
Chapter 3

Cryptography

In Chapter 2 we learned that some functions are really hard to compute. This
might seem like terrible news, but enables modern cryptography!

3.1 Perfect Encryption

We start with the oldest problem in cryptography: How can we send a secret
message?

Definition 3.1 (Perfect Security). An encryption algorithm has perfect secu-
rity, if the encrypted message reveals no information about the plaintext message
to an attacker, except for the possible maximum length of the message.

Remarks:

• If an encryption algorithm offers perfect security, any plaintext mes-
sage of the same length could have generated the given ciphertext.

• Sometimes perfect security is also called information-theoretic secu-
rity.

• Is there an algorithm that offers perfect security?

1 # m = plaintext message Alice wants to send to Bob

2 # k = random key known by Alice and Bob, with len(k) = len(m)

3 # c = ciphertext, the encrypted message m

4

5 def encrypt_otp_Alice(m, k)

6 Alice sends c = m⊕ k to Bob # ⊕ = XOR

7

8 def decrypt_otp_Bob(c, k)

9 Bob computes m′ = c⊕ k

Algorithm 3.2: One Time Pad

50



3.1. PERFECT ENCRYPTION 51

Remarks:

• In cryptography, it’s always Alice and Bob, with a possible attacker
Eve.

Theorem 3.3. Algorithm 3.2 is correct.

Proof. m′ = c⊕ k = (m⊕ k)⊕ k = m.

Theorem 3.4. Algorithm 3.2 has perfect security.

Proof. Given a ciphertext c, for every plaintext message m there exists a unique
key k that decrypts c to m, that is m = c ⊕ k. Therefore, if k is uniformly
random, every plaintext is equally likely and thus, ciphertext c reveals no infor-
mation about plaintext m.

Remarks:

• Algorithm 3.2 only works if the message m has the same length as the
key k. How can we encrypt a message of arbitrary length with a key
of fixed length?

• Block ciphers process messages of arbitrary length by breaking them
into fixed-size blocks and operating on each block.

1 # m, k, c as defined earlier, now with len(k) << len(m)

2

3 def encrypt_ECB(m, k)

4 Split m into r len(k)-sized blocks m1,m2, . . . ,mr

5 for i = 1, 2, 3, . . . , r:

6 ci = mi ⊕ k
7 c = c1; c2; . . . ; cr # ; stands for concatenation

8 return c

Algorithm 3.5: Electronic Code Book

Remarks:

• In Algorithm 3.5, blocks of the same plaintext result in the same → notebook

ciphertext, because the same key k is reused to encrypt every block.
Furthermore, reusing the same key reveals information about m1 and
m2: Suppose you have two messages m1,m2 encrypted with the same
key k, resulting in c1, c2. We now have c1⊕c2 = (m1⊕k)⊕(m2⊕k) =
m1 ⊕m2. So, reusing the same key k in Algorithm 3.2 is insecure.

• But there are better block based encryptions. CTR-AES (Advanced
Encryption Standard with Counter Mode of Operation) is the current
state of the art.

• For encryption, Alice and Bob need to agree on a key k first! While
this may be feasible for, e.g., secret agents, it is quite impractical for
everyday usage.

https://colab.research.google.com/drive/1i6us2Xl46qBy3sNj18TsuxDJ34oJ6xSA#scrollTo=KOjU0pt63RDd


52 CHAPTER 3. CRYPTOGRAPHY

3.2 Key Exchange

How to agree on a common secret key in public, if you never met before?

Definition 3.6 (Primitive Root). Let p ∈ N be a prime. Then g ∈ N is a → notebook

primitive root of p if the following holds: For every y ∈ N, with 1 ≤ y < p, there
is an x ∈ N such that gx = y mod p.

