly use A-GPS. However, coarse positioning is usu-
ally done based on nearby Wi-Fi base stations only, which saves energy
compared to GPS.

• Another GPS improvement is Differential GPS (DGPS): A receiver
with a fixed location within a few kilometers of a mobile receiver
compares the observed and actual satellite distances. This error is
then subtracted at the mobile receiver. DGPS achieves accuracies in
the order of 10 cm.

Definition 20.34 (Snapshot GPS Receiver). A snapshot receiver is a GPS
receiver that captures one or a few milliseconds of raw GPS signal for a position
fix.

Remarks:

• Snapshot receivers aim at the remaining latency that results from the
transmission of timestamps from the satellites every six seconds.

• Since time changes continuously, timestamps cannot be fetched to-
gether with the satellite orbit parameters that are valid for two hours.

• A snapshot receiver can determine the ranges to the satellites modulo
1 ms, which corresponds to 300 km. An approximate time and location
of the receiver is used to resolve these ambiguities without a timestamp
from the satellite signals themselves.

Definition 20.35 (CTN). Coarse Time Navigation (CTN) is a snapshot
receiver positioning technique measuring sub-millisecond satellite ranges from
correlation peaks, like conventional GPS receivers.

Remarks:

• A CTN receiver determines the signal transmit times and satellite
positions from its own approximate location by subtracting the signal
propagation delay from the receive time. The receiver location and
time is not exactly known, but since signals are transmitted exactly
at whole milliseconds, rounding to the nearest whole millisecond gives
the signal transmit time.

20.6. LOWER BOUNDS 73

• With only a few milliseconds of signal, noise cannot be averaged out
well and may lead to wrong signal arrival time estimates. Such wrong
measurements usually render the system of equations unsolvable, mak-
ing positioning infeasible.

Algorithm 20.36 Collective Detection Receiver

1: Given: A raw 1 ms GPS sample s, a set H of location/time hypotheses
2: In addition, the receiver learned all navigation and atmospheric data

3: for all hypotheses h ∈ H do
4: Vector r = 0
5: Set V = satellites that should be visible with hypothesis h
6: for all satellites i in V do
7: r = r + ri, where ri is expected signal of satellite i. The data of vec-

tor ri incorporates all available information: distance and atmospheric
delay between satellite and receiver, frequency shift because of Doppler
shift due to satellite movement, current navigation data bit of satellite,
etc.

8: end for
9: Probability Ph = cxcorr(s, r, 0)

10: end for
11: Solution: hypothesis h ∈ H maximizing Ph

Definition 20.37 (Collective Detection). Collective detection (CD) is a
maximum likelihood snapshot receiver localization method, which does not de-
termine an arrival time for each satellite, but rather combine all the available
information and take a decision only at the end of the computation.

Remarks:

• CD can tolerate a few low quality satellite signals and is thus more
robust than CTN.

• In essence, CD tests how well position hypotheses match the received
signal. For large position and time uncertainties, the high number of
hypotheses require a lot of computation power.

• CD can be sped up by a branch and bound approach, which reduces
the computation per position fix to the order of one second even for
uncertainties of 100 km and a minute.

20.6 Lower Bounds

In the clock synchronization problem, we are given a network (graph) with n
nodes. The goal for each node is to have a (logical) clock such that the clock
values are well synchronized, and close to real time. Each node is equipped
with a hardware (system) clock, that ticks more or less in real time, i.e., the
time between two pulses is arbitrary between [1− ε, 1 + ε], for a constant ε� 1.
We assume that messages sent over the edges of the graph have a delivery time

74 CHAPTER 20. TIME, CLOCKS & GPS

between [0, 1]. In other words, we have a bounded but variable drift on the
hardware clocks and an arbitrary jitter in the delivery times. The goal is to
design a message-passing algorithm that ensures that the logical clock skew of
adjacent nodes is as small as possible at all times.

Definition 20.38 (Local and Global Clock Skew). In a network of nodes, the
local clock skew is the skew between neighboring nodes, while the global clock
skew is the maximum skew between any two nodes.

Remarks:

• Of interest is also the average global clock skew, that is the average
skew between any pair of nodes.

Theorem 20.39. The global clock skew (Definition 20.12) is Ω(D), where D
is the diameter of the network graph.

Proof. For a node u, let tu be the logical time of u and let (u → v) denote a
message sent from u to a node v. Let t(m) be the time delay of a message m
and let u and v be neighboring nodes. First consider a case where the message
delays between u and v are 1/2. Then, all the messages sent by u and v at time
t according to the clock of the sender arrive at time t + 1/2 according to the
clock of the receiver.

Then consider the following cases

• tu = tv + 1/2, t(u→ v) = 1, t(v → u) = 0

• tu = tv − 1/2, t(u→ v) = 0, t(v → u) = 1,

where the message delivery time is always fast for one node and slow for the
other and the logical clocks are off by 1/2. In both scenarios, the messages sent
at time i according to the clock of the sender arrive at time i + 1/2 according
to the logical clock of the receiver. Therefore, for nodes u and v, both cases
with clock drift seem the same as the case with perfectly synchronized clocks.
Furthermore, in a linked list of D nodes, the left- and rightmost nodes l, r cannot
distinguish tl = tr +D/2 from tl = tr −D/2.

Remarks:

• From Theorem 20.39, it directly follows that any reasonable clock
synchronization algorithm must have a global skew of Ω(D).

• Many natural algorithms manage to achieve a global clock skew of
O(D).

• As both message jitter and hardware clock drift are bounded by con-
stants, it feels like we should be able to get a constant drift at least
between neighboring nodes.

• Let us look at the following algorithm:

Lemma 20.41. The clock synchronization protocol of Algorithm 20.40 has a
local skew of Ω(n).

20.6. LOWER BOUNDS 75

Algorithm 20.40 Local Clock Synchronization (at node v)

1: repeat
2: send logical time tv to all neighbors
3: if Receive logical time tu, where tu > tv, from any neighbor u then
4: tv = tu
5: end if
6: until done

Proof. Let the graph be a linked list of D nodes. We denote the nodes by
v1, v2, . . . , vD from left to right and the logical clock of node vi by ti. Apart
from the left-most node v1 all hardware clocks run with speed 1 (real time).
Node v1 runs at maximum speed, i.e. the time between two pulses is not 1 but
1− ε. Assume that initially all message delays are 1. After some time, node v1

will start to speed up v2, and after some more time v2 will speed up v3, and
so on. At some point of time, we will have a clock skew of 1 between any two
neighbors. In particular t1 = tD +D − 1.

Now we start playing around with the message delays. Let t1 = T . First we
set the delay between the v1 and v2 to 0. Now node v2 immediately adjusts its
logical clock to T . After this event (which is instantaneous in our model) we set
the delay between v2 and v3 to 0, which results in v3 setting its logical clock to T
as well. We perform this successively to all pairs of nodes until vD−2 and vD−1.
Now node vD−1 sets its logical clock to T , which indicates that the difference
between the logical clocks of vD−1 and vD is T − (T − (D − 1)) = D − 1.

Remarks:

• The introduced examples may seem cooked-up, but examples like this
exist in all networks, and for all algorithms. Indeed, it was shown
that any natural clock synchronization algorithm must have a bad
local skew. In particular, a protocol that averages between all neigh-
bors (like Algorithm 20.13) is even worse than Algorithm 20.40. An
averaging algorithm has a clock skew of Ω(D2) in the linked list, at
all times.

• It was shown that the local clock skew is Θ(logD), i.e., there is a pro-
tocol that achieves this bound, and there is a proof that no algorithm
can be better than this bound!

• Note that these are worst-case bounds. In practice, clock drift and
message delays may not be the worst possible, typically the speed of
hardware clocks changes at a comparatively slow pace and the mes-
sage transmission times follow a benign probability distribution. If we
assume this, better protocols do exist, in theory as well as in practice.

Chapter Notes

Atomic clocks can be used as a GPS fallback for data center synchroniza-
tion [CDE+13].

76 CHAPTER 20. TIME, CLOCKS & GPS

GPS has been such a technological breakthrough that even though it dates
back to the 1970s, the new GNSS still use essentially the same techniques. Sev-
eral people worked on snapshot GPS receivers, but the technique has not pene-
trated into commercial receivers yet. Liu et al. [LPH+12] presented a practical
CTN receiver and reduced the solution space by eliminating solutions not lying
on the ground. CD receivers are studied since at least 2011 [ABD+11] and have
recently been made practically feasible through branch and bound [BEW17]

It has been known for a long time that the global clock skew is Θ(D) [LL84,
ST87]. The problem of synchronizing the clocks of nearby nodes was intro-
duced by Fan and Lynch in [LF04]; they proved a surprising lower bound of
Ω(logD/ log logD) for the local skew. The first algorithm providing a non-
trivial local skew of O(

√
D) was given in [LW06]. Later, matching upper and

lower bounds of Θ(logD) were given in [LLW10]. The problem has also been
studied in a dynamic setting [KLO09, KLLO10] or when a fraction of nodes ex-
perience byzantine faults and the other nodes have to recover from faulty initial
state (i.e., self-stabilizing) [DD06, DW04]. The self-stabilizing byzantine case
has been solved with asymptotically optimal skew [KL18].

Clock synchronization is a well-studied problem in practice, for instance
regarding the global clock skew in sensor networks, e.g. [EGE02, GKS03,
MKSL04, PSJ04]. One more recent line of work is focussing on the problem
of minimizing the local clock skew [BvRW07, SW09, LSW09, FW10, FZTS11].

This chapter was written in collaboration with Manuel Eichelberger.

Bibliography

[ABD+11] Penina Axelrad, Ben K Bradley, James Donna, Megan Mitchell, and
Shan Mohiuddin. Collective Detection and Direct Positioning Using
Multiple GNSS Satellites. Navigation, 58(4):305–321, 2011.

[BEW17] Pascal Bissig, Manuel Eichelberger, and Roger Wattenhofer. Fast
and Robust GPS Fix Using One Millisecond of Data. In Informa-
tion Processing in Sensor Networks (IPSN), 2017 16th ACM/IEEE
International Conference on, pages 223–234. IEEE, 2017.

[BvRW07] Nicolas Burri, Pascal von Rickenbach, and Roger Wattenhofer.
Dozer: Ultra-Low Power Data Gathering in Sensor Networks. In
International Conference on Information Processing in Sensor Net-
works (IPSN), Cambridge, Massachusetts, USA, April 2007.

[CDE+13] James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes,
Christopher Frost, Jeffrey John Furman, Sanjay Ghemawat, An-
drey Gubarev, Christopher Heiser, Peter Hochschild, et al. Span-
ner: Google’s globally distributed database. ACM Transactions on
Computer Systems (TOCS), 31(3):8, 2013.

[DD06] Ariel Daliot and Danny Dolev. Self-Stabilizing Byzantine Pulse Syn-
chronization. Computing Research Repository, 2006.

[DW04] Shlomi Dolev and Jennifer L. Welch. Self-stabilizing clock synchro-
nization in the presence of Byzantine faults. September 2004.

BIBLIOGRAPHY 77

[EGE02] Jeremy Elson, Lewis Girod, and Deborah Estrin. Fine-grained
Network Time Synchronization Using Reference Broadcasts. ACM
SIGOPS Operating Systems Review, 36:147–163, 2002.

[FW10] Roland Flury and Roger Wattenhofer. Slotted Programming for
Sensor Networks. In International Conference on Information Pro-
cessing in Sensor Networks (IPSN), Stockholm, Sweden, April 2010.

[FZTS11] Federico Ferrari, Marco Zimmerling, Lothar Thiele, and Olga Saukh.
Efficient Network Flooding and Time Synchronization with Glossy.
In Proceedings of the 10th International Conference on Information
Processing in Sensor Networks (IPSN), pages 73–84, 2011.

[GKS03] Saurabh Ganeriwal, Ram Kumar, and Mani B. Srivastava. Timing-
sync Protocol for Sensor Networks. In Proceedings of the 1st interna-
tional conference on Embedded Networked Sensor Systems (SenSys),
2003.

[KL18] Pankaj Khanchandani and Christoph Lenzen. Self-Stabilizing
Byzantine Clock Synchronization with Optimal Precision. January
2018.

[KLLO10] Fabian Kuhn, Christoph Lenzen, Thomas Locher, and Rotem Osh-
man. Optimal Gradient Clock Synchronization in Dynamic Net-
works. In 29th Symposium on Principles of Distributed Computing
(PODC), Zurich, Switzerland, July 2010.

[KLO09] Fabian Kuhn, Thomas Locher, and Rotem Oshman. Gradient Clock
Synchronization in Dynamic Networks. In 21st ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA), Calgary,
Canada, August 2009.

[LF04] Nancy Lynch and Rui Fan. Gradient Clock Synchronization. In
Proceedings of the 23rd Annual ACM Symposium on Principles of
Distributed Computing (PODC), 2004.

[LL84] Jennifer Lundelius and Nancy Lynch. An Upper and Lower Bound
for Clock Synchronization. Information and Control, 62:190–204,
1984.

[LLW10] Christoph Lenzen, Thomas Locher, and Roger Wattenhofer. Tight
Bounds for Clock Synchronization. In Journal of the ACM, Volume
57, Number 2, January 2010.

[LPH+12] Jie Liu, Bodhi Priyantha, Ted Hart, Heitor Ramos, Antonio A.F.
Loureiro, and Qiang Wang. Energy Efficient GPS Sensing with
Cloud Offloading. In 10th ACM Conference on Embedded Networked
Sensor Systems (SenSys 2012). ACM, November 2012.

[LSW09] Christoph Lenzen, Philipp Sommer, and Roger Wattenhofer. Op-
timal Clock Synchronization in Networks. In 7th ACM Conference
on Embedded Networked Sensor Systems (SenSys), Berkeley, Cali-
fornia, USA, November 2009.

78 CHAPTER 20. TIME, CLOCKS & GPS

[LW06] Thomas Locher and Roger Wattenhofer. Oblivious Gradient Clock
Synchronization. In 20th International Symposium on Distributed
Computing (DISC), Stockholm, Sweden, September 2006.

[MKSL04] Miklós Maróti, Branislav Kusy, Gyula Simon, and Ákos Lédeczi. The
Flooding Time Synchronization Protocol. In Proceedings of the 2nd
international Conference on Embedded Networked Sensor Systems,
SenSys ’04, 2004.

[PSJ04] Santashil PalChaudhuri, Amit Kumar Saha, and David B. Johnson.
Adaptive Clock Synchronization in Sensor Networks. In Proceedings
of the 3rd International Symposium on Information Processing in
Sensor Networks, IPSN ’04, 2004.

[ST87] T. K. Srikanth and S. Toueg. Optimal Clock Synchronization. Jour-
nal of the ACM, 34:626–645, 1987.

[SW09] Philipp Sommer and Roger Wattenhofer. Gradient Clock Synchro-
nization in Wireless Sensor Networks. In 8th ACM/IEEE Inter-
national Conference on Information Processing in Sensor Networks
(IPSN), San Francisco, USA, April 2009.

Chapter 21

Quorum Systems

What happens if a single server is no longer powerful enough to service all your
customers? The obvious choice is to add more servers and to use the majority
approach (e.g. Paxos, Chapter 15) to guarantee consistency. However, even
if you buy one million servers, a client still has to access more than half of
them per request! While you gain fault-tolerance, your efficiency can at most
be doubled. Do we have to give up on consistency?

Let us take a step back: We used majorities because majority sets always
overlap. But are majority sets the only sets that guarantee overlap? In this
chapter we study the theory behind overlapping sets, known as quorum systems.

Definition 21.1 (quorum, quorum system). Let V = {v1, . . . , vn} be a set of
nodes. A quorum Q ⊆ V is a subset of these nodes. A quorum system
S ⊂ 2V is a set of quorums s.t. every two quorums intersect, i.e., Q1 ∩Q2 6= ∅
for all Q1, Q2 ∈ S.

Remarks:

• When a quorum system is being used, a client selects a quorum, ac-
quires a lock (or ticket) on all nodes of the quorum, and when done
releases all locks again. The idea is that no matter which quorum is
chosen, its nodes will intersect with the nodes of every other quorum.

• What can happen if two quorums try to lock their nodes at the same
time?

• A quorum system S is called minimal if ∀Q1, Q2 ∈ S : Q1 * Q2.

• The simplest quorum system imaginable consists of just one quorum,
which in turn just consists of one server. It is known as Singleton
(or primary copy).

• In the Majority quorum system, every quorum has bn2 c+ 1 nodes.

• Can you think of other simple quorum systems?

79

80 CHAPTER 21. QUORUM SYSTEMS

21.1 Load and Work

Definition 21.2 (access strategy). An access strategy Z defines the proba-
bility PZ(Q) of accessing a quorum Q ∈ S s.t.

∑
Q∈S PZ(Q) = 1.

Definition 21.3 (load).

• The load of access strategy Z on a node vi is LZ(vi) =
∑
Q∈S;vi∈Q PZ(Q).

The load is the probability that vi ∈ Q if Q is sampled from S.

• The load induced by access strategy Z on a quorum system S is the max-
imal load induced by Z on any node in S, i.e., LZ(S) = maxvi∈S LZ(vi).

• The load of a quorum system S is L(S) = minZ LZ(S).

Definition 21.4 (work).

• The work of a quorum Q ∈ S is the number of nodes in Q, W (Q) = |Q|.

• The work induced by access strategy Z on a quorum system S is the
expected number of nodes accessed, i.e., WZ(S) =

∑
Q∈S PZ(Q) ·W (Q).

• The work of a quorum system S is W (S) = minZWZ(S).

Remarks:

• Note that you cannot choose different access strategies Z for work and
load, you have to pick a single Z for both.

• We illustrate the above concepts with a small example. Let V =
{v1, v2, v3, v4, v5} and S = {Q1, Q2, Q3, Q4}, with Q1 = {v1, v2},
Q2 = {v1, v3, v4}, Q3 = {v2, v3, v5}, Q4 = {v2, v4, v5}. If we choose
the access strategy Z s.t. PZ(Q1) = 1/2 and PZ(Q2) = PZ(Q3) =
PZ(Q4) = 1/6, then the node with the highest load is v2 with LZ(v2)
= 1/2 + 1/6 + 1/6 = 5/6, i.e., LZ(S) = 5/6. Regarding work, we have
WZ(S) = 1/2 · 2 + 1/6 · 3 + 1/6 · 3 + 1/6 · 3 = 15/6.

• Can you come up with a better access strategy for S?

• If every quorum Q in a quorum system S has the same number of
elements, S is called uniform.

• What is the minimum load a quorum system can have?

Primary Copy vs. Majority Singleton Majority

How many nodes need to be accessed? (Work) 1 ≈ n/2
What is the load of the busiest node? (Load) 1 ≈ 1/2

Table 21.5: First comparison of the Singleton and Majority quorum systems.
Note that the Singleton quorum system can be a good choice when the failure
probability of every single node is > 1/2.

Theorem 21.6. Let S be a quorum system. Then L(S) ≥ 1/
√
n holds.

21.2. GRID QUORUM SYSTEMS 81

Proof. Let Q = {v1, . . . , vq} be a quorum of minimal size in S, with |Q| = q.
Let Z be an access strategy for S. Every other quorum in S intersects in at
least one element with this quorum Q. Each time a quorum is accessed, at least
one node in Q is accessed as well, yielding a lower bound of LZ(vi) ≥ 1/q for
some vi ∈ Q.

Furthermore, as Q is minimal, at least q nodes need to be accessed, yielding
W (S) ≥ q. Thus, LZ(vi) ≥ q/n for some vi ∈ Q, as each time q nodes are
accessed, the load of the most accessed node is at least q/n.

Combining both ideas leads to LZ(S) ≥ max (1/q, q/n) ⇒ LZ(S) ≥ 1/
√
n.

Thus, L(S) ≥ 1/
√
n, as Z can be any access strategy.

Remarks:

• Can we achieve this load?

21.2 Grid Quorum Systems
Definition 21.7 (Basic Grid quorum system). Assume

√
n ∈ N, and arrange

the n nodes in a square matrix with side length of
√
n, i.e., in a grid. The basic

Grid quorum system consists of
√
n quorums, with each containing the full row

i and the full column i, for 1 ≤ i ≤
√
n.

Figure 21.8: The basic version of the Grid quorum system, where each quorum
Qi with 1 ≤ i ≤

√
n uses row i and column i. The size of each quorum is

2
√
n− 1 and two quorums overlap in exactly two nodes. Thus, when the access

strategy Z is uniform (i.e., the probability of each quorum is 1/
√
n), the work

is 2
√
n− 1, and the load of every node is in Θ(1/

√
n).