Remarks:

• An example for p = 19 with g = 2:

20
21

22

23

24

25

26

27

28
29

210

211

212

213

214

215

216

217

1 2
4

8

16

13

7

14
91817

15

11

3

6

12

5
10

y = 2x mod 19

→ notebook
1 # p = publicly known large prime number

2 # g = publicly known primitive root of p

3 def Diffie_Hellman_Alice():

4 Pick a random secret key a ∈ {1, 2, . . . , p− 1}
5 Send ka = ga mod p to Bob

6 Receive kb from Bob

7 Calculate k = (kb)
a mod p

8

9 def Diffie_Hellman_Bob():

10 # same as Alice, swapping all a, b.

Algorithm 3.7: Diffie-Hellman Key Exchange

Theorem 3.8. In Algorithm 3.7, Alice and Bob agree on the same key k.

https://colab.research.google.com/drive/1i6us2Xl46qBy3sNj18TsuxDJ34oJ6xSA#scrollTo=Fg9Eqe4EX2I1
https://colab.research.google.com/drive/1i6us2Xl46qBy3sNj18TsuxDJ34oJ6xSA#scrollTo=FzWIKsB9LBRb&line=6&uniqifier=1


3.2. KEY EXCHANGE 53

Proof. Everything mod p, we have

k = (kb)
a =

(
gb
)a

= gb·a = ga·b = (ga)
b

= (ka)b = k.

Actually, Alice receives
(
gb mod p

)
and computes

(
gb mod p

)a
mod p, how-

ever under modulo operations
(
gb mod p

)a
=
(
gb
)a

. In fact, all the following
operations are well-defined in the modulo operation:

(a+ b) mod p = ((a mod p) + (b mod p)) mod p

(a− b) mod p = ((a mod p)− (b mod p)) mod p

(a · b) mod p = ((a mod p) · (b mod p)) mod p

(ga mod p)
b

mod p = (ga)
b

mod p

Remarks:

• Algorithm 3.7 does not have perfect security, but instead only com-
putational security.

Definition 3.9 (Computational Security). An algorithm has computational se-
curity, if it is secure against any adversary with polynomial computational re-
sources.

Remarks:

• The definition of security differs from one cryptographic primitive to
another (e.g., encryption, signatures, etc.), but they are typically re-
duced to the difficulty of a computational problem.

• The computational security of Algorithm 3.7 is based on the difficulty
of the discrete logarithm.

Problem 3.10 (Discrete Logarithm or DL). Given a prime p ∈ N, a primitive
root g of p, and y ∈ N with 1 ≤ y < p, find an x ∈ N such that gx = y mod p.

Remarks:

• In Algorithm 3.7, an adversary overhears ga and gb and wants to learn
the secret key gab. But it is unknown whether the adversary actually
needs to know how to compute the discrete logarithm to extract the
key. Maybe there is another way. Therefore, the following (stronger)
assumption captures the security of the protocol better.

Problem 3.11 (Computational Diffie Hellman or CDH). Given a prime p ∈ N,
a primitive root g of p, and ga, gb ∈ N with 1 ≤ ga, gb < p, compute gab mod p.

Lemma 3.12. CDH ≤ DL.

Proof. We just compute the discrete logarithms of ga, gb and then compute
gab.



54 CHAPTER 3. CRYPTOGRAPHY

Remarks:

• The discrete logarithm (resp. computational Diffie-Hellman) assump-
tion states that it is infeasible to solve DL (CDH) with computation-
ally bounded resources.

• We have no proof that CDH (or DL) is hard, but there is also no
known efficient algorithm.

• It is not known whether the opposite direction (DL ≤ CDH) holds,
though in certain special cases it does.

• Conversely, modular exponentiation can be done in polynomial time → notebook

using repeated squaring.

• So far, we have assumed the adversary only listens on the communi-
cation channel. This is known as passive security.

• What about stronger adversaries?

Definition 3.13 (Man in the Middle Attack). A man in the middle attack is
defined as an adversary Eve deciphering or changing the messages between Alice
and Bob, while Alice and Bob believe they are communicating directly with each
other.

Theorem 3.14. The Diffie-Hellman Key Exchange from Algorithm 3.7 is vul-
nerable to a man in the middle attack.

Proof. Assume that Eve can intercept and relay all messages between Alice and
Bob. That alone does not make it a man in the middle attack, Eve needs to be
able to decipher or change messages without Alice or Bob noticing. Indeed, Eve
can emulate Alice’s and Bob’s behavior to each other, by picking her own a′, b′,
and then agreeing on common keys ga·b

′
, gb·a

′
with Alice and Bob, respectively.

Thus, Eve can relay all messages between Alice and Bob while deciphering
and (possibly) changing them, while Alice and Bob believe they are securely
communicating with each other.

Remarks:

• It is a bit like concurrently playing chess with two grandmasters: If
you play white and black respectively, you can essentially let them
play against each other by relaying their moves.

• How do we fix this? One idea is to personally meet in private first,
exchange a common secret key, and then use this key for secure com-
munication. However, having a key already completely defeats the
purpose of a key exchange algorithm.

• Can we do better? Yes, with public key cryptography.

https://colab.research.google.com/drive/1i6us2Xl46qBy3sNj18TsuxDJ34oJ6xSA#scrollTo=xuqF2CwMmExH


3.3. PUBLIC KEY CRYPTOGRAPHY 55

3.3 Public Key Cryptography

Definition 3.15 (Public Key Cryptography). A public key cryptography system
uses two keys per participant: A public key kp, to be disseminated to everyone,
and a secret (private) key ks, only known to the owner. A message encrypted
with the public key of the intended receiver can be decrypted only with the corre-
sponding secret key. Also, messages can be digitally signed; a message verifiable
with a public key must have been signed with the corresponding secret key.

Remarks:

• Popular public key cryptosystems include RSA, Elliptic Curve Cryp-
tography, etc.

• We study a public key cryptosystem based on the DL problem.

• In Diffie-Hellman Key Exchange algorithm (Algorithm 3.7), Alice picked
a secret number a and computed a public number ka = ga mod p
which Alice sent to Bob. We use the exact same idea in Algorithm
3.16 to generate a pair of public and secret keys (kp, ks).

1 # p, g as defined earlier

2

3 def generate_key():

4 Pick a random secret key ks ∈ {1, 2, . . . , p− 1}
5 kp = gks mod p

6 return kp, ks

Algorithm 3.16: Key Generation

3.4 Public Key Encryption

Public key or asymmetric encryption schemes allow users to send encrypted
messages directly.

Definition 3.17. A public key encryption scheme is a triple of algorithms:

• A key generation algorithm that outputs a public/secret key pair kp, ks.

• An encryption algorithm that outputs the encryption c of a message m
using the receiver’s public key kp.

• A decryption algorithm that outputs the message m using the secret key
ks.

1 # p, g,m, kp, ks as defined earlier

2



56 CHAPTER 3. CRYPTOGRAPHY

3 def encrypt(m, kp):

4 Pick a random nonce x ∈ {1, 2, . . . , p− 1}
5 c1 = gx mod p

6 c2 = m · kxp mod p

7 return c1, c2 # encryption c = (c1, c2)

8

9 def decrypt(c1, c2, ks):

10 m′ = c2 · cks·(p−2)1 mod p

11 return m′

Algorithm 3.18: ElGamal Encryption Algorithm

Theorem 3.19. ElGamal encryption scheme (Algorithms 3.16, 3.18) is correct.

Proof. Alice can recover the message: m′ = c2 ·cks·(p−2)1 =
(
m · kxp

)
·gx·ks·(p−2) =

m ·
(
kxp
)p−1

= m. The last step uses the following theorem.

Theorem 3.20 (Fermat’s Little Theorem). Let p be a prime number. Then,
for any x ∈ N: xp = x mod p. If x is not divisible by p, then xp−1 = 1 mod p.

Remarks:

• What about the security of ElGamal encryption? In the context of
public encryption schemes, we want that an adversary who listens in
the communication channel to not be able to extract the message m.

Problem 3.21 (Breaking-ElGamal-Encryption). Given (c1, c2) = (gx,m·gks·x)
and the public key kp = gks , compute the message m.

Remarks:

• The computational security of Algorithm 3.18 is based on the difficulty
of CDH.