Remarks:

• Consider the right picture in Figure 21.8: The two quorums intersect
in two nodes. If both quorums were to be accessed at the same time,
it is not guaranteed that at least one quorum will lock all of its nodes,
as they could enter a deadlock!

• In the case of just two quorums, one could solve this by letting the
quorums just intersect in one node, see Figure 21.9. However, already
with three quorums the same situation could occur again, progress is
not guaranteed!

• However, by deviating from the “access all at once” strategy, we can
guarantee progress if the nodes are totally ordered!

82 CHAPTER 21. QUORUM SYSTEMS

Figure 21.9: There are other ways to choose quorums in the grid s.t. pairwise
different quorums only intersect in one node. The size of each quorum is between√
n and 2

√
n − 1, i.e., the work is in Θ(

√
n). When the access strategy Z is

uniform, the load of every node is in Θ(1/
√
n).

Algorithm 21.10 Sequential Locking Strategy for a Quorum Q

1: Attempt to lock the nodes one by one, ordered by their identifiers
2: Should a node be already locked, release all locks and start over

Theorem 21.11. If each quorum is accessed by Algorithm 21.10, at least one
quorum will obtain a lock for all of its nodes.

Proof. We prove the theorem by contradiction. Assume no quorum can make
progress, i.e., for every quorum we have: At least one of its nodes is locked by
another quorum. Let v be the node with the highest identifier that is locked by
some quorum Q. Observe that Q already locked all of its nodes with a smaller
identifier than v, otherwise Q would have restarted. As all nodes with a higher
identifier than v are not locked, Q either has locked all of its nodes or can
make progress – a contradiction. As the set of nodes is finite, one quorum will
eventually be able to lock all of its nodes.

Remarks:

• But now we are back to sequential accesses in a distributed system?
Let’s do it concurrently with the same idea, i.e., resolving conflicts by
the ordering of the nodes. Then, a quorum that locked the highest
identifier so far can always make progress!

Theorem 21.13. If the nodes and quorums use Algorithm 21.12, at least one
quorum will obtain a lock for all of its nodes.

21.3. FAULT TOLERANCE 83

Algorithm 21.12 Concurrent Locking Strategy for a Quorum Q

Invariant: Let vQ ∈ Q be the highest identifier of a node locked by Q s.t. all
nodes vi ∈ Q with vi < vQ are locked by Q as well. Should Q not have any
lock, then vQ is set to 0.

1: repeat
2: Attempt to lock all nodes of the quorum Q
3: for each node v ∈ Q that was not able to be locked by Q do
4: exchange vQ and vQ′ with the quorum Q′ that locked v
5: if vQ > vQ′ then
6: Q′ releases lock on v and Q acquires lock on v
7: end if
8: end for
9: until all nodes of the quorum Q are locked

Proof. The proof is analogous to the proof of Theorem 21.11: Assume for con-
tradiction that no quorum can make progress. However, at least the quorum
with the highest vQ can always make progress – a contradiction! As the set of
nodes is finite, at least one quorum will eventually be able to acquire a lock on
all of its nodes.

Remarks:

• What if a quorum locks all of its nodes and then crashes? Is the
quorum system dead now? This issue can be prevented by, e.g., using
leases instead of locks: leases have a timeout, i.e., a lock is released
eventually. But what happens if a quorum is slow and its acquired
leases expire before it can acquire all leases?

21.3 Fault Tolerance

Definition 21.14 (resilience). If any f nodes from a quorum system S can fail
s.t. there is still a quorum Q ∈ S without failed nodes, then S is f -resilient.
The largest such f is the resilience R(S).

Theorem 21.15. Let S be a Grid quorum system where each of the n quorums
consists of a full row and a full column. S has a resilience of

√
n− 1.

Proof. If all
√
n nodes on the diagonal of the grid fail, then every quorum will

have at least one failed node. Should less than
√
n nodes fail, then there is a

row and a column without failed nodes.

Remarks:

• The Grid quorum system in Theorem 21.15 is different from the Basic
Grid quorum system described in Definition 21.7. In each quorum in
the Basic Grid quorum system the row and column index are identical,
while in the Grid quorum system of Theorem 21.15 this is not the case.

Definition 21.16 (failure probability). Assume that every node works with a
fixed probability p (in the following we assume concrete values, e.g. p > 1/2

84 CHAPTER 21. QUORUM SYSTEMS

or p ≥ 2/3). The failure probability Fp(S) of a quorum system S is the
probability that at least one node of every quorum fails.

Remarks:

• The asymptotic failure probability is Fp(S) for n→∞.

Facts 21.17. A version of a Chernoff bound states the following:
Let x1, . . . , xn be independent Bernoulli-distributed random variables with
Pr[xi = 1] = pi and Pr[xi = 0] = 1 − pi = qi, then for X :=

∑n
i=1 xi and

µ := E[X] =
∑n
i=1 pi the following holds:

for all 0 < δ < 1: Pr[X ≤ (1− δ)µ] ≤ e−µδ
2/2 .

Theorem 21.18. The asymptotic failure probability of the Majority quorum
system is 0, for p > 1/2.

Proof. In a Majority quorum system each quorum contains exactly bn2 c + 1
nodes and each subset of nodes with cardinality bn2 c + 1 forms a quorum. If
only bn2 c nodes work, then the Majority quorum system fails. Otherwise there
is at least one quorum available. In order to calculate the failure probability we
define the following random variables:

xi =

{
1, if node i works, happens with probability p

0, if node i fails, happens with probability q = 1− p
and X :=

∑n
i=1 xi, with µ = np, whereas X corresponds to the number of

working nodes. To estimate the probability that the number of working nodes
is less than bn2 c+ 1 we will make use of the Chernoff inequality from above. By
setting δ = 1 − 1

2p we obtain FP (S) = Pr[X ≤ bn2 c] ≤ Pr[X ≤ n
2] = Pr[X ≤

(1− δ)µ].
With δ = 1− 1

2p we have 0 < δ ≤ 1/2 due to 1/2 < p ≤ 1. Thus, we can use

the Chernoff bound and get FP (S) ≤ e−µδ2/2 ∈ e−Ω(n).

Theorem 21.19. The asymptotic failure probability of the Grid quorum system
is 1 for p > 0.

Proof. Consider the n = d · d nodes to be arranged in a d × d grid. A quorum
always contains one full row. In this estimation we will make use of the Bernoulli
inequality which states that for all n ∈ N, x ≥ −1 : (1 + x)n ≥ 1 + nx.

The system fails, if in each row at least one node fails (which happens with
probability 1 − pd for a particular row, as all nodes work with probability pd).
Therefore we can bound the failure probability from below with:

Fp(S) ≥ Pr[at least one failure per row] = (1− pd)d ≥ 1− dpd −→
n→∞

1.

Remarks:

• Now we have a quorum system with optimal load (the Grid) and one
with fault-tolerance (Majority), but what if we want both?

Definition 21.20 (B-Grid quorum system). Consider n = dhr nodes, arranged
in a rectangular grid with h · r rows and d columns. Each group of r rows is a
band, and r elements in a column restricted to a band are called a mini-column.
A quorum consists of one mini-column in every band and one element from
each mini-column of one band; thus every quorum has d+hr− 1 elements. The
B-Grid quorum system consists of all such quorums.

21.4. BYZANTINE QUORUM SYSTEMS 85

Figure 21.21: A B-Grid quorum system with n = 100 nodes, d = 10 columns,
h ·r = 10 rows, h = 5 bands, and r = 2. The depicted quorum has a d+hr−1 =
10 + 5 · 2− 1 = 19 nodes. If the access strategy Z is chosen uniformly, then we
have a work of d+hr−1 and a load of d+hr−1

n . By setting d =
√
n and r = ln d,

we obtain a work of Θ (
√
n) and a load of Θ (1/

√
n).

Theorem 21.22. The asymptotic failure probability of the B-Grid quorum sys-
tem is 0, for p ≥ 2

3 .

Proof. Suppose n = dhr and the elements are arranged in a grid with d columns
and h · r rows. The B-Grid quorum system does fail if in each band a complete
mini-column fails, because then it is not possible to choose a band where in each
mini-column an element is still working. It also fails if in a band an element
in each mini-column fails. If none of those cases holds, then the B-Grid system
does not fail. Those events may not be independent of each other, but with the
help of the union bound, we can upper bound the failure probability with the
following equation:

Fp(S) ≤ Pr[in every band a complete mini-column fails]

+ Pr[in a band at least one element of every m.-col. fails]

≤ (d(1− p)r)h + h(1− pr)d

We use d =
√
n, r = ln d, and 0 ≤ 1− p ≤ 1/3. Using nln x = xlnn, we have

d(1− p)r ≤ d · dln 1/3 ≈ d−0.1, and hence for large enough d the whole first term
is bounded from above by d−0.1h � 1/d2 = 1/n.

Regarding the second term, we have p ≥ 2/3, and h = d/ ln d < d. Hence
we can bound the term from above by d(1 − dln 2/3)d ≈ d(1 − d−0.4)d. Using
(1 + t/n)n ≤ et, we get (again, for large enough d) an upper bound of d(1 −
d−0.4)d = d(1− d0.6/d)d ≤ d · e−d0.6 = d(−d0.6/ ln d)+1 � d−2 = 1/n. In total, we
have Fp(S) ∈ O(1/n).

21.4 Byzantine Quorum Systems

While failed nodes are bad, they are still easy to deal with: just access another
quorum where all nodes can respond! Byzantine nodes make life more difficult
however, as they can pretend to be a regular node, i.e., one needs more sophis-
ticated methods to deal with them. We need to ensure that the intersection

86 CHAPTER 21. QUORUM SYSTEMS

Singleton Majority Grid B-Grid∗

Work 1 ≈ n/2 Θ (
√
n) Θ (

√
n)

Load 1 ≈ 1/2 Θ
(
1/
√

n
)

Θ
(
1/
√

n
)

Resilience 0 ≈ n/2 Θ (
√
n) Θ (

√
n)

F. Prob.∗∗ 1− p → 0 → 1 → 0

Table 21.23: Overview of the different quorum systems regarding resilience,
work, load, and their asymptotic failure probability. The best entries in each
row are set in bold.
∗ Setting d =

√
n and r = ln d.

∗∗Assuming prob. q = 1− p is constant but significantly less than 1/2.

of two quorums always contains a non-byzantine (correct) node and further-
more, the byzantine nodes should not be allowed to infiltrate every quorum. In
this section we study three counter-measures of increasing strength, and their
implications on the load of quorum systems.

Definition 21.24 (f -disseminating). A quorum system S is f -disseminating
if (1) the intersection of two different quorums always contains f + 1 nodes,
and (2) for any set of f byzantine nodes, there is at least one quorum without
byzantine nodes.

Remarks:

• Thanks to (2), even with f byzantine nodes, the byzantine nodes
cannot stop all quorums by just pretending to have crashed. At least
one quorum will survive. We will also keep this assumption for the
upcoming more advanced byzantine quorum systems.

• Byzantine nodes can also do something worse than crashing - they
could falsify data! Nonetheless, due to (1), there is at least one
non-byzantine node in every quorum intersection. If the data is self-
verifying by, e.g., authentication, then this one node is enough.

• If the data is not self-verifying, then we need another mechanism.

Definition 21.25 (f -masking). A quorum system S is f -masking if (1) the
intersection of two different quorums always contains 2f + 1 nodes, and (2) for
any set of f byzantine nodes, there is at least one quorum without byzantine
nodes.

Remarks:

• Note that except for the second condition, an f -masking quorum sys-
tem is the same as a 2f -disseminating system. The idea is that the
non-byzantine nodes (at least f + 1) can outvote the byzantine ones
(at most f), but only if all non-byzantine nodes are up-to-date!

• This raises an issue not covered yet in this chapter. If we access some
quorum and update its values, this change still has to be disseminated
to the other nodes in the byzantine quorum system. Opaque quorum
systems deal with this issue, which are discussed at the end of this
section.

21.4. BYZANTINE QUORUM SYSTEMS 87

• One can show that f -disseminating quorum systems need more than
3f nodes and f -masking quorum systems need more than 4f nodes.
In other words, f < n/3, or f < n/4. Essentially, the quorums may
not contain too many nodes, and the different intersection properties
lead to the different bounds.

Theorem 21.26. Let S be an f -disseminating quorum system. Then L(S) ≥√
(f + 1)/n holds.

Theorem 21.27. Let S be an f -masking quorum system. Then L(S) ≥
√

(2f + 1)/n
holds.

Proofs of Theorems 21.26 and 21.27. The proofs follow the proof of Theorem
21.6, by observing that now not just one element is accessed from a minimal
quorum, but f + 1 or 2f + 1, respectively.

Definition 21.28 (f -masking Grid quorum system). A f-masking Grid quo-
rum system is constructed as the grid quorum system, but each quorum contains
one full column and f + 1 rows of nodes, with 2f + 1 ≤

√
n.

Figure 21.29: An example how to choose a quorum in the f -masking Grid with
f = 2, i.e., 2 + 1 = 3 rows. The load is in Θ(f/

√
n) when the access strategy is

chosen to be uniform. Two quorums overlap by their columns intersecting each
other’s rows, i.e., they overlap in at least 2f + 2 nodes.

88 CHAPTER 21. QUORUM SYSTEMS

Remarks:

• The f -masking Grid nearly hits the lower bound for the load of f -
masking quorum systems, but not quite. A small change and we will
be optimal asymptotically.

Definition 21.30 (M -Grid quorum system). The M-Grid quorum system is
constructed as the grid quorum as well, but each quorum contains

√
f + 1 rows

and
√
f + 1 columns of nodes, with 2f + 1 ≤

√
n.

Figure 21.31: An example how to choose a quorum in the M -Grid with f = 3,
i.e., 2 rows and 2 columns. The load is in Θ(

√
f/n) when the access strategy

is chosen to be uniform. Two quorums overlap with each row intersecting each

other’s column, i.e., 2
√
f + 1

2
= 2f + 2 nodes.

Corollary 21.32. The f -masking Grid quorum system and the M -Grid quorum
system are f -masking quorum systems.

Remarks:

• We achieved nearly the same load as without byzantine nodes! How-
ever, as mentioned earlier, what happens if we access a quorum that is
not up-to-date, except for the intersection with an up-to-date quorum?
Surely we can fix that as well without too much loss?

• This property will be handled in the last part of this chapter by opaque
quorum systems. It will ensure that the number of correct up-to-date
nodes accessed will be larger than the number of out-of-date nodes
combined with the byzantine nodes in the quorum (cf. (21.33.1)).

Definition 21.33 (f -opaque quorum system). A quorum system S is f -opaque
if the following two properties hold for any set of f byzantine nodes F and any
two different quorums Q1, Q2:

|(Q1 ∩Q2) \ F | > |(Q2 ∩ F) ∪ (Q2 \Q1)| (21.33.1)

F ∩Q = ∅ for some Q ∈ S (21.33.2)

21.4. BYZANTINE QUORUM SYSTEMS 89

Figure 21.34: Intersection properties of an opaque quorum system. Equation
(21.33.1) ensures that the set of non-byzantine nodes in the intersection of
Q1, Q2 is larger than the set of out of date nodes, even if the byzantine nodes
“team up” with those nodes. Thus, the correct up to date value can always be
recognized by a majority voting.

Remarks:

• For any f -opaque quorum system, inequality (21.33.1) also holds for
|F | < f . In particular, substituting F = ∅ in (21.33.1) gives |Q1 ∩
Q2| > |Q2 \ Q1|; similarly, one can also deduce that |Q1 ∩ Q2| >
|Q1 \ Q2|. Therefore, |Q1| = |Q1 \ Q2| + |Q1 ∩ Q2| < 2|Q1 ∩ Q2|, so

|Q1 ∩Q2| > |Q1|
2 .

Theorem 21.35. Let S be an f -opaque quorum system. Then, f < n/5.

Proof. Due to (21.33.2), there exists a quorum Q1 with size at most n−f . With
(21.33.1), |Q1| > f holds. Let F1 be a set of f (byzantine) nodes F1 ⊂ Q1, and
with (21.33.2), there exists a Q2 ⊆ V \ F1. Thus, |Q1 ∩ Q2| ≤ n − 2f . With
(21.33.1), |Q1 ∩ Q2| > f holds. Thus, one could choose f (byzantine) nodes
F2 with F2 ⊂ Q1 ∩ Q2. Using (21.33.1) one can bound n − 3f from below:
n − 3f ≥ |Q2 ∩ Q1| − |F2| = |(Q2 ∩ Q1) \ F2| > |(Q1 ∩ F2) ∪ (Q1 \ Q2)| =
|F2 ∪ (Q1 \Q2)| = |F2|+ |Q1 \Q2| ≥ |F2|+ |F1| = 2f .

Remarks:

• One can extend the Majority quorum system to be f -opaque by setting
the size of each quorum to contain d(2n+ 2f)/3e nodes. Then its load
is 1/n d(2n+ 2f)/3e ≥ 2/3 + 2f/3n ≥ 2/3.

• Can we do much better? Sadly, no...

Theorem 21.36. Let S be an f -opaque quorum system. Then L(S) > 1/2
holds.

Proof. Equation (21.33.1) implies that for Q1, Q2 ∈ S, the intersection of Q1

and Q2 is more than half their size, i.e., |Q1 ∩ Q2| > |Q1|/2. Assuming S =

90 CHAPTER 21. QUORUM SYSTEMS

{Q1, Q2, . . . }, the total load induced by an access strategy Z on nodes in Q1 is:

∑
v∈Q1

∑
i:v∈Qi

PZ(Qi) =
∑
i

∑
v∈Q1∩Qi

PZ(Qi) =
∑
i

PZ(Qi)|Q1 ∩Qi| >
|Q1|

2
.

Using the pigeonhole principle, there must be at least one node in Q1 with load
greater than 1/2.

Chapter Notes

Historically, a quorum is the minimum number of members of a deliberative
body necessary to conduct the business of that group. Their use has inspired the
introduction of quorum systems in computer science since the late 1970s/early
1980s. Early work focused on Majority quorum systems [Lam78, Gif79, Tho79],
with the notion of minimality introduced shortly after [GB85]. The Grid quo-
rum system was first considered in [Mae85], with the B-Grid being introduced
in [NW94]. The latter article and [PW95] also initiated the study of load and
resilience.

The f -masking Grid quorum system and opaque quorum systems are from
[MR98], and the M -Grid quorum system was introduced in [MRW97]. Both
papers also mark the start of the formal study of Byzantine quorum systems.
The f -masking and the M -Grid have asymptotic failure probabilities of 1, more
complex systems with better values can be found in these papers as well.

Quorum systems have also been extended to cope with nodes dynamically
leaving and joining, see, e.g., the dynamic paths quorum system in [NW05].

For a further overview on quorum systems, we refer to the book by Vukolić
[Vuk12] and the article by Merideth and Reiter [MR10].

This chapter was written in collaboration with Klaus-Tycho Förster.

Bibliography

[GB85] Hector Garcia-Molina and Daniel Barbará. How to assign votes in a
distributed system. J. ACM, 32(4):841–860, 1985.

[Gif79] David K. Gifford. Weighted voting for replicated data. In Michael D.
Schroeder and Anita K. Jones, editors, Proceedings of the Seventh
Symposium on Operating System Principles, SOSP 1979, Asilomar
Conference Grounds, Pacific Grove, California, USA, 10-12, Decem-
ber 1979, pages 150–162. ACM, 1979.

[Lam78] Leslie Lamport. The implementation of reliable distributed multipro-
cess systems. Computer Networks, 2:95–114, 1978.

[Mae85] Mamoru Maekawa. A square root N algorithm for mutual exclusion
in decentralized systems. ACM Trans. Comput. Syst., 3(2):145–159,
1985.

[MR98] Dahlia Malkhi and Michael K. Reiter. Byzantine quorum systems.
Distributed Computing, 11(4):203–213, 1998.

BIBLIOGRAPHY 91

[MR10] Michael G. Merideth and Michael K. Reiter. Selected results from the
latest decade of quorum systems research. In Bernadette Charron-
Bost, Fernando Pedone, and André Schiper, editors, Replication:
Theory and Practice, volume 5959 of Lecture Notes in Computer Sci-
ence, pages 185–206. Springer, 2010.

[MRW97] Dahlia Malkhi, Michael K. Reiter, and Avishai Wool. The load and
availability of byzantine quorum systems. In James E. Burns and
Hagit Attiya, editors, Proceedings of the Sixteenth Annual ACM Sym-
posium on Principles of Distributed Computing, Santa Barbara, Cal-
ifornia, USA, August 21-24, 1997, pages 249–257. ACM, 1997.