Theorem 3.22. CDH ≤ Breaking-ElGamal-Encryption

Proof. Given (ga, gb), we create a problem instance for Breaking-ElGamal-
Encryption by setting c1 = ga, c2 a random value and kp = gb. From the
definition of the problem we can infer that c1 = gx = ga, kp = gks = gb and
thus c2 = m · gks·x = m · ga·b. We assume that we can break ElGamal, so we
know m. Now we simply compute mp−2 · c2 and we get

mp−2 · c2 = mp−2 ·m · ga·b = mp−1 · ga·b = ga·b.



3.4. PUBLIC KEY ENCRYPTION 57

Remarks:

• In other words, we have shown that CDH is “easier” than Breaking-
ElGamal-Encryption. As long as the CDH is hard, so is Breaking-
ElGamal-Encryption.

• The other direction (Breaking-ElGamal-Encryption ≤ CDH) holds as
well.

• However, there is a problem with reductions: An encryption scheme
that reveals 90% of the plaintext is still considered secure with a re-
duction approach, as long as the remaining 10% is hard to find. This
is clearly unacceptable. We want extracting even a single bit of infor-
mation to be difficult.

• Both CDH and DL assumptions are not enough to show this. The
decisional Diffie Hellman assumption is an even stronger assumption
that we rely on.

Problem 3.23 (Decisional Diffie-Hellman or DDH). Given a prime p ∈ N, a
primitive root g of p, and ga, gb, gc ∈ N with 1 ≤ ga, gb, gc < p, decide if c = a·b.

Remarks:

• Note that DDH ≤ CDH.

• How can we prove security of ElGamal based on the DDH assumption?

• The idea is to compare ElGamal to a perfectly secure scheme. We
have seen an example for perfect security (OTP) which uses XOR.
To make the protocols comparable, we now present another version of
OTP that uses modulo computation.

1 # p, g,m, kp, ks as defined earlier

2 # k = random key known by Alice and Bob (shared secret)

3

4 def encrypt_modulo_otp_Alice(m, k)

5 Pick a random nonce x ∈ {1, 2, . . . , p− 1}
6 c1 = gx mod p

7 c2 = m · k mod p

8 return c1, c2 # encryption c = (c1, c2)

9

10 def decrypt_modulo_otp_Bob(c1, c2, k)

11 Bob computes m′ = c2 · kp−2 mod p

Algorithm 3.24: Modulo-OTP

Theorem 3.25. Algorithm 3.24 is correct.

Proof. m′ = c2 · kp−2 = (m · k) · kp−2 = m · kp−1 = m.



58 CHAPTER 3. CRYPTOGRAPHY

Theorem 3.26. Algorithm 3.24 has perfect security.

Proof. Given a ciphertext c, for every plaintext message m there exists a unique
key k that decrypts c2 to m, that is m = c2 · kp−2. Therefore, if k is uniformly
random, every plaintext is equally likely and thus, ciphertext c2 reveals no
information about plaintext m.

Remarks:

• Note that the key c1 is not used at all for encryption and thus is
independent of the message. The sole reason why we have that is to
make a protocol very similar to ElGamal which we will use in the
following proof.

• The idea is to show that in presence of polynomially bounded adver-
saries ElGamal is just as hard as Modulo-OTP. Since Modulo-OTP is
impossible to crack, so is ElGamal (under DDH assumption).

Problem 3.27 (Distinguish(Modulo-OTP, ElGamal)). Given a protocol where
Alice sends an encrypted message to Bob, decide whether Alice and Bob are
using Modulo-OTP (Algorithm 3.24) or ElGamal (Algorithm 3.18).

Theorem 3.28. DDH ≤ Distinguish(Modulo-OTP, ElGamal)

Proof. Given ga, gb, gc, we create an instance for Distinguish(Modulo-OTP,
ElGamal), where we set ga = gks and gb = gr (both publicly known) and we
encrypt any message m with gc, i.e. c2 = gc · m. If gc = gab, then we have
the exact situation of ElGamal encryption, since there we encrypt by using
c2 = gks·r · m. If gab 6= gc, then we have the exaction situation of Modulo-
OTP encryption, where we can set k = gc since gc has no relation to public
information like ga and gb.

Remarks:

• ElGamal-Encryption has some other features, e.g., it is homomorphic.

Definition 3.29 (Homomorphic Encryption Schemes). An encryption scheme
is said to be homomorphic under an operation ∗ if E(m1∗m2) = E(m1)∗E(m2).

Remarks:

• In other words, we can directly compute with encrypted data!

• m1 ∗m2 and E(m1) ∗E(m2) indicates that ciphertexts and messages
can both be operated upon using the same operation. This depends on
the representation of ciphertexts, and is not always precisely defined.
In the case of ElGamal encryption’s homomorphism, we use entry-
wise vector multiplication to multiply ciphertexts: E(m1) · E(m2) =
(c11, c12) · (c21, c22).

Lemma 3.30. The ElGamal encryption scheme (Algorithms 3.16, 3.18) is ho-
momorphic under modular multiplication.



3.5. DIGITAL SIGNATURES 59

Proof. We refer the encryption of message m with public key kp, large prime p,
generator g, and a random nonce x as E(m) = (c1, c2) = (gx,m · kxp )

E(m1) · E(m2) = (gx1 ,m1 · kx1
p ) · (gx2 ,m2 · kx2

p )

= (gx1+x2 , (m1 ·m2)kx1+x2
p ) = E(m1 ·m2)

Remarks:

• Not every public encryption scheme is homomorphic under all op-
erations. If an encryption scheme is homomorphic only under some
operations, it’s called a partial homomorphic encryption scheme. For
example, we have:

– Modular multiplication: ElGamal cryptosystem, RSA cryptosys-
tem.

– Modular addition: Benaloh cryptosystem, Pallier cryptosystem.

– XOR operations: Goldwasser–Micali cryptosystem.

• There are fully homomorphic encryption schemes that support all pos-
sible functions, like Craig Gentry’s lattice-based cryptosystem.

• Homomorphic encryption is used in electronic voting schemes to sum
up encrypted votes.

3.5 Digital Signatures

Definition 3.31 (Digital Signature Scheme). A digital signature scheme is a
triple of algorithms:

• A key generation algorithm that outputs a public/secret key pair kp, ks.

• A signing algorithm that outputs a digital signature σ on message m using
a secret key ks.

• A verification algorithm that outputs True if the signature σ on the mes-
sage m is valid using the public key kp of the signer, and False otherwise.

Definition 3.32 (Correctness). A signature scheme is correct if the verification
algorithm on input σ,m, kp returns True only if σ is the output of the signing
algorithm on input m, ks.

Remarks:

• All algorithms (key generation, signing, and verification) should be
efficient, i.e., computable in polynomial time.

• Digital signatures offer authentication (the receiver can verify the ori-
gin of the message), integrity (the receiver can verify the message
has not been modified since it was signed), and non-repudiation (the
sender cannot falsely claim that they have not signed the message).

• Widely known signature schemes are ElGamal, Schnorr, and RSA.



60 CHAPTER 3. CRYPTOGRAPHY

1 # p, g,m as defined earlier

2 # h = cryptographic hash function like SHA256

3 # kp, ks = Alice's public/secret key pair

4 # s, r = the signature sent by Alice

5

6 def sign_Alice(m, ks):

7 Pick a random x ∈ {1, 2, . . . , p− 2}
8 r = gx mod p

9 s = x · h(m)− ks · r mod p− 1

10 return s, r # signature σ = (s, r)

11

12 def verify_Bob(m, s, r, kp):

13 return rh(m) == krp · gs mod p

Algorithm 3.33: ElGamal Digital Signatures

Remarks:

• The key generation algorithm for ElGamal signatures ElGamal en-
cryption scheme (Algorithm 3.16).

Theorem 3.34. The ElGamal digital signature scheme (Algorithms 3.16, 3.33)
is correct.