[NW94] Moni Naor and Avishai Wool. The load, capacity and availability
of quorum systems. In 35th Annual Symposium on Foundations of
Computer Science, Santa Fe, New Mexico, USA, 20-22 November
1994, pages 214–225. IEEE Computer Society, 1994.

[NW05] Moni Naor and Udi Wieder. Scalable and dynamic quorum systems.
Distributed Computing, 17(4):311–322, 2005.

[PW95] David Peleg and Avishai Wool. The availability of quorum systems.
Inf. Comput., 123(2):210–223, 1995.

[Tho79] Robert H. Thomas. A majority consensus approach to concurrency
control for multiple copy databases. ACM Trans. Database Syst.,
4(2):180–209, 1979.

[Vuk12] Marko Vukolic. Quorum Systems: With Applications to Storage and
Consensus. Synthesis Lectures on Distributed Computing Theory.
Morgan & Claypool Publishers, 2012.

Chapter 22

Distributed Storage

How do you store 1M movies, each with a size of about 1GB, on 1M nodes, each
equipped with a 1TB disk? Simply store the movies on the nodes, arbitrarily,
and memorize (with a global index) which movie is stored on which node. What
if the set of movies or nodes changes over time, and you do not want to change
your global index too often?

22.1 Consistent Hashing

Several variants of hashing will do the job, e.g. consistent hashing:

Algorithm 22.1 Consistent Hashing

1: Hash the unique file name of each movie x with a known set of hash functions
hi(x)→ [0, 1), for i = 1, . . . , k

2: Hash the unique name (e.g., IP address and port number) of each node with
the same hash function h(u)→ [0, 1)

3: Store a copy of movie x on node u if hi(x) ≈ h(u), for any i. More formally,
store movie x on node u if

|hi(x)− h(u)| = min
v
{|hi(x)− h(v)|}, for any i

Theorem 22.2 (Consistent Hashing). In expectation, each node in Algorithm
22.1 stores km/n movies, where k is the number of hash functions, m the number
of different movies and n the number of nodes.

Proof. For a specific movie (out of m) and a specific hash function (out of k),
all n nodes have the same probability 1/n to hash closest to the movie hash.
By linearity of expectation, each node stores km/n movies in expectation if we
also count duplicates of movies on a node.

92

22.1. CONSISTENT HASHING 93

Remarks:

• Let us do a back-of-the-envelope calculation. We have m = 1M
movies, n = 1M nodes, each node has storage for 1TB/1GB = 1K
movies, i.e., we use k = 1K hash functions. Theorem 22.2 shows each
node stores about 1K movies.

• Using the Chernoff bound below with µ = km/n = 1K, the probability
that a node uses 10% more memory than expected is less than 1%.

Facts 22.3. A version of a Chernoff bound states the following:
Let x1, . . . , xn be independent Bernoulli-distributed random variables with
Pr[xi = 1] = pi and Pr[xi = 0] = 1 − pi = qi, then for X :=

∑n
i=1 xi and

µ := E[X] =
∑n
i=1 pi the following holds:

for any δ > 0: Pr[X ≥ (1 + δ)µ] <

(
eδ

(1 + δ)(1+δ)

)µ

Remarks:

• Instead of storing movies directly on nodes as in Algorithm 22.1, we
can also store the movies on any nodes we like. The nodes of Algorithm
22.1 then simply store forward pointers to the actual movie locations.

• For better load balancing, we might also hash nodes multiple times.

• In this chapter we want to push unreliability to the extreme. What if
the nodes are so unreliable that on average a node is only available for
1 hour? In other words, nodes exhibit a high churn, they constantly
join and leave the distributed system.

• With such a high churn, hundreds or thousands of nodes will change
every second. No single node can have an accurate picture of what
other nodes are currently in the system. This is remarkably different
to classic distributed systems, where a single unavailable node may
already be a minor disaster: all the other nodes have to get a consistent
view (Definition 26.5) of the system again. In high churn systems it
is impossible to have a consistent view at any time.

• Instead, each node will just know about a small subset of 100 or less
other nodes (“neighbors”). This way, nodes can withstand high churn
situations.

• On the downside, nodes will not directly know which node is responsi-
ble for what movie. Instead, a node searching for a movie might have
to ask a neighbor node, which in turn will recursively ask another
neighbor node, until the correct node storing the movie (or a forward
pointer to the movie) is found. The nodes of our distributed storage
system form a virtual network, also called an overlay network.

94 CHAPTER 22. DISTRIBUTED STORAGE

22.2 Hypercubic Networks

In this section we present a few overlay topologies of general interest.

Definition 22.4 (Topology Properties). Our virtual network should have the
following properties:

• The network should be (somewhat) homogeneous: no node should play a
dominant role, no node should be a single point of failure.

• The nodes should have IDs, and the IDs should span the universe [0, 1),
such that we can store data with hashing, as in Algorithm 22.1.

• Every node should have a small degree, if possible polylogarithmic in n,
the number of nodes. This will allow every node to maintain a persistent
connection with each neighbor, which will help us to deal with churn.

• The network should have a small diameter, and routing should be easy.
If a node does not have the information about a data item, then it should
know which neighbor to ask. Within a few (polylogarithmic in n) hops,
one should find the node that has the correct information.

2

1

4

Figure 22.5: The structure of a fat tree.

Remarks:

• Some basic network topologies used in practice are trees, rings, grids
or tori. Many other suggested networks are simply combinations or
derivatives of these.

• The advantage of trees is that the routing is very easy: for every
source-destination pair there is only one path. However, since the
root of a tree is a bottleneck, trees are not homogeneous. Instead,
so-called fat trees should be used. Fat trees have the property that
every edge connecting a node v to its parent u has a capacity that is
proportional to the number of leaves of the subtree rooted at v. See
Figure 22.5 for a picture.

22.2. HYPERCUBIC NETWORKS 95

• Fat trees belong to a family of networks that require edges of non-
uniform capacity to be efficient. Networks with edges of uniform ca-
pacity are easier to build. This is usually the case for grids and tori.
Unless explicitly mentioned, we will treat all edges in the following to
be of capacity 1.

Definition 22.6 (Torus, Mesh). Let m, d ∈ N. The (m, d)-mesh M(m, d) is a
graph with node set V = [m]d and edge set

E =

{
{(a1, . . . , ad), (b1, . . . , bd)} | ai, bi ∈ [m],

d∑
i=1

|ai − bi| = 1

}
,

where [m] means the set {0, . . . ,m − 1}. The (m, d)-torus T (m, d) is a graph
that consists of an (m, d)-mesh and additionally wrap-around edges from nodes
(a1, . . . , ai−1,m − 1, ai+1, . . . , ad) to nodes (a1, . . . , ai−1, 0, ai+1, . . . , ad) for all
i ∈ {1, . . . , d} and all aj ∈ [m] with j 6= i. In other words, we take the expression
ai − bi in the sum modulo m prior to computing the absolute value. M(m, 1) is
also called a path, T (m, 1) a cycle, and M(2, d) = T (2, d) a d-dimensional
hypercube. Figure 22.7 presents a linear array, a torus, and a hypercube.

011010

110

100

000 001

101

111

M(2,3)

0 1 2

M(,1)m

−1m

01

02

00 10

11

12

03

20

21

22

13

30

31

32

23 33

(4,2)T

Figure 22.7: The structure of M(m, 1), T (4, 2), and M(2, 3).

Remarks:

• Routing on a mesh, torus, or hypercube is trivial. On a d-dimensional
hypercube, to get from a source bitstring s to a target bitstring t one
only needs to fix each “wrong” bit, one at a time; in other words, if
the source and the target differ by k bits, there are k! routes with k
hops.

• As required by Definition 22.4, the d-bit IDs of the nodes need to be
mapped to the universe [0, 1). One way to do this is by turning each
ID into a fractional binary representation. For example, the ID 101
is mapped to 0.1012 which has a decimal value of 0 · 20 + 1 · 2−1 + 0 ·
2−2 + 1 · 2−3 = 5

8 .

• The Chord architecture is a close relative of the hypercube, basically
a less rigid hypercube. The hypercube connects every node with an
ID in [0, 1) with other nodes at distance exactly 2−i, i = 1, 2, . . . , d

96 CHAPTER 22. DISTRIBUTED STORAGE

in [0, 1). Chord instead connects to nodes at distance approximately
2−i.

• The hypercube has many derivatives, the so-called hypercubic net-
works. Among these are the butterfly, cube-connected-cycles, shuffle-
exchange, and de Bruijn graph. We start with the butterfly, which is
basically a “rolled out” hypercube.

Definition 22.8 (Butterfly). Let d ∈ N. The d-dimensional butterfly BF (d)
is a graph with node set V = [d+ 1]× [2]d and an edge set E = E1 ∪ E2 with

E1 = {{(i, α), (i+ 1, α)} | i ∈ [d], α ∈ [2]d}

and

E2 = {{(i, α), (i+ 1, β)} | i ∈ [d], α, β ∈ [2]d, α⊕ β = 2i}.

A node set {(i, α) | α ∈ [2]d} is said to form level i of the butterfly. The d-
dimensional wrap-around butterfly W-BF(d) is defined by taking the BF (d)
and having (d, α) = (0, α) for all α ∈ [2]d.

Remarks:

• Figure 22.9 shows the 3-dimensional butterfly BF (3). The BF (d) has
(d+1)2d nodes, 2d ·2d edges and maximum degree 4. It is not difficult
to check that if for each α ∈ [2]d we combine the nodes {(i, α) | i ∈
[d+ 1]} into a single node then we get back the hypercube.

• Butterflies have the advantage of a constant node degree over hyper-
cubes, whereas hypercubes feature more fault-tolerant routing.

• You may have seen butterfly-like structures before, e.g. sorting net-
works, communication switches, data center networks, fast fourier
transform (FFT). The Beneš network (telecommunication) is noth-
ing but two back-to-back butterflies. The Clos network (data centers)
is a close relative to Butterflies too. Actually, merging the 2i nodes on
level i that share the first d − i bits into a single node, the Butterfly
becomes a fat tree.

Every year there are new applications for which hypercubic networks
are the perfect solution!

• Next we define the cube-connected-cycles network. It only has a de-
gree of 3 and it results from the hypercube by replacing the corners
by cycles.

Definition 22.10 (Cube-Connected-Cycles). Let d ∈ N. The cube-
connected-cycles network CCC(d) is a graph with node set V = {(a, p) | a ∈
[2]d, p ∈ [d]} and edge set

E =
{
{(a, p), (a, (p+ 1) mod d)} | a ∈ [2]d, p ∈ [d]

}
∪
{
{(a, p), (b, p)} | a, b ∈ [2]d, p ∈ [d], a⊕ b = 2p

}

22.2. HYPERCUBIC NETWORKS 97

000 100010 110001 101011 111

1

2

0

3

Figure 22.9: The structure of BF(3).

000 001 010 011 100 101 110 111

2

1

0

(110,1)

(011,2)

(101,1)

(001,2)

(001,1)

(001,0)(000,0)

(100,0)

(100,1)

(100,2)

(000,2)

(000,1)

(010,1)

(010,0)

(010,2)

(110,2)

(110,0) (111,0)

(111,1)

(111,2)

(011,1)

(011,0)

(101,2)

(101,0)

Figure 22.11: The structure of CCC(3).

Remarks:

• Two possible representations of a CCC can be found in Figure 22.11.

• The shuffle-exchange is yet another way of transforming the hypercu-
bic interconnection structure into a constant degree network.

Definition 22.12 (Shuffle-Exchange). Let d ∈ N. The d-dimensional
shuffle-exchange SE(d) is defined as an undirected graph with node set
V = [2]d and an edge set E = E1 ∪ E2 with

E1 = {{(a1, . . . , ad), (a1, . . . , ād)} | (a1, . . . , ad) ∈ [2]d, ād = 1− ad}

and
E2 = {{(a1, . . . , ad), (ad, a1, . . . , ad−1)} | (a1, . . . , ad) ∈ [2]d} .

Figure 22.13 shows the 3- and 4-dimensional shuffle-exchange graph.

Definition 22.14 (DeBruijn). The b-ary DeBruijn graph of dimension d
DB(b, d) is an undirected graph G = (V,E) with node set V = [b]d and edge set
E = {{(a1, . . . , ad), (x, a1, . . . , ad−1) | (a1, . . . , ad) ∈ [b]d, x ∈ [b]}.

98 CHAPTER 22. DISTRIBUTED STORAGE

000 001

100

010

101

011

110 111 0000 0001

0010 0011

0100 0101

0110 0111

1000 1001

1010 1011

1100 1101

1110 1111

SE(3) SE(4)

E

E

1

2

Figure 22.13: The structure of SE(3) and SE(4).

010

100

001

110

1111100

01

000
101

011

10

Figure 22.15: The structure of DB(2, 2) and DB(2, 3).

Remarks:

• Two examples of a DeBruijn graph can be found in Figure 22.15.

• There are some data structures which also qualify as hypercubic net-
works. An example of a hypercubic network is the skip list, the bal-
anced binary search tree for the lazy programmer:

Definition 22.16 (Skip List). The skip list is an ordinary ordered linked list
of objects, augmented with additional forward links. The ordinary linked list is
the level 0 of the skip list. In addition, every object is promoted to level 1 with
probability 1/2. As for level 0, all level 1 objects are connected by a linked list.
In general, every object on level i is promoted to the next level with probability
1/2. A special start-object points to the smallest/first object on each level.

Remarks:

• Search, insert, and delete can be implemented in O(log n) expected
time in a skip list, simply by jumping from higher levels to lower ones
when overshooting the searched position. Also, the amortized memory
cost of each object is constant, as on average an object only has two
forward links.

• The randomization can easily be discarded, by deterministically pro-
moting a constant fraction of objects of level i to level i+1, for all i. In
particular, when inserting or deleting, object o simply checks whether
its left and right level i neighbors are being promoted to level i + 1.
If none of them is, promote object o itself. Essentially we establish
a maximal independent set (MIS) on each level, hence at least every
third and at most every second object is promoted.

22.2. HYPERCUBIC NETWORKS 99

• There are obvious variants of the skip list, e.g., the skip graph. Instead
of promoting only half of the nodes to the next level, we always pro-
mote all the nodes, similarly to a balanced binary tree: All nodes are
part of the root level of the binary tree. Half the nodes are promoted
left, and half the nodes are promoted right, on each level. Hence on
level i we have have 2i lists (or, if we connect the last element again
with the first: rings) of about n/2i objects. The skip graph features
all the properties of Definition 22.4.

• More generally, how are degree and diameter of Definition 22.4 re-
lated? The following theorem gives a general lower bound.

Theorem 22.17. Every graph of maximum degree d > 2 and size n must have
a diameter of at least d(log n)/(log(d− 1))e − 2.

Proof. Suppose we have a graph G = (V,E) of maximum degree d and size
n. Start from any node v ∈ V . In a first step at most d other nodes can be
reached. In two steps at most d · (d−1) additional nodes can be reached. Thus,
in general, in at most r steps at most

1 +

r−1∑
i=0

d · (d− 1)i = 1 + d · (d− 1)r − 1

(d− 1)− 1
≤ d · (d− 1)r

d− 2

nodes (including v) can be reached. This has to be at least n to ensure that v
can reach all other nodes in V within r steps. Hence,

(d− 1)r ≥ (d− 2) · n
d

⇔ r ≥ logd−1((d− 2) · n/d) .

Since logd−1((d − 2)/d) > −2 for all d > 2, this is true only if r ≥
d(log n)/(log(d− 1))e − 2.

Remarks:

• In other words, constant-degree hypercubic networks feature an
asymptotically optimal diameter D.

• Other hypercubic graphs manage to have a different tradeoff between
node degree d and diameter D. The pancake graph, for instance, min-
imizes the maximum of these with max(d,D) = Θ(log n/ log log n).
The ID of a node u in the pancake graph of dimension d is an ar-
bitrary permutation of the numbers 1, 2, . . . , d. Two nodes u, v are
connected by an edge if one can get the ID of node v by taking the
ID of node u, and reversing (flipping) the first k (for k = 1, . . . , d)
numbers of u’s ID. For example, in dimension d = 4, nodes u = 2314
and v = 1324 are neighbors.

• There are a few other interesting graph classes which are not hyper-
cubic networks, but nevertheless seem to relate to the properties of
Definition 22.4. Small-world graphs (a popular representations for
social networks) also have small diameter, however, in contrast to hy-
percubic networks, they are not homogeneous and feature nodes with
large degrees.

100 CHAPTER 22. DISTRIBUTED STORAGE

• Expander graphs (an expander graph is a sparse graph which has
good connectivity properties, that is, from every not too large subset
of nodes you are connected to an even larger set of nodes) are homo-
geneous, have a low degree and small diameter. However, expanders
are often not routable.

22.3 DHT & Churn

Definition 22.18 (Distributed Hash Table (DHT)). A distributed hash table
(DHT) is a distributed data structure that implements a distributed storage. A
DHT should support at least (i) a search (for a key) and (ii) an insert (key,
object) operation, possibly also (iii) a delete (key) operation.

Remarks:

• A DHT has many applications beyond storing movies, e.g., the Inter-
net domain name system (DNS) is essentially a DHT.

• A DHT can be implemented as a hypercubic overlay network with
nodes having identifiers such that they span the ID space [0, 1).

• A hypercube can directly be used for a DHT. Just use a globally
known set of hash functions hi, mapping movies to bit strings with d
bits.

• Other hypercubic structures may be a bit more intricate when using
it as a DHT: The butterfly network, for instance, may directly use the
d+ 1 layers for replication, i.e., all the d+ 1 nodes are responsible for
the same ID.

• Other hypercubic networks, e.g. the pancake graph, might need a bit
of twisting to find appropriate IDs.

• We assume that a joining node knows a node which already belongs to
the system. This is known as the bootstrap problem. Typical solutions
are: If a node has been connected with the DHT previously, just try
some of these previous nodes. Or the node may ask some authority
for a list of IP addresses (and ports) of nodes that are regularly part
of the DHT.

• Many DHTs in the literature are analyzed against an adversary that
can crash a fraction of random nodes. After crashing a few nodes the
system is given sufficient time to recover again. However, this seems
unrealistic. The scheme sketched in this section significantly differs
from this in two major aspects.

• First, we assume that joins and leaves occur in a worst-case manner.
We think of an adversary that can remove and add a bounded number
of nodes; the adversary can choose which nodes to crash and how nodes
join.

22.3. DHT & CHURN 101

• Second, the adversary does not have to wait until the system is recov-
ered before it crashes the next batch of nodes. Instead, the adversary
can constantly crash nodes, while the system is trying to stay alive.
Indeed, the system is never fully repaired but always fully functional.
In particular, the system is resilient against an adversary that contin-
uously attacks the “weakest part” of the system. The adversary could
for example insert a crawler into the DHT, learn the topology of the
system, and then repeatedly crash selected nodes, in an attempt to
partition the DHT. The system counters such an adversary by con-
tinuously moving the remaining or newly joining nodes towards the
areas under attack.

• Clearly, we cannot allow the adversary to have unbounded capabili-
ties. In particular, in any constant time interval, the adversary can
at most add and/or remove O(log n) nodes, n being the total num-
ber of nodes currently in the system. This model covers an adversary
which repeatedly takes down nodes by a distributed denial of service
attack, however only a logarithmic number of nodes at each point in
time. The algorithm relies on messages being delivered timely, in at
most constant time between any pair of operational nodes, i.e., the
synchronous model. Using the trivial synchronizer this is not a prob-
lem. We only need bounded message delays in order to have a notion
of time which is needed for the adversarial model. The duration of
a round is then proportional to the propagation delay of the slowest
message.

Algorithm 22.19 DHT

1: Given: a globally known set of hash functions hi, and a hypercube (or any
other hypercubic network)

2: Each hypercube virtual node (“hypernode”) consists of Θ(log n) nodes.
3: Nodes have connections to all other nodes of their hypernode and to nodes

of their neighboring hypernodes.
4: Because of churn, some of the nodes have to change to another hypernode

such that up to constant factors, all hypernodes own the same number of
nodes at all times.

5: If the total number of nodes n grows or shrinks above or below a certain
threshold, the dimension of the hypercube is increased or decreased by one,
respectively.

Remarks:

• Having a logarithmic number of hypercube neighbors, each with a
logarithmic number of nodes, means that each node has Θ(log2 n)
neighbors. However, with some additional bells and whistles one can
achieve Θ(log n) neighbor nodes.

• The balancing of nodes among the hypernodes can be seen as a dy-
namic token distribution problem on the hypercube. Each hypernode
has a certain number of tokens, the goal is to distribute the tokens

102 CHAPTER 22. DISTRIBUTED STORAGE

along the edges of the graph such that all hypernodes end up with the
same or almost the same number of tokens. While tokens are moved
around, an adversary constantly inserts and deletes tokens. See also
Figure 22.20.