Proof. The algorithm is correct, meaning that a signature generated by (an
honest) Alice will always be accepted by Bob. That is because,

krp · gs = gks·r · gx·h(m)−ks·r = gks·r+x·h(m)−ks·r = gx·h(m) = rh(m) mod p.

Remarks:

• The random variable x in Line 7 is often called a nonce – a number
only used once.

• Writing mod p− 1 in Line 9 is not a typo. In the exponent, we always
compute modulo p − 1, since that will make sure that values larger
than p− 1 will be truncated (Theorem 3.20).

• The function h() in Line 9 is a so-called cryptographic hash function.
If we did not use h(), we had a problem:

Theorem 3.35. ElGamal signatures without cryptographic hash functions are
vulnerable to existential forgery.

Proof. Let s, r be a valid signature on message m. Then, (s′, r′) = (sr, r2) is → notebook

a valid signature on message m′ = rm/2 (as long as either m or r is even),
because

kr
′

p · gs
′

=
(
gks
)r2 · gs·r = gr

2·ks · gr·(x·m−r·ks) = gr
2·ks+r·x·m−r2·ks =

gr·x·m = (gx)
r·m

= r2r·m/2 =
(
r2
)r·m/2

= (r′)m
′

mod p.

https://colab.research.google.com/drive/1i6us2Xl46qBy3sNj18TsuxDJ34oJ6xSA#scrollTo=R_yu1Z02dVx9


3.6. CRYPTOGRAPHIC HASHING 61

Remarks:

• Existential forgery is the creation of at least one message-signature
pair (m, s), when m was never signed by Alice. Hashing the message
in the computation makes the inversion difficult.

• Craig Wright used Satoshi Nakamoto’s key in Bitcoin and signed a
random message attempting to impersonate the famous creator of
Bitcoin. However, when Wright was asked to sign “I am Satoshi”
he could not deliver!

• So what is a cryptographic hash function?

3.6 Cryptographic Hashing

Definition 3.36 (Cryptographic Hash Function). A cryptographic hash func-
tion is a function that maps data of arbitrary size to a bit array of a fixed size
(the hash value or hash). A cryptographic hash function is called one-way if it
is easy to compute but hard to invert and a cryptographic hash function is called
collision-resistant if it is difficult to find two different values that are mapped to
the same hash.

Remarks:

• A hash function is deterministic: the same message always results in
the same hash value.

• SHA2, SHA3 (Secure Hash Algorithm 2/3), RIPMED, and BLAKE
are some example families of cryptographic hash functions. SHA256
is a specific implementation of the SHA2 construction which outputs
a 256 bit output for arbitrary sized inputs. Earlier constructions like
MD5 or SHA1 are considered broken/weak now.

• One-way and collision-resistance properties can be phrased as compu-
tational problems.

Problem 3.37 (Collision). Find two different values x and x′ such that h(x) =
h(x′).

Problem 3.38 (Inversion). Given a value y, find a value x such that h(x) = y.

Lemma 3.39. Collision ≤ Inversion.

Proof. Let us choose some random value x and compute h(x). If we invert
h(x), it is highly likely we get a value x′ such that x′ 6= x (collision), since hash
functions maps data of arbitrary size to fixed-size values, and hence there many
potential inputs.

Lemma 3.40. Existence of one-way functions ⇒ P 6= NP.

Proof. Suppose there exists a function h that is one-way. We define a decision
problem (Definition 2.2) as follows: Given an input (x̄, y), decide whether there
is a input x such that h(x) = y with x̄ being a prefix of x. This decision



62 CHAPTER 3. CRYPTOGRAPHY

problem is in NP: Given (x̄, y) as input and x as possible solution, one can
check in polynomial time that h(x) = y.

If the decision problem was in P, we could invert h one bit at a time. We
start by checking whether (0, y) or (1, y) is true. Whichever is true determines
the initial prefix x̄. We continue to adding a bit to x̄ such that the decision
with that added bit continues to be true. This way we construct all bits of x.
But since we assumed that h was one-way, the decision problem is not in P. We
have now a decision problem that is in NP but not in P and thus P 6= NP.