Figure 22.20: A simulated 2-dimensional hypercube with four hypernodes, each
consisting of several nodes. Also, all the nodes are either in the core or in
the periphery of a node. All nodes within the same hypernode are completely
connected to each other, and additionally, all nodes of a hypernode are connected
to the core nodes of the neighboring nodes. Only the core nodes store data items,
while the peripheral nodes move between the nodes to balance biased adversarial
churn.

• In summary, the storage system builds on two basic components: (i)
an algorithm which performs the described dynamic token distribution
and (ii) an information aggregation algorithm which is used to esti-
mate the number of nodes in the system and to adapt the dimension
of the hypercube accordingly:

Theorem 22.21 (DHT with Churn). We have a fully scalable, efficient distrib-
uted storage system which tolerates O(log n) worst-case joins and/or crashes per
constant time interval. As in other storage systems, nodes have O(log n) overlay
neighbors, and the usual operations (e.g., search, insert) take time O(log n).

Remarks:

• Indeed, handling churn is only a minimal requirement to make a dis-
tributed storage system work. Advanced studies proposed more elab-
orate architectures which can also handle other security issues, e.g.,
privacy or Byzantine attacks.

Chapter Notes

The ideas behind distributed storage were laid during the peer-to-peer (P2P)
file sharing hype around the year 2000, so a lot of the seminal research
in this area is labeled P2P. The paper of Plaxton, Rajaraman, and Richa

BIBLIOGRAPHY 103

[PRR97] laid out a blueprint for many so-called structured P2P architec-
ture proposals, such as Chord [SMK+01], CAN [RFH+01], Pastry [RD01],
Viceroy [MNR02], Kademlia [MM02], Koorde [KK03], SkipGraph [AS03], Skip-
Net [HJS+03], or Tapestry [ZHS+04]. Also the paper of Plaxton et. al. was
standing on the shoulders of giants. Some of its eminent precursors are: lin-
ear and consistent hashing [KLL+97], locating shared objects [AP90, AP91],
compact routing [SK85, PU88], and even earlier: hypercubic networks, e.g.
[AJ75, Wit81, GS81, BA84].

Furthermore, the techniques in use for prefix-based overlay structures are
related to a proposal called LAND, a locality-aware distributed hash table pro-
posed by Abraham et al. [AMD04].

More recently, a lot of P2P research focussed on security aspects, describing
for instance attacks [LMSW06, SENB07, Lar07], and provable countermeasures
[KSW05, AS09, BSS09]. Another topic currently garnering interest is using
P2P to help distribute live streams of video content on a large scale [LMSW07].
There are several recommendable introductory books on P2P computing, e.g.
[SW05, SG05, MS07, KW08, BYL08].

Some of the figures in this chapter have been provided by Christian Schei-
deler.

Bibliography

[AJ75] George A. Anderson and E. Douglas Jensen. Computer Interconnec-
tion Structures: Taxonomy, Characteristics, and Examples. ACM
Comput. Surv., 7(4):197–213, December 1975.

[AMD04] Ittai Abraham, Dahlia Malkhi, and Oren Dobzinski. LAND: stretch
(1 + epsilon) locality-aware networks for DHTs. In Proceedings of
the fifteenth annual ACM-SIAM symposium on Discrete algorithms,
SODA ’04, pages 550–559, Philadelphia, PA, USA, 2004. Society for
Industrial and Applied Mathematics.

[AP90] Baruch Awerbuch and David Peleg. Efficient Distributed Construc-
tion of Sparse Covers. Technical report, The Weizmann Institute of
Science, 1990.

[AP91] Baruch Awerbuch and David Peleg. Concurrent Online Tracking of
Mobile Users. In SIGCOMM, pages 221–233, 1991.

[AS03] James Aspnes and Gauri Shah. Skip Graphs. In SODA, pages 384–
393. ACM/SIAM, 2003.

[AS09] Baruch Awerbuch and Christian Scheideler. Towards a Scalable and
Robust DHT. Theory Comput. Syst., 45(2):234–260, 2009.

[BA84] L. N. Bhuyan and D. P. Agrawal. Generalized Hypercube and Hy-
perbus Structures for a Computer Network. IEEE Trans. Comput.,
33(4):323–333, April 1984.

[BSS09] Matthias Baumgart, Christian Scheideler, and Stefan Schmid. A
DoS-resilient information system for dynamic data management. In
Proceedings of the twenty-first annual symposium on Parallelism in

104 CHAPTER 22. DISTRIBUTED STORAGE

algorithms and architectures, SPAA ’09, pages 300–309, New York,
NY, USA, 2009. ACM.

[BYL08] John Buford, Heather Yu, and Eng Keong Lua. P2P Networking
and Applications. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2008.

[GS81] J.R. Goodman and C.H. Sequin. Hypertree: A Multiprocessor
Interconnection Topology. Computers, IEEE Transactions on, C-
30(12):923–933, dec. 1981.

[HJS+03] Nicholas J. A. Harvey, Michael B. Jones, Stefan Saroiu, Marvin
Theimer, and Alec Wolman. SkipNet: a scalable overlay network
with practical locality properties. In Proceedings of the 4th con-
ference on USENIX Symposium on Internet Technologies and Sys-
tems - Volume 4, USITS’03, pages 9–9, Berkeley, CA, USA, 2003.
USENIX Association.

[KK03] M. Frans Kaashoek and David R. Karger. Koorde: A Simple Degree-
Optimal Distributed Hash Table. In M. Frans Kaashoek and Ion
Stoica, editors, IPTPS, volume 2735 of Lecture Notes in Computer
Science, pages 98–107. Springer, 2003.

[KLL+97] David R. Karger, Eric Lehman, Frank Thomson Leighton, Rina
Panigrahy, Matthew S. Levine, and Daniel Lewin. Consistent Hash-
ing and Random Trees: Distributed Caching Protocols for Relieving
Hot Spots on the World Wide Web. In Frank Thomson Leighton
and Peter W. Shor, editors, STOC, pages 654–663. ACM, 1997.

[KSW05] Fabian Kuhn, Stefan Schmid, and Roger Wattenhofer. A Self-
Repairing Peer-to-Peer System Resilient to Dynamic Adversarial
Churn. In 4th International Workshop on Peer-To-Peer Systems
(IPTPS), Cornell University, Ithaca, New York, USA, Springer
LNCS 3640, February 2005.

[KW08] Javed I. Khan and Adam Wierzbicki. Introduction: Guest edi-
tors’ introduction: Foundation of peer-to-peer computing. Comput.
Commun., 31(2):187–189, February 2008.

[Lar07] Erik Larkin. Storm Worm’s virulence may change tac-
tics. http://www.networkworld.com/news/2007/080207-black-hat-
storm-worms-virulence.html, Agust 2007. Last accessed on June 11,
2012.

[LMSW06] Thomas Locher, Patrick Moor, Stefan Schmid, and Roger Watten-
hofer. Free Riding in BitTorrent is Cheap. In 5th Workshop on Hot
Topics in Networks (HotNets), Irvine, California, USA, November
2006.

[LMSW07] Thomas Locher, Remo Meier, Stefan Schmid, and Roger Watten-
hofer. Push-to-Pull Peer-to-Peer Live Streaming. In 21st Inter-
national Symposium on Distributed Computing (DISC), Lemesos,
Cyprus, September 2007.

BIBLIOGRAPHY 105

[MM02] Petar Maymounkov and David Mazières. Kademlia: A Peer-to-Peer
Information System Based on the XOR Metric. In Revised Papers
from the First International Workshop on Peer-to-Peer Systems,
IPTPS ’01, pages 53–65, London, UK, UK, 2002. Springer-Verlag.

[MNR02] Dahlia Malkhi, Moni Naor, and David Ratajczak. Viceroy: a scal-
able and dynamic emulation of the butterfly. In Proceedings of the
twenty-first annual symposium on Principles of distributed comput-
ing, PODC ’02, pages 183–192, New York, NY, USA, 2002. ACM.

[MS07] Peter Mahlmann and Christian Schindelhauer. Peer-to-Peer Net-
works. Springer, 2007.

[PRR97] C. Greg Plaxton, Rajmohan Rajaraman, and Andréa W. Richa.
Accessing Nearby Copies of Replicated Objects in a Distributed
Environment. In SPAA, pages 311–320, 1997.

[PU88] David Peleg and Eli Upfal. A tradeoff between space and efficiency
for routing tables. In Proceedings of the twentieth annual ACM
symposium on Theory of computing, STOC ’88, pages 43–52, New
York, NY, USA, 1988. ACM.

[RD01] Antony Rowstron and Peter Druschel. Pastry: Scalable, decen-
tralized object location and routing for large-scale peer-to-peer sys-
tems. In IFIP/ACM International Conference on Distributed Sys-
tems Platforms (Middleware), pages 329–350, November 2001.

[RFH+01] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and
Scott Shenker. A scalable content-addressable network. SIGCOMM
Comput. Commun. Rev., 31(4):161–172, August 2001.

[SENB07] Moritz Steiner, Taoufik En-Najjary, and Ernst W. Biersack. Exploit-
ing KAD: possible uses and misuses. SIGCOMM Comput. Commun.
Rev., 37(5):65–70, October 2007.

[SG05] Ramesh Subramanian and Brian D. Goodman. Peer to Peer Com-
puting: The Evolution of a Disruptive Technology. IGI Publishing,
Hershey, PA, USA, 2005.

[SK85] Nicola Santoro and Ramez Khatib. Labelling and Implicit Routing
in Networks. Comput. J., 28(1):5–8, 1985.

[SMK+01] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and
Hari Balakrishnan. Chord: A scalable peer-to-peer lookup ser-
vice for internet applications. SIGCOMM Comput. Commun. Rev.,
31(4):149–160, August 2001.

[SW05] Ralf Steinmetz and Klaus Wehrle, editors. Peer-to-Peer Systems and
Applications, volume 3485 of Lecture Notes in Computer Science.
Springer, 2005.

[Wit81] L. D. Wittie. Communication Structures for Large Networks of
Microcomputers. IEEE Trans. Comput., 30(4):264–273, April 1981.

106 CHAPTER 22. DISTRIBUTED STORAGE

[ZHS+04] Ben Y. Zhao, Ling Huang, Jeremy Stribling, Sean C. Rhea, An-
thony D. Joseph, and John Kubiatowicz. Tapestry: a resilient
global-scale overlay for service deployment. IEEE Journal on Se-
lected Areas in Communications, 22(1):41–53, 2004.

Chapter 23

Eventual Consistency &
Bitcoin

How would you implement an ATM? Does the following implementation work
satisfactorily?

Algorithm 23.1 Näıve ATM

1: ATM makes withdrawal request to bank
2: ATM waits for response from bank
3: if balance of customer sufficient then
4: ATM dispenses cash
5: else
6: ATM displays error
7: end if

Remarks:

• A connection problem between the bank and the ATM may block
Algorithm 23.1 in Line 2.

• A network partition is a failure where a network splits into at least
two parts that cannot communicate with each other. Intuitively any
non-trivial distributed system cannot proceed during a partition and
maintain consistency. In the following we introduce the tradeoff be-
tween consistency, availability and partition tolerance.

• There are numerous causes for partitions to occur, e.g., physical dis-
connections, software errors, or incompatible protocol versions. From
the point of view of a node in the system, a partition is similar to a
period of sustained message loss.

23.1 Consistency, Availability and Partitions

Definition 23.2 (Consistency). All nodes in the system agree on the current
state of the system.

107

108 CHAPTER 23. EVENTUAL CONSISTENCY & BITCOIN

Definition 23.3 (Availability). The system is operational and instantly pro-
cessing incoming requests.

Definition 23.4 (Partition Tolerance). Partition tolerance is the ability of a
distributed system to continue operating correctly even in the presence of a net-
work partition.

Theorem 23.5 (CAP Theorem). It is impossible for a distributed system to
simultaneously provide Consistency, Availability and Partition Tolerance. A
distributed system can satisfy any two of these but not all three.

Proof. Assume two nodes, sharing some state. The nodes are in different par-
titions, i.e., they cannot communicate. Assume a request wants to update the
state and contacts a node. The node may either: 1) update its local state,
resulting in inconsistent states, or 2) not update its local state, i.e., the system
is no longer available for updates.

Algorithm 23.6 Partition tolerant and available ATM

1: if bank reachable then
2: Synchronize local view of balances between ATM and bank
3: if balance of customer insufficient then
4: ATM displays error and aborts user interaction
5: end if
6: end if
7: ATM dispenses cash
8: ATM logs withdrawal for synchronization

Remarks:

• Algorithm 23.6 is partition tolerant and available since it continues to
process requests even when the bank is not reachable.

• The ATM’s local view of the balances may diverge from the balances
as seen by the bank, therefore consistency is no longer guaranteed.

• The algorithm will synchronize any changes it made to the local bal-
ances back to the bank once connectivity is re-established. This is
known as eventual consistency.

Definition 23.7 (Eventual Consistency). If no new updates to the shared state
are issued, then eventually the system is in a quiescent state, i.e., no more
messages need to be exchanged between nodes, and the shared state is consistent.

Remarks:

• Eventual consistency is a form of weak consistency.

• Eventual consistency guarantees that the state is eventually agreed
upon, but the nodes may disagree temporarily.

• During a partition, different updates may semantically conflict with
each other. A conflict resolution mechanism is required to resolve the
conflicts and allow the nodes to eventually agree on a common state.

23.2. BITCOIN 109

• One example of eventual consistency is the Bitcoin cryptocurrency
system.

23.2 Bitcoin

Definition 23.8 (Bitcoin Network). The Bitcoin network is a randomly con-
nected overlay network of a few tens of thousands of individually controlled
nodes.

Remarks:

• The lack of structure is intentional: it ensures that an attacker can-
not strategically position itself in the network and manipulate the
information exchange. Information is exchanged via a simple gossip
protocol (nodes tells their neighbors about new messages).

• Old nodes re-entering the system try to connect to peers that they were
earlier connected to. If those peers are not available, they default to
the new node behavior.

• New nodes entering the system face the bootstrap problem, and can
find active peers any which way they want. If they cannot find an
active peer, their node will look for active peers from a set of au-
thoritative sources. These authoritative sources are hard-coded in the
Bitcoin source code.

Definition 23.9 (Cryptographic Keys). Users can generate any number of
private keys. From each private key a corresponding public key can be derived
using arithmetic operations over a finite field. A public key may be used to
identify the recipient of funds in Bitcoin, and the corresponding private key can
spend these funds.

Remarks:

• Bitcoin supports the ECDSA and the Schnorr digital signature algo-
rithms to verify ownership of bitcoins.

• It is hard to link public keys to the user that controls them, hence
Bitcoin is often referred to as being pseudonymous.

Definition 23.10 (Bitcoin Currency). Bitcoin, the currency, is an integer value
that is transferred in Bitcoin transactions. This integer value is measured in
Satoshi; 100 million Satoshi are 1 Bitcoin.

Definition 23.11 (Transaction). A transaction is a data structure that de-
scribes the transfer of bitcoins from spenders to recipients. It consists of inputs
and outputs. Outputs are tuples consisting of an amount of bitcoins and a spend-
ing condition. Inputs are references to outputs of previous transactions.

110 CHAPTER 23. EVENTUAL CONSISTENCY & BITCOIN

Remarks:

• New transactions refer to old transactions, which refer to even older
transactions. Every transaction can publicly followed back to coinbase
transactions of blocks (see Definition 23.18)

• A recipient with a public/private key pair can be paid by a transaction
whose output’s spending condition locks the payment with the public
key. It can be unlocked and spent in the future if the recipient signs
a future transaction with the private key.

• Inputs reference the output that is being spent by a (h, i)-tuple, where
h is the hash of the transaction that created the output, and i specifies
the index of the output in that transaction.

• Spending conditions are scripts that offer a variety of options. Apart
from a single signature, they may include conditions that require mul-
tiple signatures, the result of a simple computation, or the solution
to a cryptographic puzzle. However, Bitcoin spending scripts are not
Turing complete.

• Transactions can be gossiped by any node in the network and are pro-
cessed by every node that receives them through the gossip protocol.

• Outputs exist in two states: unspent and spent. An output is origi-
nally unspent, and can be spent at most once.

• The set of unspent transaction outputs (UTXO) is part of the shared
state of Bitcoin. Every node in the Bitcoin network holds a complete
replica of that state. Local replicas may temporarily diverge, but
consistency is eventually re-established.

Algorithm 23.12 Node Receives Transaction (Näıve)

1: Receive transaction t
2: for each input (h, i) in t do
3: if output (h, i) is not in local UTXO set or signature invalid then
4: Drop t and stop
5: end if
6: end for
7: if sum of values of inputs < sum of values of new outputs then
8: Drop t and stop
9: end if

10: for each input (h, i) in t do
11: Remove (h, i) from local UTXO set
12: end for
13: for each output o in t do
14: add o to local UTXO set
15: end for
16: Forward t to neighbors in the Bitcoin network

23.2. BITCOIN 111

Remarks:

• Note that the effect of a transaction on the state is deterministic. In
other words if all nodes receive the same set of transactions in the
same order (Definition 15.8), then the state across nodes is consistent.

• The outputs of a transaction may assign less than the sum of inputs, in
which case the difference is called the transaction fee. The fee is used
to incentivize other participants in the system (see Definition 23.18)

• Notice that so far we only described a local acceptance policy. Nothing
prevents two nodes to locally accept different transactions that spend
the same output.

• Transactions are in one of two states: unconfirmed or confirmed. In-
coming transactions from the broadcast are unconfirmed and added
to a pool of transactions called the memory pool.

Definition 23.13 (Doublespend). A doublespend is a situation in which multi-
ple transactions attempt to spend the same output. Only one transaction can be
valid since outputs can only be spent once. When nodes accept different trans-
actions in a doublespend, the shared state across nodes becomes inconsistent.

Remarks:

• Doublespends may occur naturally, e.g., if outputs are co-owned by
multiple users who all know the corresponding private key. However,
doublespends can be malicious as well – we call these doublespend-
attacks: An attacker creates two transactions both using the same
input. One transaction would transfer the money to a victim, he
other transaction would transfer the money back to the attacker.

• Doublespends can result in an inconsistent state since the validity
of transactions depends on the order in which they arrive. If two
conflicting transactions are seen by a node, the node considers the
first to be valid, see Algorithm 23.12. The second transaction is invalid
since it tries to spend an output that is already spent. The order in
which transactions are seen, may not be the same for all nodes, hence
the inconsistent state.

• If doublespends are not resolved, the shared state diverges. Therefore
a conflict resolution mechanism is needed to decide which of the con-
flicting transactions is to be confirmed (accepted by everybody), to
achieve eventual consistency.

Definition 23.14 (Proof-of-Work). Proof-of-Work (PoW) is a mechanism that
allows a party to prove to another party that a certain amount of computa-
tional resources has been utilized for a period of time. A function Fd(c, x) →
{true, false}, where difficulty d is a positive number, while challenge c and
nonce x are usually bit-strings, is called a Proof-of-Work function if it has fol-
lowing properties:

1. Fd(c, x) is fast to compute if d, c, and x are given.

112 CHAPTER 23. EVENTUAL CONSISTENCY & BITCOIN

2. For fixed parameters d and c, finding x such that Fd(c, x) = true is com-
putationally difficult but feasible. The difficulty d is used to adjust the time
to find such an x.

Definition 23.15 (Bitcoin PoW function). The Bitcoin PoW function is given
by

Fd(c, x)→ SHA256(SHA256(c|x)) <
2224

d
.

Remarks:

• This function concatenates the challenge c and nonce x, and hashes
them twice using SHA256. The output of SHA256 is a cryptographic
hash with a numeric value in {0, . . . , 2256 − 1} which is compared to

a target value 2224

d , which gets smaller with increasing difficulty.

• SHA256 is a cryptographic hash function with pseudorandom output.
No better algorithm is known to find a nonce x such that the function
Fd(c, x) returns true than simply iterating over possible inputs. This
is by design to make it difficult to find such an input, but simple to
verify the validity once it has been found.

Definition 23.16 (Block). A block is a data structure used to communicate
incremental changes to the local state of a node. A block consists of a list of
transactions, a timestamp, a reference to a previous block and a nonce. A block
lists some transactions the block creator (“miner”) has accepted to its memory
pool since the previous block. A node finds and broadcasts a block when it finds
a valid nonce for its PoW function.