Remarks:

• Since we do not know P 6= NP, we even less know whether one-way
functions exist. But that does not keep us from using them.

• What about the security of digital signatures? In the context of digital
signatures, only the owner of the secret key should be able to produce
valid signatures.

Problem 3.41 (Forging ElGamal-Signatures). For a given digital signature
scheme, produce a valid message-signature pair without having access to the
secret key.

Remarks:

• The computational security of Algorithm 3.33 is based on the difficulty
of inverting one-way functions and computing the discrete logarithm.
Intuitively, to forge a signature, a malicious Bob can either find a
collision in the hash function, h(m) = h(m′) mod p − 1, or extract
Alice’s secret key ks. Therefore, Bob must either solve Collision or DL.
Both problems are assumed to be hard. However, there is no proof
that these are the only ways of forging ElGamal digital signatures.

Conjecture 3.42. (Collision or DL) ≤ Forging-ElGamal-Signatures

Remarks:

• Note that Alice must choose a different x for each signature, keeping
x secret. Otherwise, security can be compromised. In particular, if
Alice uses the same nonce x and secret key ks to sign two different
messages, Bob can compute ks.

• Similarly to digital signatures, message authentication codes are used
to ensure a message received by Bob is indeed sent by Alice.

Definition 3.43 (Message Authentication Code or MAC). A message authen-
tication code is a bitstring that accompanies a message. It can be used to verify
the authenticity of the ciphertext in combination with a secret authentication
key ka (different from k) shared by the two parties.



3.7. PUBLIC KEY INFRASTRUCTURE 63

Remarks:

• Eve should not be able to change the encrypted message and/or the
MAC, and get Bob to believe that Alice sent the encrypted message.

• MACs are symmetric, i.e., they are generated and verified using the
same secret key.

• Algorithm 3.44 shows a hash based MAC construction.

1 # m, kp, c as defined earlier

2 # ka = key to authenticate c

3

4 def encrypt_then_MAC(m, kp, ka):

5 c = encrypt(m, kp)

6 a = h(ka; c)

7 return c, a

Algorithm 3.44: Hash Based Message Authentication Code

Remarks:

• Bob accepts a message c only if he calculates h(ka; c) = a.

• With some hash functions (e.g., SHA2), it is easy to append data to
the message and obtain another valid MAC without knowing the key.
To avoid these attacks, in practice we use h(ka;h(ka; c)).

• Now Alice and Bob can securely communicate over the insecure com-
munication channels of the internet, due to the known public keys.

• But how does Bob know that Alice’s public key really belongs to
Alice? What if it is really Eve’s key? Quoting Peter Steiner: “On the
Internet, nobody knows you’re a dog.”

3.7 Public Key Infrastructure

“Love all, trust a few.” – William Shakespeare

What can we do, unless we personally meet with everyone to exchange our
public keys? The answer is trusting a few, in order to trust many.

Remarks:

• Let’s say that you don’t know Alice, but both Alice and you know
Doris. If you trust Doris, then Doris can verify Alice’s public key for
you. In the future, you can ask Alice to vouch for her friends as well,
etc.



64 CHAPTER 3. CRYPTOGRAPHY

• Trust is not limited to real persons though, especially since Alice and
Doris are represented by their keys. How do you know that you give
your credit card information to a shopping website, and not an at-
tacker? You probably don’t know the owner of the shopping website
personally.

Definition 3.45 (Public Key Infrastructure or PKI). Public Key Infrastructure
(PKI) binds public keys with respective identities of entities, like people and
organizations. People and companies can register themselves with a certificate
authority.

Definition 3.46 (Certificate Authority or CA). A certificate authority is an
entity whose public key is stored in your hardware device, operating system, or
browser by the respective vendor like Apple, Google, Microsoft, Mozilla, Ubuntu,
etc.

Remarks:

• A certificate is an assertion that a known real world person, with a
physical postal address, a URL, etc. is represented by a given public
key, and has access to the corresponding secret key.

• You can accept a public key if a certificate to that effect is signed by
a CA whose public key is stored in your device.