Algorithm 23.17 Node Creates (Mines) Block

1: block bt = {coinbase tx}
2: while size(bt) ≤ 1 MB do
3: Choose transaction t in the memory pool that is consistent with bt and

local UTXO set
4: Add t to bt
5: end while
6: Nonce x = 0, difficulty d, previous block bt−1, timestamp = ts
7: challenge c = (merkle(bt), hash(bt−1), ts, d)
8: repeat
9: x = x+ 1

10: until Fd(c, x) = true
11: Gossip block bt
12: Update local UTXO set to reflect bt

Remarks:

• The function merkle(bt) creates a cryptographic representation of the
set of transactions in bt. It is compact and has a fixed length no matter
how large the set is.

23.2. BITCOIN 113

• With their reference to a previous block, the blocks build a tree, rooted
in the so called genesis block. The genesis block’s hash is hard-coded
in the Bitcoin source code.

• The primary goal for using the PoW mechanism is to adjust the rate
at which blocks are found in the network, giving the network time
to synchronize on the latest block. Bitcoin sets the difficulty so that
globally a block is created about every 10 minutes in expectation.

• Finding a block allows the finder to impose the transactions in its local
memory pool to all other nodes. Upon receiving a block, all nodes roll
back any local changes since the previous block and apply the new
block’s transactions.

• Transactions contained in a block are said to be confirmed by that
block.

Definition 23.18 (Coinbase Transaction). The first transaction in a block is
called the coinbase transaction. The block’s miner is rewarded for confirming
transactions by allowing it to mint new coins. The coinbase transaction has a
dummy input, and the sum of outputs is determined by a fixed subsidy plus the
sum of the fees of transactions confirmed in the block.

Remarks:

• A coinbase transaction is the sole exception to the rule that the sum
of inputs must be at least the sum of outputs. New bitcoins enter the
system through coinbase transactions.

• The number of bitcoins that are minted by the coinbase transaction
and assigned to the miner is determined by a subsidy schedule that
is part of the protocol. Initially the subsidy was 50 bitcoins for every
block, and it is being halved every 210,000 blocks, or 4 years in expec-
tation. Due to the halving of the value of the coinbase transaction,
the total amount of bitcoins in circulation never exceeds 21 million
bitcoins.

• It is expected that the cost of performing the PoW to find a block, in
terms of energy and infrastructure, is close to the value of the reward
the miner receives from the coinbase transaction in the block.

Definition 23.19 (Blockchain). The longest path from the genesis block (root
of the tree) to a (deepest) leaf is called the blockchain. The blockchain acts as a
consistent transaction history on which all nodes eventually agree.

Remarks:

• The path length from the genesis block to block b is the height hb.

• Only the longest path from the genesis block to a leaf is a valid trans-
action history, since branches may contradict each other because of
doublespends.

114 CHAPTER 23. EVENTUAL CONSISTENCY & BITCOIN

• Since only transactions in the longest path are agreed upon, miners
have an incentive to append their blocks to the longest chain, thus
agreeing on the current state.

• The mining incentives quickly increased the difficulty of the PoW
mechanism: initially miners used CPUs to mine blocks, but CPUs
were quickly replaced by GPUs, FPGAs and even application specific
integrated circuits (ASICs) as bitcoins appreciated. This results in
an equilibrium today in which only the most cost efficient miners, in
terms of hardware supply and electricity, make a profit in expectation.

• If multiple blocks are mined more or less concurrently, the system is
said to have forked. Forks happen naturally because mining is a dis-
tributed random process and two new blocks may be found at roughly
the same time.

Algorithm 23.20 Node Receives Block

1: Receive block bt
2: For this node, the current head is block bmax at height hmax
3: For this node, bmax defines the local UTXO set
4: From bt, extract reference to bt−1, and find bt−1 in the node’s local copy of

the blockchain
5: hb = hbt−1

+ 1
6: if hb > hmax and is valid(bt) then
7: hmax = hb
8: bmax = b
9: Update UTXO set to reflect transactions in bt

10: end if

Remarks:

• Algorithm 23.20 describes how a node updates its local state upon
receiving a block. Like Algorithm 23.12, this describes the local policy
and may also result in node states diverging, i.e., by accepting different
blocks at the same height as current head.

• Unlike extending the current path, switching paths may result in con-
firmed transactions no longer being confirmed, because the blocks in
the new path do not include them. Switching paths is referred to as
a reorg.

Theorem 23.21. Forks are eventually resolved and all nodes eventually agree
on which is the longest blockchain. The system therefore guarantees eventual
consistency.

Proof. In order for the fork to continue to exist, pairs of blocks need to be
found in close succession, extending distinct branches, otherwise the nodes on
the shorter branch would switch to the longer one. The probability of branches
being extended almost simultaneously decreases exponentially with the length
of the fork, hence there will eventually be a time when only one branch is being
extended, becoming the longest branch.

23.3. LAYER 2 115

Definition 23.22 (Consensus Rules). The is valid function in algorithm 23.20
represents the consensus rules of Bitcoin. All nodes will converge on the same
shared state if and only if all nodes agree on this function.

Remarks:

• If nodes have different implementations of the is valid function, some
nodes will reject blocks that other nodes will accept. This is called
a hard fork, which is different than a regular fork. A regular fork
happens because different nodes see different blocks that are mined at
around the same time. Hard forks happen because the rules of Bitcoin
itself have changed.

• Getting all nodes to change their implementation of is valid together,
at the same time, so that new features can be added to the Bitcoin
system, is difficult, as there is no centralized authority to coordinate
such an upgrade.

• In Bitcoin, hard forks are distinguished from soft forks:

Definition 23.23 (Hard/Soft Fork). If the set of valid transactions is expanded,
we have a hard fork. If the set of valid transactions is reduced, we have a soft
fork.

Remarks:

• As all nodes cannot upgrade at the same time, miners can create
blocks that have more restrictive is valid rules and older nodes will
still accept them as they accept broader rules. This way, rules can
still be changed without having to upgrade all nodes at the same
time. Miners, on the other hand, have to upgrade almost at the same
time.

23.3 Layer 2

Definition 23.24 (Smart Contract). A smart contract is an agreement between
two or more parties, encoded in such a way that the correct execution is guar-
anteed by the blockchain.

Remarks:

• Contracts allow business logic to be encoded in Bitcoin transactions
which mutually guarantee that an agreed upon action is performed.
The blockchain acts as conflict mediator, should a party fail to honor
an agreement.

• The use of scripts as spending conditions for outputs enables smart
contracts. Scripts, together with some additional features such as
timelocks, allow encoding complex conditions, specifying who may
spend the funds associated with an output and when.

116 CHAPTER 23. EVENTUAL CONSISTENCY & BITCOIN

Definition 23.25 (Timelock). Bitcoin provides a mechanism to make trans-
actions invalid until some time in the future: timelocks. A transaction may
specify a locktime: the earliest time, expressed in either a Unix timestamp or
a blockchain height, at which it may be included in a block and therefore be
confirmed.

Remarks:

• Transactions with a timelock are not released into the network until
the timelock expires. It is the responsibility of the node receiving
the transaction to store it locally until the timelock expires and then
release it into the network.

• Transactions (and blocks) with future timelocks are invalid. Upon re-
ceiving invalid transactions or blocks, nodes discard them immediately
and do not forward them to their neighbors.

• Timelocks can be used to replace or supersede transactions: a time-
locked transaction t1 can be replaced by another transaction t0, spend-
ing some of the same outputs, if the replacing transaction t0 has an
earlier timelock and can be broadcast in the network before the re-
placed transaction t1 becomes valid.

Definition 23.26 (Singlesig and Multisig Outputs). When an output can be
claimed by providing a single signature it is called a singlesig output. In
contrast the script of multisig outputs specifies a set of m public keys and
requires k-of-m (with k ≤ m) valid signatures from distinct matching public
keys from that set in order to be valid.

Remarks:

• Many smart contracts begin with the creation of a 2-of-2 multisig
output, requiring a signature from both parties. Once the transac-
tion creating the multisig output is confirmed in the blockchain, both
parties are guaranteed that the funds of that output cannot be spent
unilaterally.

Algorithm 23.27 Parties A and B create a 2-of-2 multisig output o

1: B sends a list IB of inputs with cB coins to A
2: A selects its own inputs IA with cA coins
3: A creates transaction ts{[IA, IB], [o = cA + cB → (A,B)]}
4: A creates timelocked transaction tr{[o], [cA → A, cB → B]} and signs it
5: A sends ts and tr to B
6: B signs both ts and tr and sends them to A
7: A signs ts and broadcasts it to the Bitcoin network

23.3. LAYER 2 117

Remarks:

• ts is called a setup transaction and is used to lock in funds into a shared
account. If ts is signed and broadcast immediately, one of the parties
could not collaborate to spend the multisig output, and the funds
become unspendable. To avoid a situation where the funds cannot
be spent, the protocol also creates a timelocked refund transaction
tr which guarantees that, should the funds not be spent before the
timelock expires, the funds are returned to the respective party. At no
point in time one of the parties holds a fully signed setup transaction
without the other party holding a fully signed refund transaction,
guaranteeing that funds are eventually returned.

• Both transactions require the signature of both parties. The setup
transaction has two inputs from A and B respectively which require
individual signatures. The refund transaction requires both signatures
because of the a 2-of-2 multisig input.

Algorithm 23.28 Simple Micropayment Channel from s to r with capacity c

1: cs = c, cr = 0
2: s and r use Algorithm 23.27 to set up output o with value c from s
3: Create settlement transaction tf{[o], [cs → s, cr → r]}
4: while channel open and cr < c do
5: In exchange for good with value δ
6: cr = cr + δ
7: cs = cs − δ
8: Update tf with outputs [cr → r, cs → s]
9: s signs and sends tf to r

10: end while
11: r signs last tf and broadcasts it

Remarks:

• Algorithm 23.28 implements a Simple Micropayment Channel, a smart
contract that is used for rapidly adjusting micropayments from a
spender to a recipient. Only two transactions are ever broadcast and
inserted into the blockchain: the setup transaction ts and the last set-
tlement transaction tf . There may have been any number of updates
to the settlement transaction, transferring ever more of the shared
output to the recipient.

• The number of bitcoins c used to fund the channel is also the maximum
total that may be transferred over the simple micropayment channel.

• At any time the recipient R is guaranteed to eventually receive the
bitcoins, since she holds a fully signed settlement transaction, while
the spender only has partially signed ones.

• The simple micropayment channel is intrinsically unidirectional. Since
the recipient may choose any of the settlement transactions in the
protocol, she will use the one with maximum payout for her. If we

118 CHAPTER 23. EVENTUAL CONSISTENCY & BITCOIN

were to transfer bitcoins back, we would be reducing the amount paid
out to the recipient, hence she would choose not to broadcast that
transaction.

23.4 Weak Consistency

Eventual consistency is only one form of weak consistency. A number of different
tradeoffs between partition tolerance and consistency exist in literature.

Definition 23.29 (Monotonic Read Consistency). If a node u has seen a par-
ticular value of an object, any subsequent accesses of u will never return any
older values.

Remarks:

• Users are annoyed if they receive a notification about a comment on
an online social network, but are unable to reply because the web
interface does not show the same notification yet. In this case the
notification acts as the first read operation, while looking up the com-
ment on the web interface is the second read operation.

Definition 23.30 (Monotonic Write Consistency). A write operation by a node
on a data item is completed before any successive write operation by the same
node (i.e., system guarantees to serialize writes by the same node).

Remarks:

• The ATM must replay all operations in order, otherwise it might hap-
pen that an earlier operation overwrites the result of a later operation,
resulting in an inconsistent final state.

Definition 23.31 (Read-Your-Write Consistency). After a node u has updated
a data item, any later reads from node u will never see an older value.

Definition 23.32 (Causal Relation). The following pairs of operations are said
to be causally related:

• Two writes by the same node to different variables.

• A read followed by a write of the same node.

• A read that returns the value of a write from any node.

• Two operations that are transitively related according to the above condi-
tions.

Remarks:

• The first rule ensures that writes by a single node are seen in the same
order. For example if a node writes a value in one variable and then
signals that it has written the value by writing in another variable.
Another node could then read the signalling variable but still read the
old value from the first variable, if the two writes were not causally
related.

23.4. WEAK CONSISTENCY 119

Definition 23.33 (Causal Consistency). A system provides causal consistency
if operations that potentially are causally related are seen by every node of the
system in the same order. Concurrent writes are not causally related, and may
be seen in different orders by different nodes.

Chapter Notes

The CAP theorem was first introduced by Fox and Brewer [FB99], although it
is commonly attributed to a talk by Eric Brewer [Bre00]. It was later proven
by Gilbert and Lynch [GL02] for the asynchronous model. Gilbert and Lynch
also showed how to relax the consistency requirement in a partially synchronous
system to achieve availability and partition tolerance.

Bitcoin was introduced in 2008 by Satoshi Nakamoto [Nak08]. Nakamoto is
thought to be a pseudonym used by either a single person or a group of people;
it is still unknown who invented Bitcoin, giving rise to speculation and con-
spiracy theories. Among the plausible theories are noted cryptographers Nick
Szabo [Big13] and Hal Finney [Gre14]. The first Bitcoin client was published
shortly after the paper and the first block was mined on January 3, 2009. The
genesis block contained the headline of the release date’s The Times issue “The
Times 03/Jan/2009 Chancellor on brink of second bailout for banks”, which
serves as proof that the genesis block has been indeed mined on that date, and
that no one had mined before that date. The quote in the genesis block is also
thought to be an ideological hint: Bitcoin was created in a climate of finan-
cial crisis, induced by rampant manipulation by the banking sector, and Bitcoin
quickly grew in popularity in anarchic and libertarian circles. The original client
is nowadays maintained by a group of independent core developers and remains
the most used client in the Bitcoin network.

Central to Bitcoin is the resolution of conflicts due to doublespends, which
is solved by waiting for transactions to be included in the blockchain. This
however introduces large delays for the confirmation of payments which are
undesirable in some scenarios in which an immediate confirmation is required.
Karame et al. [KAC12] show that accepting unconfirmed transactions leads to
a non-negligible probability of being defrauded as a result of a doublespending
attack. This is facilitated by information eclipsing [DW13], i.e., that nodes
do not forward conflicting transactions, hence the victim does not see both
transactions of the doublespend. Bamert et al. [BDE+13] showed that the odds
of detecting a doublespending attack in real-time can be improved by connecting
to a large sample of nodes and tracing the propagation of transactions in the
network.

Bitcoin does not scale very well due to its reliance on confirmations in the
blockchain. A copy of the entire transaction history is stored on every node
in order to bootstrap joining nodes, which have to reconstruct the transaction
history from the genesis block. Simple micropayment channels were introduced
by Hearn and Spilman [HS12] and may be used to bundle multiple transfers
between two parties but they are limited to transferring the funds locked into
the channel once. Duplex Micropayment Channels [DW15] and the Lightning
Network [PD15] were the first suggestions for bidirectional micropayment chan-
nels in which the funds can be transferred back and forth an arbitrary number
of times, greatly increasing the flexibility of Bitcoin transfers and enabling a

120 CHAPTER 23. EVENTUAL CONSISTENCY & BITCOIN

number of features, such as micropayments and routing payments between any
two endpoints.

This chapter was written in collaboration with Christian Decker.

Bibliography

[BDE+13] Tobias Bamert, Christian Decker, Lennart Elsen, Samuel Welten,
and Roger Wattenhofer. Have a snack, pay with bitcoin. In IEEE
Internation Conference on Peer-to-Peer Computing (P2P), Trento,
Italy, 2013.

[Big13] John Biggs. Who is the real satoshi nakamoto? one researcher may
have found the answer. http://on.tcrn.ch/l/R0vA, 2013.

[Bre00] Eric A. Brewer. Towards robust distributed systems. In Symposium
on Principles of Distributed Computing (PODC). ACM, 2000.

[DW13] Christian Decker and Roger Wattenhofer. Information propagation
in the bitcoin network. In IEEE International Conference on Peer-
to-Peer Computing (P2P), Trento, Italy, September 2013.

[DW15] Christian Decker and Roger Wattenhofer. A Fast and Scalable Pay-
ment Network with Bitcoin Duplex Micropayment Channels. In Sym-
posium on Stabilization, Safety, and Security of Distributed Systems
(SSS), 2015.

[FB99] Armando Fox and Eric Brewer. Harvest, yield, and scalable tolerant
systems. In Hot Topics in Operating Systems. IEEE, 1999.

[GL02] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibil-
ity of consistent, available, partition-tolerant web services. SIGACT
News, 2002.

[Gre14] Andy Greenberg. Nakamoto’s neighbor: My hunt for bitcoin’s cre-
ator led to a paralyzed crypto genius. http://onforb.es/1rvyecq,
2014.

[HS12] Mike Hearn and Jeremy Spilman. Contract: Rapidly adjusting
micro-payments. https://en.bitcoin.it/wiki/Contract, 2012. Last ac-
cessed on November 11, 2015.

[KAC12] G.O. Karame, E. Androulaki, and S. Capkun. Two Bitcoins at
the Price of One? Double-Spending Attacks on Fast Payments in
Bitcoin. In Conference on Computer and Communication Security
(CCS), 2012.

[Nak08] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system.
https://bitcoin.org/bitcoin.pdf, 2008.

[PD15] Joseph Poon and Thaddeus Dryja. The bitcoin lightning network.
2015.

Chapter 24

Advanced Blockchain

In this chapter we study various advanced blockchain concepts, which are pop-
ular in research.

24.1 Selfish Mining

Satoshi Nakamoto suggested that it is rational to be altruistic, e.g., by always
attaching newly found block to the longest chain. But is it true?

Definition 24.1 (Selfish Mining). A selfish miner hopes to earn the reward of a
larger share of blocks than its hardware would allow. The selfish miner achieves
this by temporarily keeping newly found blocks secret.

Algorithm 24.2 Selfish Mining

1: Idea: Mine secretly, without immediately publishing newly found blocks
2: Let dp be the depth of the public blockchain
3: Let ds be the depth of the secretly mined blockchain
4: if a new block bp is published, i.e., dp has increased by 1 then
5: if dp > ds then
6: Start mining on that newly published block bp
7: else if dp = ds then
8: Publish secretly mined block bs
9: Mine on bs and publish newly found block immediately

10: else if dp = ds − 1 then
11: Publish all secretly mined blocks
12: end if
13: end if

Theorem 24.3 (Selfish Mining). It may be rational to mine selfishly, depending
on two parameters α and γ, where α is the ratio of the mining power of the selfish
miner, and γ is the share of the altruistic mining power the selfish miner can
reach in the network if the selfish miner publishes a block right after seeing a
newly published block. Precisely, the selfish miner share is

α(1− α)2(4α+ γ(1− 2α))− α3

1− α(1 + (2− α)α)
.

121

122 CHAPTER 24. ADVANCED BLOCKCHAIN

0 1 2 3 ...β

α α α α

β β
β

β

Figure 24.4: Each state of the Markov chain represents how many blocks the
selfish miner is ahead, i.e., ds − dp. In each state, the selfish miner finds a
block with probability α, and the honest miners find a block with probability
β = 1 − α. The interesting cases are the “irregular” β arrow from state 2 to
state 0, and the β arrow from state 1 to state 0 as it will include three subcases.

Proof. We model the current state of the system with a Markov chain, see
Figure 24.4.

We can solve the following Markov chain equations to figure out the proba-
bility of each state in the stationary distribution:

p1 = αp0

βpi+1 = αpi, for all i > 1

and 1 =
∑
i

pi.

Using ρ = α/β, we express all terms of above sum with p1:

1 =
p1

α
+ p1

∑
i≥0

ρi =
p1

α
+

p1

1− ρ
, hence p1 =

2α2 − α
α2 + α− 1

.

Each state has an outgoing arrow with probability β. If this arrow is taken,
one or two blocks (depending on the state) are attached that will eventually
end up in the main chain of the blockchain. In state 0 (if arrow β is taken),
the honest miners attach a block. In all states i with i > 2, the selfish miner
eventually attaches a block. In state 2, the selfish miner directly attaches 2
blocks because of Line 11 in Algorithm 24.2.

State 1 in Line 8 is interesting. The selfish miner secretly was 1 block ahead,
but now (after taking the β arrow) the honest miners are attaching a competing
block. We have a race who attaches the next block, and where. There are three
possibilities:

• Either the selfish miner manages to attach another block to its own block,
giving 2 blocks to the selfish miner. This happens with probability α.

• Or the honest miners attach a block (with probability β) to their previous
honest block (with probability 1 − γ). This gives 2 blocks to the honest
miners, with total probability β(1− γ).

• Or the honest miners attach a block to the selfish block, giving 1 block to
each side, with probability βγ.

24.2. ETHEREUM 123

The blockchain process is just a biased random walk through these states.
Since blocks are attached whenever we have an outgoing β arrow, the total
number of blocks being attached per state is simply 1+p1 +p2 (all states attach
a single block, except states 1 and 2 which attach 2 blocks each).

As argued above, of these blocks, 1− p0 + p2 + αp1 − β(1− γ)p1 are blocks
by the selfish miner, i.e., the ratio of selfish blocks in the blockchain is

1− p0 + p2 + αp1 − β(1− γ)p1

1 + p1 + p2
.

Remarks:

• If the miner is honest (altruistic), then a miner with computational
share α should expect to find an α fraction of the blocks. For some
values of α and γ the ratio of Theorem 24.3 is higher than α.

• In particular, if γ = 0 (the selfish miner only wins a race in Line 8 if it
manages to mine 2 blocks in a row), the break even of selfish mining
happens at α = 1/3.

• If γ = 1/2 (the selfish miner learns about honest blocks very quickly
and manages to convince half of the honest miners to mine on the
selfish block instead of the slightly earlier published honest block),
already α = 1/4 is enough to have a higher share in expectation.

• And if γ = 1 (the selfish miner controls the network, and can hide any
honest block until the selfish block is published) any α > 0 justifies
selfish mining.

24.2 Ethereum

Definition 24.5 (Ethereum). Ethereum is a distributed state machine. Unlike
Bitcoin, Ethereum promises to run arbitrary computer programs in a blockchain.

Remarks:

• Like the Bitcoin network, Ethereum consists of nodes that are con-
nected by a random virtual network. These nodes can join or leave
the network arbitrarily. There is no central coordinator.

• Like in Bitcoin, users broadcast cryptographically signed transactions
in the network. Nodes collate these transactions and decide on the
ordering of transactions by putting them in a block on the Ethereum
blockchain.

Definition 24.6 (Smart Contract). Smart contracts are programs deployed on
the Ethereum blockchain that have associated storage and can execute arbitrarily
complex logic.

124 CHAPTER 24. ADVANCED BLOCKCHAIN

Remarks:

• Smart Contracts are written in higher level programming languages
like Solidity, Vyper, etc. and are compiled down to EVM (Ethereum
Virtual Machine) bytecode, which is a Turing complete low level pro-
gramming language.

• Smart contracts cannot be changed after deployment. But most smart
contracts contain mutable storage, and this storage can be used to
adapt the behavior of the smart contract. With this, many smart
contracts can update to a new version.

Definition 24.7 (Account). Ethereum knows two kinds of accounts. Exter-
nally Owned Accounts (EOAs) are controlled by individuals, with a secret key.
Contract Accounts (CAs) are for smart contracts. CAs are not controlled by a
user.

Definition 24.8 (Ethereum Transaction). An Ethereum transaction is sent by
a user who controls an EOA to the Ethereum network. A transaction contains:

• Nonce: This “number only used once” is simply a counter that counts how
many transactions the account of the sender of the transaction has already
sent.

• 160-bit address of the recipient.

• The transaction is signed by the user controlling the EOA.

• Value: The amount of Wei (the native currency of Ethereum) to transfer
from the sender to the recipient.

• Data: Optional data field, which can be accessed by smart contracts.

• StartGas: A value representing the maximum amount of computation this
transaction is allowed to use.

• GasPrice: How many Wei per unit of Gas the sender is paying. Miners
will probably select transactions with a higher GasPrice, so a high GasPrice
will make sure that the transaction is executed more quickly.

Remarks:

• There are three types of transactions.

Definition 24.9 (Simple Transaction). A simple transaction in Ethereum
transfers some of the native currency, called Wei, from one EOA to another.
Higher units of currency are called Szabo, Finney, and Ether, with 1018 Wei =
106 Szabo = 103 Finney = 1 Ether. The data field in a simple transaction is
empty.

Definition 24.10 (Smart Contract Creation Transaction). A transaction whose
recipient address field is set to 0 and whose data field is set to compiled EVM
code is used to deploy that code as a smart contract on the Ethereum blockchain.
The contract is considered deployed after it has been mined in a block and is
included in the blockchain at a sufficient depth.

24.2. ETHEREUM 125

Definition 24.11 (Smart Contract Execution Transaction). A transaction that
has a smart contract address in its recipient field and code to execute a specific
function of that contract in its data field.

Remarks:

• Smart Contracts can execute computations, store data, send Ether to
other accounts or smart contracts, and invoke other smart contracts.

• Smart contracts can be programmed to self destruct. This is the only
way to remove them again from the Ethereum blockchain.

• Each contract stores data in 3 separate entities: storage, memory, and
stack. Of these, only the storage area is persistent between transac-
tions. Storage is a key-value store of 256 bit words to 256 bit words.
The storage data is persisted in the Ethereum blockchain, like the
hard disk of a traditional computer. Memory and stack are for in-
termediate storage required while running a specific function, similar
to RAM and registers of a traditional computer. The read/write gas
costs of persistent storage is significantly higher than those of memory
and stack.

Definition 24.12 (Gas). Gas is the unit of an atomic computation, like swap-
ping two variables. Complex operations use more than 1 Gas, e.g., ADDing two
numbers costs 3 Gas.

Remarks:

• As Ethereum contracts are programs (with loops, function calls, and
recursions), end users need to pay more gas for more computations.
In particular, smart contracts might call another smart contract as a
subroutine, and StartGas must include enough gas to pay for all these
function calls invoked by the transaction.

• The product of StartGas and GasPrice is the maximum cost of the
entire transaction.

• Transactions are an all or nothing affair. If the entire transaction could
not be finished within the StartGas limit, an Out-of-Gas exception is
raised. The state of the blockchain is reverted back to its values before
the transaction. The amount of gas consumed is not returned back to
the sender.

Definition 24.13 (Block). In Ethereum, like in Bitcoin, a block is a collection
of transactions that is considered a part of the canonical history of transactions.
Among other things, a block contains: pointers to parent and up to two uncles,
the hash of the root node of a trie structure populated with each transaction of
the block, the hash of the root node of the state trie (after transactions have been
executed)

126 CHAPTER 24. ADVANCED BLOCKCHAIN

Chapter Notes

Selfish mining has already been discussed shortly after the introduction of Bit-
coin [RHo10]. A few years later, Eyal and Sirer formally analyzed selfish mining
[ES14]. If the selfish miner is two or more blocks ahead, this original research
suggested to always answer a newly published block by releasing the oldest un-
published block, so have two blocks at the same level. The idea was that honest
miners will then split their mining power between these two blocks. However,
what matters is how long it takes the honest miners to find the next block to
extend the public blockchain. This time does not change whether the honest
miners split their efforts or not. Hence the case dp < ds − 1 is not needed in
Algorithm 24.2.

Similarly, Courtois and Bahack [CB14] study subversive mining strategies.
Nayak et al. [NKMS15] combine selfish mining and eclipse attacks. Algorithm
24.2 is not optimal for all parameters, e.g., sometimes it may be beneficial to
risk even a two-block advantage. Sapirshtein et al. [SSZ15] describe and analyze
the optimal algorithm.

Vitalik Buterin introduced Ethereum in the 2013 whitepaper [But13]. In
2014, Ethereum Foundation was founded to create Ethereum’s first implementa-
tion. An online crowd-sale was conducted to raise around 31,000 BTC (around
USD 18 million at the time) for this. In this sense, Ethereum was the first
ICO (Initial Coin Offering). Ethereum has also attempted to write a formal
specification of its protocol in their yellow paper [Gav18]. This is in contrast
to Bitcoin, which doesn’t have a formal specification.

Bitcoin’s blockchain forms as a chain, i.e., each block (except the genesis
block) has a parent block. The longest chain with the highest difficulty is
considered the main chain. GHOST [SZ15] is an alternative to the longest chain
rule for establishing consensus in PoW based blockchains and aims to alleviate
adverse impacts of stale blocks. Ethereum’s blockchain structure is a variant
of GHOST. Other systems based on DAGs have been proposed in [SLZ16],
[SZ18], [LLX+18], and [LSZ15].

Bibliography

[But13] Vitalik Buterin. A Next-Generation Smart Contract and Decentral-
ized Application Platform, 2013. Available from: https://github.
com/ethereum/wiki/wiki/White-Paper.

[CB14] Nicolas T. Courtois and Lear Bahack. On subversive miner strategies
and block withholding attack in bitcoin digital currency. CoRR,
abs/1402.1718, 2014.

[ES14] Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin
mining is vulnerable. In Financial Cryptography and Data Security,
pages 436–454. Springer, 2014.

[Gav18] Gavin Wood. Ethereum: A Secure Decentralised Generalised Trans-
action Ledger, Byzantium Version, 2018. Available from: https:

//ethereum.github.io/yellowpaper/paper.pdf.

https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf

BIBLIOGRAPHY 127

[LLX+18] Chenxing Li, Peilun Li, Wei Xu, Fan Long, and Andrew Chi-Chih
Yao. Scaling nakamoto consensus to thousands of transactions per
second. CoRR, abs/1805.03870, 2018.

[LSZ15] Yoad Lewenberg, Yonatan Sompolinsky, and Aviv Zohar. Inclusive
block chain protocols. In Financial Cryptography and Data Security,
pages 528–547. Springer, 2015.

[NKMS15] Kartik Nayak, Srijan Kumar, Andrew Miller, and Elaine Shi. Stub-
born mining: Generalizing selfish mining and combining with an
eclipse attack. Technical report, IACR Cryptology ePrint Archive
2015, 2015.

[RHo10] RHorning. Mining cartel attack, 2010.

[SLZ16] Yonatan Sompolinsky, Yoad Lewenberg, and Aviv Zohar. Spec-
tre: A fast and scalable cryptocurrency protocol. Cryptology ePrint
Archive, Report 2016/1159, 2016. https://eprint.iacr.org/

2016/1159.

[SSZ15] Ayelet Sapirshtein, Yonatan Sompolinsky, and Aviv Zohar. Optimal
selfish mining strategies in bitcoin. arXiv preprint arXiv:1507.06183,
2015.

[SZ15] Yonatan Sompolinsky and Aviv Zohar. Secure high-rate transaction
processing in bitcoin. In Financial Cryptography and Data Security,
pages 507–527. Springer, 2015.

[SZ18] Yonatan Sompolinsky and Aviv Zohar. Phantom: A scalable
blockdag protocol. Cryptology ePrint Archive, Report 2018/104,
2018. https://eprint.iacr.org/2018/104.

https://eprint.iacr.org/2016/1159
https://eprint.iacr.org/2016/1159
https://eprint.iacr.org/2018/104

Chapter 25

Game Theory

“Game theory is a sort of umbrella or ‘unified field’ theory for the rational side
of social science, where ‘social’ is interpreted broadly, to include human as well

as non-human players (computers, animals, plants).”

– Robert Aumann, 1987

25.1 Introduction

In this chapter we look at a distributed system from a different perspective.
Nodes no longer have a common goal, but are selfish. The nodes are not byzan-
tine (actively malicious), instead they try to benefit from a distributed system
– possibly without contributing.

Game theory attempts to mathematically capture behavior in strategic sit-
uations, in which an individual’s success depends on the choices of others.

Remarks:

• Examples of potentially selfish behavior are file sharing or TCP. If a
packet is dropped, then most TCP implementations interpret this as
a congested network and alleviate the problem by reducing the speed
at which packets are sent. What if a selfish TCP implementation will
not reduce its speed, but instead transmit each packet twice?

• We start with one of the most famous games to introduce some defi-
nitions and concepts of game theory.

25.2 Prisoner’s Dilemma

A team of two prisoners (players u and v) are being questioned by the police.
They are both held in solitary confinement and cannot talk to each other. The
prosecutors offer a bargain to each prisoner: snitch on the other prisoner to
reduce your prison sentence.

128

25.2. PRISONER’S DILEMMA 129

u Player u
v Cooperate Defect

Player v
Cooperate

1
1

0
3

Defect
3

0
2

2

Table 25.1: The prisoner’s dilemma game as a matrix.

• If both of them stay silent (cooperate), both will be sentenced to one year
of prison on a lesser charge.

• If both of them testify against their fellow prisoner (defect), the police has
a stronger case and they will be sentenced to two years each.

• If player u defects and the player v cooperates, then player u will go free
(snitching pays off) and player v will have to go to jail for three years; and
vice versa.

• This two player game can be represented as a matrix, see Table 25.1.

Definition 25.2 (game). A game requires at least two rational players, and
each player can choose from at least two options (strategies). In every possible
outcome (strategy profile) each player gets a certain payoff (or cost). The
payoff of a player depends on the strategies of the other players.

Definition 25.3 (social optimum). A strategy profile is called social optimum
(SO) if and only if it minimizes the sum of all costs (or maximizes payoff).

Remarks:

• The social optimum for the prisoner’s dilemma is when both players
cooperate – the corresponding cost sum is 2.

Definition 25.4 (dominant). A strategy is dominant if a player is never worse
off by playing this strategy. A dominant strategy profile is a strategy profile in
which each player plays a dominant strategy.

Remarks:

• The dominant strategy profile in the prisoner’s dilemma is when both
players defect – the corresponding cost sum is 4.

Definition 25.5 (Nash Equilibrium). A Nash Equilibrium (NE) is a strategy
profile in which no player can improve by unilaterally (the strategies of the other
players do not change) changing its strategy.

130 CHAPTER 25. GAME THEORY

Remarks:

• A game can have multiple Nash Equilibria.

• In the prisoner’s dilemma both players defecting is the only Nash
Equilibrium.

• If every player plays a dominant strategy, then this is by definition a
Nash Equilibrium.

• Nash Equilibria and dominant strategy profiles are so called solution
concepts. They are used to analyze a game. There are more solution
concepts, e.g. correlated equilibria or best response.

• The best response is the best strategy given a belief about the strategy
of the other players. In this game the best response to both strategies
of the other player is to defect. If one strategy is the best response to
any strategy of the other players, it is a dominant strategy.

• If two players play the prisoner’s dilemma repeatedly, it is called iter-
ated prisoner’s dilemma. It is a dominant strategy to always defect.
To see this, consider the final game. Defecting is a dominant strat-
egy. Thus, it is fixed what both players do in the last game. Now the
penultimate game is the last game and by induction always defecting
is a dominant strategy.

• Game theorists were invited to come up with a strategy for 200 iter-
ations of the prisoner’s dilemma to compete in a tournament. Each
strategy had to play against every other strategy and accumulated
points throughout the tournament. The simple Tit4Tat strategy (co-
operate in the first game, then copy whatever the other player did in
the previous game) won. One year later, after analyzing each strat-
egy, another tournament (with new strategies) was held. Tit4Tat won
again.

• We now look at a distributed system game.

25.3 Selfish Caching

Computers in a network want to access a file regularly. Each node v ∈ V , with
V being the set of nodes and n = |V |, has a demand dv for the file and wants to
minimize the cost for accessing it. In order to access the file, node v can either
cache the file locally which costs 1 or request the file from another node u which
costs cv←u. If a node does not cache the file, the cost it incurs is the minimal
cost to access the file remotely. Note that if no node caches the file, then every
node incurs cost ∞. There is an example in Figure 25.6.

Remarks:

• We will sometimes depict this game as a graph. The cost cv←u for
node v to access the file from node u is equivalent to the length of the
shortest path times the demand dv.

25.3. SELFISH CACHING 131

• Note that in undirected graphs cu←v > cv←u if and only if du > dv.
We assume that the graphs are undirected for the rest of the chapter.

Figure 25.6: In this example we assume du = dv = dw = 1. Either the nodes u
and w cache the file. Then neither of the three nodes has an incentive to change
its behavior. The costs are 1, 1/2, and 1 for the nodes u, v, w, respectively.
Alternatively, only node v caches the file. Again, neither of the three nodes has
an incentive to change its behavior. The costs are 1/2, 1, and 3/4 for the nodes
u, v, w, respectively.

Algorithm 25.7 Nash Equilibrium for Selfish Caching

1: S = {} //set of nodes that cache the file
2: repeat
3: Let v be a node with maximum demand dv in set V
4: S = S ∪ {v}, V = V \ {v}
5: Remove every node u from V with cu←v ≤ 1
6: until V = {}

Theorem 25.8. Algorithm 25.7 computes a Nash Equilibrium for Selfish
Caching.

Proof. Let u be a node that is not caching the file. Then there exists a node v
for which cu←v ≤ 1. Hence, node u has no incentive to cache.

Let u be a node that is caching the file. We now consider any other node v
that is also caching the file. First, we consider the case where v cached the file
before u did. Then it holds that cu←v > 1 by construction.

It could also be that v started caching the file after u did. Then it holds
that du ≥ dv and therefore cu←v ≥ cv←u. Furthermore, we have cv←u > 1 by
construction. Combining these implies that cu←v ≥ cv←u > 1.

In either case, node u has no incentive to stop caching.

Definition 25.9 (Price of Anarchy). Let NE− denote the Nash Equilibrium
with the highest cost (smallest payoff). The Price of Anarchy (PoA) is defined
as

PoA =
cost(NE−)

cost(SO)
.

Definition 25.10 (Optimistic Price of Anarchy). Let NE+ denote the Nash
Equilibrium with the smallest cost (highest payoff). The Optimistic Price of
Anarchy (OPoA) is defined as

OPoA =
cost(NE+)

cost(SO)
.

132 CHAPTER 25. GAME THEORY

0

0

0

0

0

0

0

0

Figure 25.12: A network with a Price of Anarchy of Θ(n).

Remarks:

• The Price of Anarchy measures how much a distributed system de-
grades because of selfish nodes.

• We have PoA ≥ OPoA ≥ 1.

Theorem 25.11. The (Optimistic) Price of Anarchy of Selfish Caching can be
Θ(n).

Proof. Consider a network as depicted in Figure 25.12. Every node v has de-
mand dv = 1. Note that if any node caches the file, no other node has an
incentive to cache the file as well since the cost to access the file is at most 1−ε.
Without loss of generality, let us assume that a node v on the left caches the
file, then it is cheaper for every node on the right to access the file remotely.
Hence, the total cost of this solution is 1 + n

2 · (1 − ε). In the social optimum
one node from the left and one node from the right cache the file. This reduces

the cost to 2. Hence, the Price of Anarchy is
1+ n

2 ·(1−ε)
2 =

ε→0

1
2 + n

4 = Θ(n).

25.4 Braess’ Paradox

Consider the graph in Figure 25.13, it models a road network. Let us assume
that there are 1000 drivers (each in their own car) that want to travel from node
s to node t. Traveling along the road from s to u (or v to t) always takes 1
hour. The travel time from s to v (or u to t) depends on the traffic and increases
by 1/1000 of an hour per car, i.e., when there are 500 cars driving, it takes 30
minutes to use this road.

Lemma 25.14. Adding a super fast road (delay is 0) between u and v can
increase the travel time from s to t.

Proof. Since the drivers act rationally, they want to minimize the travel time.
In the Nash Equilibrium, 500 drivers first drive to node u and then to t and 500
drivers first to node v and then to t. The travel time for each driver is 1 + 500
/ 1000 = 1.5.

25.5. ROCK-PAPER-SCISSORS 133

(a) The road network without the shortcut (b) The road network with the shortcut

Figure 25.13: Braess’ Paradox, where d denotes the number of drivers using an
edge.

To reduce congestion, a super fast road (delay is 0) is built between nodes u
and v. This results in the following Nash Equilibrium: every driver now drives
from s to v to u to t. The total cost is now 2 > 1.5.

Remarks:

• There are physical systems which exhibit similar properties. Some
famous ones employ a spring. YouTube has some fascinating videos
about this. Simply search for “Braess Paradox Spring”.

• We will now look at another famous game that will allow us to deepen
our understanding of game theory.

25.5 Rock-Paper-Scissors

There are two players, u and v. Each player simultaneously chooses one of three
options: rock, paper, or scissors. The rules are simple: paper beats rock, rock
beats scissors, and scissors beat paper. A matrix representation of this game is
in Table 25.15.

u Player u
v Rock Paper Scissors

Player v

Rock
0

0
1

-1
-1

1

Paper
-1

1
0

0
1

-1

Scissors
1

-1
-1

1
0

0

Table 25.15: Rock-Paper-Scissors as a matrix.

134 CHAPTER 25. GAME THEORY

Remarks:

• None of the three strategies is a Nash Equilibrium. Whatever player
u chooses, player v can always switch her strategy such that she wins.

• This is highlighted in the best response concept. The best response
to e.g. scissors is to play rock. The other player switches to paper.
And so on.

• Is this a game without a Nash Equilibrium? John Nash answered this
question in 1950. By choosing each strategy with a certain probability,
we can obtain a so called Mixed Nash Equilibrium.