• CA’s whose public keys are stored in your device are also called root
CA’s. Sometimes, there are intermediate CA’s whose certificates are
signed by root CA’s, and who can sign many other end-user certifi-
cates. This enables scaling, but also introduces vulnerabilities.

• If a CA’s secret key is compromised by a malicious actor, they can
sign themselves a certificate saying that they are someone else (say,
Google), and then impersonate Google to innocent browsers which
trust this CA. A CA’s key can be revoked if this happens, or CA’s
keys can have shorter expiry times.

• Another problem is that your own set of root certificates might be
compromised, e.g., if malicious software replaces your browser’s root
certificates with fakes.

3.8 Transport Layer Security

To communicate securely over the internet, we simply combine the crypto-
graphic primitives we learned so far!

Remarks:

• Alice and Bob don’t want Eve to be able to read their messages.
Therefore, they encrypt their messages using block based encryption
(Section 3.1).

• For the encryption algorithm, they need to agree on a secret key using
a key exchange protocol (Section 3.2).



3.9. ZERO-KNOWLEDGE PROOFS 65

• When Alice receives a message, how can she be sure that the message
hasn’t been modified on the way from Bob to her? Alice and Bob
use message authentication (Section 3.5) to ensure integrity of the
communication.

• Let’s assume that Alice hasn’t met Bob in person before. How can
she be sure that she is really communicating with Bob and not with
Eve? She would ask Bob to authenticate himself (Sections 3.5, 3.7).

Protocol 3.47 (Transport Layer Security, TLS). TLS is a network protocol
in which a client and a server exchange information in order to communicate
in a secure way. Common features include a bulk encryption algorithm, a key
exchange protocol, a message authentication algorithm, and lastly, the authen-
tication of the server to the client.

Remarks:

• TLS is the successor of Secure Sockets Layer (SSL).

• HTTPS (Hypertext Transfer Protocol Secure) is not a protocol on its
own, but rather denotes the usage of HTTP via TLS or SSL.

• What other problems can we solve using crypto? The answer is sur-
prisingly many! In the next sections we will discuss some of the most
exciting cryptographic primitives beyond TLS.

3.9 Zero-Knowledge Proofs

Problem 3.48 (Waldo). Peggy and Vic play Where’s Waldo. Can Peggy prove
she found Waldo without revealing Waldo’s location to Vic?

Remarks:

• In the physical world, Peggy can cover the picture with a large piece of
cardboard that has a small, Waldo-shaped hole in its center. She can
then place the cardboard such that only Waldo is visible through the
hole and therefore prove to Vic she has found Waldo without revealing
any information regarding Waldo’s location.

• In Zero-Knowledge Proofs (ZKP), the prover, Peggy, wants to con-
vince the verifier, Vic, of the knowledge of a secret without revealing
any information about the secret to Vic.

Definition 3.49 (Zero-Knowledge Proof). A pair of probabilistic polynomial
time interactive programs P, V is a zero-knowledge proof if the the following
properties are satisfied:

• Completeness: If the statement is true, then an honest verifier V will
be convinced by an honest prover P .

• Soundness: If the statement is false, a cheating prover P cannot convince
the honest verifier V that it is true, except with negligible probability.

• Zero-knowledge: If the statement is true, a verifier V learns nothing
beyond the statement being true.



66 CHAPTER 3. CRYPTOGRAPHY

Remarks:

• Soundness concerns the security of the verifier, and zero-knowledge
the security of the prover.

Problem 3.50 (Color-Blind). Vic has two spheres: one red and one blue. Vic
is color-blind and thus he cannot differentiate between these two spheres; they
look exactly the same to him. Peggy, on the other hand, is not color-blind and
wants to prove to Vic that she can differentiate between these two spheres. How
can she do this?

Remarks:

• Peggy wants to convince Vic in zero-knowledge, meaning that she
wants to give Vic absolutely no additional information except the fact
that she can differentiate these two spheres. For example, she does
not want Vic to know which sphere is red and which one is blue.

1 # n = security parameter

2 def ColorBlind(n):

3 repeat n times:

4 