Definition 25.16 (Mixed Nash Equilibrium). A Mixed Nash Equilibrium
(MNE) is a strategy profile in which at least one player is playing a random-
ized strategy (choose strategy profiles according to probabilities), and no player
can improve their expected payoff by unilaterally changing their (randomized)
strategy.

Theorem 25.17. Every game has a mixed Nash Equilibrium.

Remarks:

• The Nash Equilibrium of this game is if both players choose each
strategy with probability 1/3. The expected payoff is 0.

• Any strategy (or mix of them) is a best response to a player choosing
each strategy with probability 1/3.

• In a pure Nash Equilibrium, the strategies are chosen deterministi-
cally. Rock-Paper-Scissors does not have a pure Nash Equilibrium.

• Even though every game has a mixed Nash Equilibrium. Sometimes
such an equilibrium is computationally difficult to compute. One
should be cautious about economic assumptions such as “the mar-
ket will always find the equilibrium”.

• Unfortunately, game theory does not always model problems accu-
rately. Many real world problems are too complex to be captured by
a game. And as you may know, humans (not only politicians) are
often not rational.

• In distributed systems, players can be servers, routers, etc. Game
theory can tell us whether systems and protocols are prone to selfish
behavior.

25.6 Mechanism Design

Whereas game theory analyzes existing systems, there is a related area that
focuses on designing games – mechanism design. The task is to create a game
where nodes have an incentive to behave “nicely”.

Definition 25.18 (auction). One good is sold to a group of bidders in an auc-
tion. Each bidder vi has a secret value zi for the good and tells his bid bi to the
auctioneer. The auctioneer sells the good to one bidder for a price p.

25.6. MECHANISM DESIGN 135

Remarks:

• For simplicity, we assume that no two bids are the same, and that
b1 > b2 > b3 > . . .

Algorithm 25.19 First Price Auction

1: every bidder vi submits his bid bi
2: the good is allocated to the highest bidder v1 for the price p = b1

Definition 25.20 (truthful). An auction is truthful if no player vi can gain
anything by not stating the truth, i.e., bi = zi.

136 CHAPTER 25. GAME THEORY

Theorem 25.21. A First Price Auction (Algorithm 25.19) is not truthful.

Proof. Consider an auction with two bidders, with bids b1 and b2. By not stating
the truth and decreasing his bid to b1 − ε > b2, player one could pay less and
thus gain more. Thus, the first price auction is not truthful.

Algorithm 25.22 Second Price Auction

1: every bidder vi submits his bid bi
2: the good is allocated to the highest bidder v1 for p = b2

Theorem 25.23. Truthful bidding is a dominant strategy in a Second Price
Auction.

Proof. Let zi be the truthful value of node vi and bi his bid. Let bmax =
maxj 6=i bj is the largest bid from other nodes but vi. The payoff for node vi is
zi − bmax if bi > bmax and 0 else. Let us consider overbidding first, i.e., bi > zi:

• If bmax < zi < bi, then both strategies win and yield the same payoff
(zi − bmax).

• If zi < bi < bmax, then both strategies lose and yield a payoff of 0.

• If zi < bmax < bi, then overbidding wins the auction, but the payoff
(zi − bmax) is negative. Truthful bidding loses and yields a payoff of 0.

Likewise underbidding, i.e. bi < zi:

• If bmax < bi < zi, then both strategies win and yield the same payoff
(zi − bmax).

• If bi < zi < bmax, then both strategies lose and yield a payoff of 0.

• If bi < bmax < zi, then truthful bidding wins and yields a positive payoff
(zi − bmax). Underbidding loses and yields a payoff of 0.

Hence, truthful bidding is a dominant strategy for each node vi.

Remarks:

• Let us use this for Selfish Caching. We need to choose a node that is
the first to cache the file. But how? By holding an auction. Every
node says for which price it is willing to cache the file. We pay the
node with the lowest offer and pay it the second lowest offer to ensure
truthful offers.

• Since a mechanism designer can manipulate incentives, she can im-
plement a strategy profile by making all the strategies in this profile
dominant.

25.6. MECHANISM DESIGN 137

Theorem 25.24. Any Nash Equilibrium of Selfish Caching can be implemented
for free.

Proof. If the mechanism designer wants the nodes from the caching set S of the
Nash Equilibrium to cache, then she can offer the following deal to every node
not in S: “If any node from set S does not cache the file, then I will ensure
a positive payoff for you.” Thus, all nodes not in S prefer not to cache since
this is a dominant strategy for them. Consider now a node v ∈ S. Since S is a
Nash Equilibrium, node v incurs cost of at least 1 if it does not cache the file.
For nodes that incur cost of exactly 1, the mechanism designer can even issue a
penalty if the node does not cache the file. Thus, every node v ∈ S caches the
file.

Remarks:

• Mechanism design assumes that the players act rationally and want to
maximize their payoff. In real-world distributed systems some players
may be not selfish, but actively malicious (byzantine).

• What about P2P file sharing? To increase the overall experience,
BitTorrent suggests that peers offer better upload speed to peers who
upload more. This idea can be exploited. By always claiming to have
nothing to trade yet, the BitThief client downloads without uploading.
In addition to that, it connects to more peers than the standard client
to increase its download speed.

• Many techniques have been proposed to limit such free riding behavior,
e.g., tit-for-tat trading: I will only share something with you if you
share something with me. To solve the bootstrap problem (“I don’t
have anything yet”), nodes receive files or pieces of files whose hash
match their own hash for free. One can also imagine indirect trading.
Peer u uploads to peer v, who uploads to peer w, who uploads to peer
u. Finally, one could imagine using virtual currencies or a reputation
system (a history of who uploaded what). Reputation systems suffer
from collusion and Sybil attacks. If one node pretends to be many
nodes who rate each other well, it will have a good reputation.

Chapter Notes

Game theory was started by a proof for mixed-strategy equilibria in two-person
zero-sum games by John von Neumann [Neu28]. Later, von Neumann and Mor-
genstern introduced game theory to a wider audience [NM44]. In 1950 John
Nash proved that every game has a mixed Nash Equilibrium [Nas50]. The Pris-
oner’s Dilemma was first formalized by Flood and Dresher [Flo52]. The iterated
prisoner’s dilemma tournament was organized by Robert Axelrod [AH81]. The
Price of Anarchy definition is from Koutsoupias and Papadimitriou [KP99].
This allowed the creation of the Selfish Caching Game [CCW+04], which we
used as a running example in this chapter. Braess’ paradox was discovered by
Dietrich Braess in 1968 [Bra68]. A generalized version of the second-price auc-
tion is the VCG auction, named after three successive papers from first Vickrey,

138 CHAPTER 25. GAME THEORY

then Clarke, and finally Groves [Vic61, Cla71, Gro73]. One popular exam-
ple of selfishness in practice is BitThief – a BitTorrent client that successfully
downloads without uploading [LMSW06]. Using game theory economists try to
understand markets and predict crashes. Apart from John Nash, the Sveriges
Riksbank Prize (Nobel Prize) in Economics has been awarded many times to
game theorists. For example in 2007 Hurwicz, Maskin, and Myerson received the
prize for “for having laid the foundations of mechanism design theory”. There
is a considerable amount of work on mixed adversarial models with byzantine,
altruistic, and rational (“BAR”) players, e.g., [AAC+05, ADGH06, MSW06].
Daskalakis et al. [DGP09] showed that computing a Nash Equilibrium may not
be trivial.

This chapter was written in collaboration with Philipp Brandes.

Bibliography

[AAC+05] Amitanand S. Aiyer, Lorenzo Alvisi, Allen Clement, Michael Dahlin,
Jean-Philippe Martin, and Carl Porth. BAR fault tolerance for
cooperative services. In Proceedings of the 20th ACM Symposium
on Operating Systems Principles 2005, SOSP 2005, Brighton, UK,
October 23-26, 2005, pages 45–58, 2005.

[ADGH06] Ittai Abraham, Danny Dolev, Rica Gonen, and Joseph Y. Halpern.
Distributed computing meets game theory: robust mechanisms for
rational secret sharing and multiparty computation. In Proceedings
of the Twenty-Fifth Annual ACM Symposium on Principles of Dis-
tributed Computing, PODC 2006, Denver, CO, USA, July 23-26,
2006, pages 53–62, 2006.

[AH81] Robert Axelrod and William Donald Hamilton. The evolution of
cooperation. Science, 211(4489):1390–1396, 1981.

[Bra68] Dietrich Braess. Über ein paradoxon aus der verkehrsplanung. Un-
ternehmensforschung, 12(1):258–268, 1968.

[CCW+04] Byung-Gon Chun, Kamalika Chaudhuri, Hoeteck Wee, Marco Bar-
reno, Christos H Papadimitriou, and John Kubiatowicz. Selfish
caching in distributed systems: a game-theoretic analysis. In Pro-
ceedings of the twenty-third annual ACM symposium on Principles
of distributed computing, pages 21–30. ACM, 2004.

[Cla71] Edward H Clarke. Multipart pricing of public goods. Public choice,
11(1):17–33, 1971.

[DGP09] Constantinos Daskalakis, Paul W. Goldberg, and Christos H. Pa-
padimitriou. The complexity of computing a nash equilibrium.
SIAM J. Comput., 39(1):195–259, 2009.

[Flo52] Merrill M Flood. Some experimental games. Management Science,
5(1):5–26, 1952.

[Gro73] Theodore Groves. Incentives in teams. Econometrica: Journal of
the Econometric Society, pages 617–631, 1973.

BIBLIOGRAPHY 139

[KP99] Elias Koutsoupias and Christos Papadimitriou. Worst-case equilib-
ria. In STACS 99, pages 404–413. Springer, 1999.

[LMSW06] Thomas Locher, Patrick Moor, Stefan Schmid, and Roger Watten-
hofer. Free Riding in BitTorrent is Cheap. In 5th Workshop on Hot
Topics in Networks (HotNets), Irvine, California, USA, November
2006.

[MSW06] Thomas Moscibroda, Stefan Schmid, and Roger Wattenhofer. When
selfish meets evil: byzantine players in a virus inoculation game. In
Proceedings of the Twenty-Fifth Annual ACM Symposium on Prin-
ciples of Distributed Computing, PODC 2006, Denver, CO, USA,
July 23-26, 2006, pages 35–44, 2006.

[Nas50] John F. Nash. Equilibrium points in n-person games. Proc. Nat.
Acad. Sci. USA, 36(1):48–49, 1950.

[Neu28] John von Neumann. Zur Theorie der Gesellschaftsspiele. Mathema-
tische Annalen, 100(1):295–320, 1928.

[NM44] John von Neumann and Oskar Morgenstern. Theory of games and
economic behavior. Princeton university press, 1944.

[Vic61] William Vickrey. Counterspeculation, auctions, and competitive
sealed tenders. The Journal of finance, 16(1):8–37, 1961.

Chapter 26

Authenticated Agreement

In Section 18.4 we have already had a glimpse into the power of cryptography.
In this Chapter we want to build a practical byzantine fault-tolerant system
using cryptography. With cryptography, byzantine lies may be detected easily.

26.1 Agreement with Authentication

Definition 26.1 (Signature). Every node can digitally sign its messages in a
way that no other node can forge, thus nodes can reliably determine which node
a signed message originated from. We denote a message msg(x) signed by node
u with msg(x)u.

Algorithm 26.2 Byzantine Agreement with Authentication

Code for primary p:

1: if input is 1 then
2: broadcast value(1)p
3: decide 1 and terminate
4: else
5: decide 0 and terminate
6: end if

Code for all other nodes v:

7: for all rounds i ∈ {1, . . . , f + 1} do
8: S is the set of accepted messages value(1)u.
9: if |S| ≥ i and value(1)p ∈ S then

10: broadcast S ∪ {value(1)v}
11: decide 1 and terminate
12: end if
13: end for
14: decide 0 and terminate

140

26.1. AGREEMENT WITH AUTHENTICATION 141

Remarks:

• Algorithm 26.2 solves byzantine agreement on binary inputs relying
on signatures. We assume there is a designated “primary” node p that
all other nodes know. The goal is to decide on p’s value.

Theorem 26.3. Algorithm 26.2 can tolerate f < n byzantine failures while
terminating in f + 1 rounds.

Proof. Assuming that the primary p is not byzantine and its input is 1, then p
broadcasts value(1)p in the first round, which will trigger all correct nodes to
decide on 1. If p’s input is 0, there is no signed message value(1)p, and no node
can decide on 1.

If primary p is byzantine, we need all correct nodes to decide on the same
value for the algorithm to be correct.

Assume i < f + 1 is the minimal round in which any correct node u decides
on 1. In this case, u has a set S of at least i messages from other nodes for
value 1 in round i, including one of p. Therefore, in round i + 1 ≤ f + 1, all
other correct nodes will receive S and u’s message for value 1 and thus decide
on 1 too.

Now assume that i = f + 1 is the minimal round in which a correct node
u decides for 1. Thus u must have received f + 1 messages for value 1, one of
which must be from a correct node since there are only f byzantine nodes. In
this case some other correct node v must have decided on 1 in some round j < i,
which contradicts i’s minimality; hence this case cannot happen.

Finally, if no correct node decides on 1 by the end of round f + 1, then all
correct nodes will decide on 0.

Remarks:

• If the primary is a correct node, Algorithm 26.2 only needs two rounds!
Otherwise, the algorithm terminates in at most f + 1 rounds, which
is optimal as described in Theorem 17.20.

• By using signatures, Algorithm 26.2 manages to solve consensus for
any number of failures! Does this contradict Theorem 17.12? Recall
that in the proof of Theorem 17.12 we assumed that a byzantine node
can distribute contradictory information about its own input. If mes-
sages are signed, correct nodes can detect such behavior. Specifically,
if a node u signs two contradicting messages, then observing these two
messages proves to all nodes that node u is byzantine.

• Does Algorithm 26.2 satisfy any of the validity conditions introduced
in Section 17.1? No! A byzantine primary can dictate the decision
value.

• Can we modify the algorithm such that the correct-input validity con-
dition is satisfied? Yes! We can run the algorithm in parallel for 2f+1
primary nodes. Either 0 or 1 will occur at least f + 1 times, which
means that one correct process had to have this value in the first place.
In this case, we can only handle f < n

2 byzantine nodes.

• Can we make it work with arbitrary inputs?

142 CHAPTER 26. AUTHENTICATED AGREEMENT

• Relying on synchrony limits the practicality of the protocol. What if
messages can be lost or the system is asynchronous?

26.2 Practical Byzantine Fault Tolerance

Practical Byzantine Fault Tolerance (PBFT) is one of the first and perhaps
the most instructive protocol for achieving state replication among nodes as in
Definition 15.8 with byzantine nodes in an asynchronous network. We present
a simplified version of PBFT without any optimizations.

Definition 26.4 (System Model). We consider a system with n = 3f+1 nodes,
and additionally an unbounded number of clients. There are at most f byzantine
nodes, and clients can be byzantine as well. The network is asynchronous, and
messages have variable delay and can get lost. Clients send requests that correct
nodes have to order to achieve state replication.

Remarks:

• At any given time, every node will consider one designated node to be
the primary and the other nodes to be backups.

• The timespan for which a node p is seen as the primary from the
perspective of another node is called a view.

Definition 26.5 (View). A view v is a non-negative integer representing the
node’s local perception of the system. We say that node u is in view v as long
as node u considers node p = v mod n to be the primary.

Remarks:

• All nodes start out in view 0. Nodes can potentially be in different
views (i.e. have different local values for v) at any given time.

• If backups detect faulty behavior in the primary, they switch to the
next primary with a so-called view change (see Section 26.4).

• In the asynchronous model, requests can arrive at the nodes in dif-
ferent orders. While a primary remains in charge (sufficiently many
nodes share the view v), it thus adopts the function of a serializer (cf.
Algorithm 15.9).

Definition 26.6 (Sequence Number). During a view, a node relies on the pri-
mary to assign consecutive sequence numbers (integers) that function as in-
dices in the global order (cf. Definition 15.8) for the requests that clients send.

Remarks:

• During a view change, we ensure that no two correct nodes execute
requests in different orders. On the one hand, we need to exchange
information on the current state to guarantee that a correct new pri-
mary knows the latest sequence number that has been accepted by
sufficiently many backups. On the other hand, exchanging informa-
tion will enable backups to determine if the new primary acts in a
byzantine fashion, e.g. reassigning the latest sequence number to a
different request.

26.3. PBFT: AGREEMENT PROTOCOL 143

• We use signatures to guarantee that every node can determine which
node/client has generated any given message.

Definition 26.7 (Accepted Messages). A correct node that is in view v will
only accept messages that it can authenticate, that follow the specification of
the protocol, and that also belong to view v.

Remarks:

• The protocol will guarantee that once a correct node has executed a
request r with sequence number s, then no correct node will execute
any request r′ 6= r with sequence number s, not unlike Lemma 15.14.

• Correct primaries choose sequence numbers in order, without gap, i.e.
if a correct primary proposed s as the sequence number for the last
request, then it will use s+ 1 for the next request that it proposes.

• Before a node can safely execute a request r with a sequence number
s, it will wait until it knows that the decision to execute r with s has
been reached and is widely known.

• Informally, nodes will collect confirmation messages by sets of at least
2f + 1 nodes to guarantee that that information is sufficiently widely
distributed.

Lemma 26.8 (2f + 1 Quorum Intersection). Let S1 with |S1| ≥ 2f + 1 and S2

with |S2| ≥ 2f + 1 each be sets of nodes. Then there exists a correct node in
S1 ∩ S2.

Proof. Let S1, S2 each be sets of at least 2f + 1 nodes. There are 3f + 1 nodes
in total, thus due to the pigeonhole principle the intersection S1 ∩ S2 contains
at least f + 1 nodes. Since there are at most f faulty nodes, S1 ∩ S2 contains
at least 1 correct node.

26.3 PBFT: Agreement Protocol

First we describe how PBFT achieves agreement on a unique order of requests
within a single view. Figure 26.9 shows how the nodes come to an agreement
on a sequence number for a client request. Informally, the protocol has these
five steps:

1. The nodes receive a request and relay it to the primary.

2. The primary sends a pre-prepare-message to all backups, informing them
that it wants to execute that request with the sequence number specified
in the message.

3. Backups send prepare-messages to all nodes, informing them that they
agree with that suggestion.

4. All nodes send commit-messages to all nodes, informing everyone that they
have committed to execute the request with that sequence number.

5. They execute the request and inform the client.

144 CHAPTER 26. AUTHENTICATED AGREEMENT

request
(r, c)c

pre-prepare
(v, s, r, p)p

prepare
(v, s, r, ni)ni

commit
(v, s, ni)ni

reply
(r, ni)ni

client c

primary p

backup n1

backup n2

backup n3

Figure 26.9: The agreement protocol used in PBFT for processing a client
request issued by client c, exemplified for a system with n = 4 nodes. The
primary in view v is p = n0 = v mod n.

Remarks:

• To make sure byzantine nodes cannot force the execution of a re-
quest, every node waits for a certain number of prepare- and commit-
messages with the correct content before executing the request.

• Definitions 26.10, 26.12, 26.14, and 26.16 specify the agreement pro-
tocol formally. Backups run the pre-prepare and the prepare phase
concurrently.

Definition 26.10 (Pre-Prepare Phase). In the pre-prepare phase of the
agreement protocol, the nodes execute Algorithm 26.11.

Algorithm 26.11 PBFT Agreement Protocol: Pre-Prepare Phase

Code for primary p in view v:

1: accept request(r, c)c that originated from client c
2: pick next sequence number s
3: send pre-prepare(v, s, r, p)p to all backups

Code for backup b:

4: accept request(r, c)c from client c
5: relay request(r, c)c to primary p

Definition 26.12 (Prepare Phase). In the prepare phase of the agreement
protocol, every backup b executes Algorithm 26.13. Once it has sent the prepare-
message, we say that b has pre-prepared r for (v, s).

Remarks:

• What if a byzantine primary does not send a pre-prepare message
for a request?

26.3. PBFT: AGREEMENT PROTOCOL 145

Algorithm 26.13 PBFT Agreement Protocol: Prepare Phase

Code for backup b in view v:

1: accept pre-prepare(v, s, r, p)p
2: if b has not yet accepted a pre-prepare-message for (v, s, r′) with r′ 6= r

then
3: send prepare(v, s, r, b)b to all nodes
4: end if

Definition 26.14 (Prepared-Certificate). A node ni that has pre-prepared a
request executes Algorithm 26.15. It waits until it has collected 2f prepare-
messages (including ni’s own, if it is a backup) in Line 1. Together with the
pre-prepare-message for (v, s, r), they form a prepared-certificate.

Algorithm 26.15 PBFT Agreement Protocol: Commit Phase

Code for node ni that has pre-prepared r for (v, s):

1: wait until 2f prepare-messages matching (v, s, r) have been accepted
2: create prepared-certificate for (v, s, r)
3: send commit(v, s, ni)ni

to all nodes

Definition 26.16 (Committed-Certificate). A node ni that has created a
prepared-certificate for a request executes Algorithm 26.17. It waits until it has
collected 2f + 1 commit-messages (including ni’s own) in Line 1. They form a
committed-certificate and allow to safely execute the request once all requests
with lower sequence numbers have been executed.

Algorithm 26.17 PBFT Agreement Protocol: Execute Phase

Code for node ni that has created a prepared-certificate for (v, s, r):

1: wait until 2f + 1 commit-messages matching (v, s) have been accepted
2: create committed-certificate for (v, s, r)
3: wait until all requests with lower sequence numbers have been executed
4: execute request r
5: send reply(r, ni)ni

to client

Remarks:

• Note that the agreement protocol can run for multiple requests in
parallel. Since we are in the variable delay model and messages can
arrive out of order, we thus have to wait in Algorithm 26.17 Line 3
for all requests with lower sequence numbers to be executed.

• The client only considers the request to have been processed once it
received f + 1 reply-messages sent by the nodes in Algorithm 26.17
Line 5. Since a correct node only sends a reply-message once it
executed the request, with f + 1 reply-messages the client can be
certain that the request was executed by a correct node.

146 CHAPTER 26. AUTHENTICATED AGREEMENT

• We will see in Section 26.4 that PBFT guarantees that once a single
correct node executed the request, then all correct nodes will never
execute a different request with the same sequence number. Thus,
knowing that a single correct node executed a request is enough for
the client.

• If the client does not receive at least f+1 reply-messages fast enough,
it can start over by resending the request to initiate Algorithm 26.11
again. To prevent correct nodes that already executed the request
from executing it a second time, clients can mark their requests with
some kind of unique identifiers like a local timestamp. Correct nodes
can then react to each request that is resent by a client as required
by PBFT, and they can decide if they still need to execute a given
request or have already done so before.

Lemma 26.18 (PBFT: Unique Sequence Numbers within View). If a node
was able to create a prepared-certificate for (v, s, r), then no node can create a
prepared-certificate for (v, s, r′) with r′ 6= r.

Proof. Assume two (not necessarily distinct) nodes create prepared-certificates
for (v, s, r) and (v, s, r′). Since a prepared-certificate contains 2f + 1 messages,
by Lemma 26.8, some correct node must have sent a pre-prepare- or prepare-
message both matching (v, s, r) and (v, s, r′). However, a correct primary only
sends a single pre-prepare-message for each (v, s), see Algorithm 26.11 Lines 2
and 3. Furthermore, a correct backup only sends a single prepare-message for
each (v, s), see Algorithm 26.13 Lines 2 and 3. Thus, r′ = r.

Remarks:

• Due to Lemma 26.18, once a node has a prepared-certificate for
(v, s, r), no correct node will execute some r′ 6= r with sequence
number s during view v because correct nodes wait for a prepared-
certificate before executing a request (cf. Algorithm 26.15).

• However, that is not yet enough to make sure that no r′ 6= r will be
executed by a correct node with sequence number s during some later
view v′ > v. How can we make sure that that does not happen?

26.4 PBFT: View Change Protocol

If the primary is faulty, the system has to perform a view change to move to
the next primary so the system can make progress. To that end, nodes use a
local faulty-timer (and only that!) to decide whether they consider the primary
to be faulty.

Definition 26.19 (Faulty-Timer). When backup b accepts request r in Algo-
rithm 26.11 Line 4, b starts a local faulty-timer (if the timer is not already
running) that will only stop once b executes r.

26.4. PBFT: VIEW CHANGE PROTOCOL 147

Remarks:

• If the faulty-timer expires, the backup considers the primary faulty
and triggers a view change. When triggering a view change, a correct
node will no longer participate in the protocol for the current view.

• We leave out the details regarding for what timespan to set the faulty-
timer. This is a patience trade-off (more patience: slower turnover if
the primary is byzantine; less patience: risk of prematurely firing view
changes).

• During a view change, the protocol has to guarantee that requests
that have already been executed by some correct nodes will not be
executed with the different sequence numbers by other correct nodes.

• How can we guarantee that this happens?

Definition 26.20 (PBFT: View Change Protocol). In the view change proto-
col, a node whose faulty-timer has expired enters the view change phase by
running Algorithm 26.22. During the new view phase (which all nodes con-
tinuously listen for), the primary of the next view runs Algorithm 26.24 while
all other nodes run Algorithm 26.25.

view-change
(v + 1,Pi, ni)ni

new-view
(v + 1,V,O, n1)n1

node n0 = primary of view v

node n2

node n1 = primary of view v + 1

node n3

Figure 26.21: The view change protocol used in PBFT. Node n0 is the pri-
mary of current view v, node n1 the primary of view v + 1. Once back-
ups consider n0 to be faulty, they start the view change protocol (cf. Algo-
rithms 26.22, 26.24, 26.25). The X signifies that n0 is faulty.

Remarks:

• The idea behind the view change protocol is as follows: during the view
change protocol, the new primary collects prepared-certificates from
2f + 1 nodes, so for every request that some correct node executed,
the new primary will have at least one prepared-certificate.

• After gathering that information, the primary distributes it and tells
all backups which requests need to be to executed with which sequence
numbers.

• Backups can check whether the new primary makes the decisions
required by the protocol, and if it does not, then the new primary
must be byzantine and the backups can directly move to the next
view change.

148 CHAPTER 26. AUTHENTICATED AGREEMENT

Algorithm 26.22 PBFT View Change Protocol: View Change Phase

Code for node ni in view v whose faulty-timer has expired:

1: stop accepting pre-prepare/prepare/commit-messages for v
2: let Pi be the set of all prepared-certificates that ni has collected since the

system was started
3: send view-change(v + 1,Pi, ni)ni to all nodes

Definition 26.23 (New-View-Certificate). 2f + 1 view-change-messages for
the same view v form a new-view-certificate.

Algorithm 26.24 PBFT View Change Protocol: New View Phase - Primary

Code for new primary p of view v + 1:

1: accept 2f + 1 view-change-messages (including possibly p’s own) in a set
V (this is the new-view-certificate)

2: let O be a set of pre-prepare(v + 1, s, r, p)p for all pairs (s, r) where at
least one prepared-certificate for (s, r) exists in V

3: let sVmax be the highest sequence number for which O contains a
pre-prepare-message

4: add to O a message pre-prepare(v + 1, s′, null, p)p for every sequence
number s′ < sVmax for which O does not contain a pre-prepare-message

5: send new-view(v + 1,V,O, p)p to all nodes
6: start processing requests for view v+1 according to Algorithm 26.11 starting

from sequence number sVmax + 1

Remarks:

• It is possible that V contains a prepared-certificate for a sequence
number s while it does not contain one for some sequence number s′ <
s. For each such sequence number s′, we fill up O in Algorithm 26.24
Line 4 with null-requests, i.e. requests that backups understand to
mean “do not do anything here”.

Theorem 26.26 (PBFT:Unique Sequence Numbers Across Views). Together,
the PBFT agreement protocol and the PBFT view change protocol guarantee
that if a correct node executes a request r in view v with sequence number s,
then no correct node will execute any r′ 6= r with sequence number s in any view
v′ ≥ v.

Proof. If no view change takes place, then Lemma 26.18 proves the statement.
Therefore, assume that a view change takes place, and consider view v′ > v.

We will show that if some correct node executed a request r with sequence
number s during v, then a correct primary will send a pre-prepare-message
matching (v′, s, r) in the O-component of the new-view(v′,V,O, p)-message.
This guarantees that no correct node will be able to collect a prepared-certificate
for s and a different r′ 6= r.

26.4. PBFT: VIEW CHANGE PROTOCOL 149

Algorithm 26.25 PBFT View Change Protocol: New View Phase - Backup

Code for backup b of view v + 1 if b’s local view is v′ < v + 1:

1: accept new-view(v + 1,V,O, p)p
2: stop accepting pre-prepare-/prepare-/commit-messages for v
3: set local view to v + 1
4: if p is primary of v + 1 then
5: if O was correctly constructed from V according to Algorithm 26.24

Lines 2 and 4 then
6: respond to all pre-prepare-messages inO as in the agreement protocol,

starting from Algorithm 26.13
7: start accepting messages for view v + 1
8: else
9: trigger view change to v + 2 using Algorithm 26.22

10: end if
11: end if

Consider the new-view-certificate V (see Algorithm 26.24 Line 1). If any
correct node executed request r with sequence number s, then due to Algo-
rithm 26.17 Line 1, there is a set R1 of at least 2f + 1 nodes that sent a
commit-message matching (s, r), and thus the correct nodes in R1 all collected
a prepared-certificate in Algorithm 26.15 Line 1.

The new-view-certificate contains view-change-messages from a set R2 of
2f + 1 nodes. Thus according to Lemma 26.8, there is at least one correct
node cr ∈ R1∩R2 that both collected a prepared-certificate matching (s, r) and
whose view-change-message is contained in V.

Therefore, if some correct node executed r with sequence number s, then V
contains a prepared-certificate matching (s, r) from cr. Thus, if some correct
node executed r with sequence number s, then due to Algorithm 26.24 Line 2,
a correct primary p sends a new-view(v′,V,O, p)-message where O contains a
pre-prepare(v′, s, r, p)-message.

Correct backups will enter view v′ only if the new-view-message for v′ con-
tains a valid new-view-certificate V and if O was constructed correctly from
V, see Algorithm 26.25 Line 5. They will then respond to the messages in O
before they start accepting other pre-prepare-messages for v′ due to the order
of Algorithm 26.25 Lines 6 and 7. Therefore, for the sequence numbers that ap-
pear in O, correct backups will only send prepare-messages responding to the
pre-prepare-messages found in O due to Algorithm 26.13 Lines 2 and 3. This
guarantees that in v′, for every sequence number s that appears in O, backups
can only collect prepared-certificates for the triple (v′, s, r) that appears in O.

Together with the above, this proves that if some correct node executed
request r with sequence number s in v, then no node will be able to collect a
prepared-certificate for some r′ 6= r with sequence number s in any view v′ ≥ v,
and thus no correct node will execute r′ with sequence number s.

150 CHAPTER 26. AUTHENTICATED AGREEMENT

Remarks:

• We have shown that PBFT protocol guarantees safety or nothing bad
ever happens, i.e., the correct nodes never disagree on requests that
were commited with the same sequence numbers. But, does PBFT
also guarantee liveness? In other words, will a legitimate client request
eventually be committed and replied?

• To prove liveness, we need message delays to be finite and bounded.
With unbounded message delays in an asynchronous system and even
one faulty process, it is impossible to solve consensus with guaranteed
termination (Theorem 16.14).

• A faulty new primary could delay the system indefinitely by never
sending a new-view-message. To prevent this, as soon as a node sends
its view-change-message for view v+1, it starts its faulty-timer. and
stops it once it accepts a for v + 1. If the timer fires before receiving
the new-view-message, the node triggers another view change.

• Since message delays are unknown, timers are doubling with every
view. Eventually, the timeout is larger than the maximum message
delay, and all correct messages are received before any timer expires.

• Since at most f consecutive primaries can be faulty, the system makes
progress after at most f + 1 view changes.

• We described a simplified version of PBFT; any practically relevant
variant makes adjustments to what we presented. The references
found in the chapter notes can be consulted for details that we did
not include.

Chapter Notes

PBFT is perhaps the central protocol for asynchronous byzantine state replica-
tion. The seminal first publication about it, of which we presented a simplified
version, can be found in [CL+99]. The canonical work about most versions of
PBFT is Miguel Castro’s PhD dissertation [Cas01].

Notice that the sets Pb in Algorithm 26.22 grow with each view change
as the system keeps running since they contain all prepared-certificates that
nodes have collected so far. All variants of the protocol found in the literature
introduce regular checkpoints where nodes agree that enough nodes executed
all requests up to a certain sequence number so they can continuously garbage-
collect prepared-certificates. We left this out for conciseness.

Remember that all messages are signed. Generating signatures is some-
what pricy, and variants of PBFT exist that use the cheaper, but less powerful
Message Authentication Codes (MACs). These variants are more complicated
because MACs only provide authentication between the two endpoints of a mes-
sage and cannot prove to a third party who created a message. An extensive
treatment of a variant that uses MACs can be found in [CL02].

Before PBFT, byzantine fault-tolerance was considered impractical, just
something academics would be interested in. PBFT changed that as it

BIBLIOGRAPHY 151

showed that byzantine fault-tolerance can be practically feasible. As a re-
sult, numerous asynchronous byzantine state replication protocols were devel-
oped. Other well-known protocols are Q/U [AEMGG+05], HQ [CML+06], and
Zyzzyva [KAD+07]. An overview over the relevant literature can be found
in [AGK+15].

This chapter was written in collaboration with Georg Bachmeier.

Bibliography

[AEMGG+05] Michael Abd-El-Malek, Gregory R Ganger, Garth R Goodson,
Michael K Reiter, and Jay J Wylie. Fault-scalable byzantine
fault-tolerant services. In ACM SIGOPS Operating Systems Re-
view, volume 39, pages 59–74. ACM, 2005.

[AGK+15] Pierre-Louis Aublin, Rachid Guerraoui, Nikola Knežević, Vivien
Quéma, and Marko Vukolić. The next 700 bft protocols. ACM
Transactions on Computer Systems (TOCS), 32(4):12, 2015.

[Cas01] Miguel Castro. Practical Byzantine Fault Tolerance. Ph.d., MIT,
January 2001. Also as Technical Report MIT-LCS-TR-817.

[CL+99] Miguel Castro, Barbara Liskov, et al. Practical byzantine fault
tolerance. In OSDI, volume 99, pages 173–186, 1999.

[CL02] Miguel Castro and Barbara Liskov. Practical byzantine fault tol-
erance and proactive recovery. ACM Transactions on Computer
Systems (TOCS), 20(4):398–461, 2002.

[CML+06] James Cowling, Daniel Myers, Barbara Liskov, Rodrigo Ro-
drigues, and Liuba Shrira. Hq replication: A hybrid quorum
protocol for byzantine fault tolerance. In Proceedings of the
7th symposium on Operating systems design and implementa-
tion, pages 177–190. USENIX Association, 2006.

[KAD+07] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen
Clement, and Edmund Wong. Zyzzyva: speculative byzantine
fault tolerance. In ACM SIGOPS Operating Systems Review,
volume 41, pages 45–58. ACM, 2007.

Index

access strategy, 80
account, 124
agreement, 15
all-same validity, 27
any-input validity, 27
asynchronous byzantine agreement, 32
asynchronous model, 15
asynchronous reliable broadcast, 41
asynchronous runtime, 15
authenticated byzantine agreement,

140
authentication, 44, 140
availability, 108

B-grid quorum system, 84
bitcoin address, 109
bitcoin block, 112
bitcoin currency, 109
bitcoin network, 109
bivalent configuration, 16
block algorithm, 114
blockchain, 6, 113
butterfly topology, 96
byzantine agreement, 26
byzantine agreement with one fault, 28
byzantine behavior, 26

CAP, 108
causal consistency, 119
causal relation, 118
central limit theorem, 39
Chandy-Lamport Algorithm, 57
churn, 102
client server with acknowledgments, 5
client-server algorithm, 4
clock, 61
clock drift, 62
clock error, 61
clock jitter, 62
clock sources, 66
clock synchronization, 63

coinbase transaction, 113
composability, 52
concurrency measure, 57
concurrent locking strategy, 83
configuration of a system, 16
configuration transition, 17
configuration tree, 17
consensus, 14
consensus rules, 115
consistency, 107
consistent hashing, 92
consistent snapshot, snapshot, 56
correct-input validity, 27
crash-resilient shared coin with black-

board, 39
critical configuration, 18
cube-connected-cycles topology, 96

deadlock-free, 39
DeBruijn topology, 97
DHT, 100
DHT algorithm, 101
distributed hash table, 100
doublespend, 111

end time, 50
ethereum, 123
ethereum block, 125
ethereum transaction, 124
eventual consistency, 108
execution, 50

f-disseminating quorum system, 86
f-masking grid quorum system, 87
f-masking quorum system, 86
f-opaque quorum system, 88
failure probability, 83
FIFO reliable broadcast, 42

gas, 125
global positioning system, 68
global synchronization, 63

152

INDEX 153

GNSS, 68
GPS, 68
GPS receiver, 71
grid quorum system, 81

happened-before relation, 53
homogeneous system, 94
hypercube topology, 95
hypercubic network, 94

king algorithm, 30

Lamport clock, 54
linearizability, 51
linearization point, 51
load of a quorum system, 80
lock-free, 39
logical clock, 54

M-grid quorum system, 88
majority quorum system, 79
median validity, 27
mesh topology, 95
message loss model, 4
message passing model, 4
micropayment channel, 117
microservice architecture, 58
mining algorithm, 112
monotonic read consistency, 118
monotonic write consistency, 118
multisig output, 116

naive shared coin with a random bit-
string, 34

network time protocol, 63
node, 4
non-blocking, 39

object, 50
operation, 50

partition tolerance, 108
parts per million, 62
paxos algorithm, 10
paxos proposal, 11
physical time, 61
precision time protocol, 63
proof of work, 111
pseudonymous, 109

quiescent consistency, 52

quorum, 79
quorum system, 79

random bitstring, 34
randomized consensus algorithm, 20
read-your-write consistency, 118
real time, 61
refund transaction, 117
resilience of a quorum system, 83
runtime, 15

selfish mining, 121
selfish mining algorithm, 121
semantic equivalence, 51
sequential consistency, 51
sequential execution, 50
sequential locking strategy, 82
serializer, 6
setup transaction, 117
SHA256, 112
shared coin (crash-resilient), 43
shared coin (sync, byz), 46
shared coin algorithm, 23
shared coin using secret sharing, 45
shared coin with magic random oracle,

33
shuffle-exchange network, 97
signature, 44, 140
simple ethereum transaction, 124
singlesig output, 116
singleton quorum system, 79
skip list topology, 98
smart contract, 115, 123
smart contract creation ethereum

transaction, 124
smart contract execution ethereum

transaction, 125
span, 58
start time, 50
starvation-free, 39
state replication, 6
state replication with serializer, 6
strong logical clock, 54
synchronization, 63
synchronous distributed system, 27
synchronous runtime, 27

termination, 15
threshold secret sharing, 45
ticket, 7

154 INDEX

time standards, 65
timelock, 116
torus topology, 95
trace, 58
tracing, 59
transaction, 109
transaction algorithm, 110
transaction fee, 111
two-phase commit, 7
two-phase locking, 7
two-phase protocol, 6

univalent configuration, 16

validity, 15
variable message delay model, 5
vector clocks, 55

wait-free, 39
wall-clock time, 61
weak consistency, 118
work of a quorum system, 80

	Introduction to Distributed Systems
	Fault-Tolerance & Paxos
	Client/Server
	Paxos

	Consensus
	Two Friends
	Consensus
	Impossibility of Consensus
	Randomized Consensus
	Shared Coin

	Byzantine Agreement
	Validity
	How Many Byzantine Nodes?
	The King Algorithm
	Lower Bound on Number of Rounds
	Asynchronous Byzantine Agreement
	Random Oracle and Bitstring

	Broadcast & Shared Coins
	Shared Coin on a Blackboard
	Broadcast Abstractions
	Blackboard with Message Passing
	Using Cryptography

	Consistency & Logical Time
	Consistency Models
	Logical Clocks
	Consistent Snapshots
	Distributed Tracing

	Time, Clocks & GPS
	Time & Clocks
	Clock Synchronization
	Time Standards
	Clock Sources
	GPS
	Lower Bounds

	Quorum Systems
	Load and Work
	Grid Quorum Systems
	Fault Tolerance
	Byzantine Quorum Systems

	Distributed Storage
	Consistent Hashing
	Hypercubic Networks
	DHT & Churn

	Eventual Consistency & Bitcoin
	Consistency, Availability and Partitions
	Bitcoin
	Layer 2
	Weak Consistency

	Advanced Blockchain
	Selfish Mining
	Ethereum

	Game Theory
	Introduction
	Prisoner's Dilemma
	Selfish Caching
	Braess' Paradox
	Rock-Paper-Scissors
	Mechanism Design

	Authenticated Agreement
	Agreement with Authentication
	Practical Byzantine Fault Tolerance
	PBFT: Agreement Protocol
	PBFT: View Change Protocol

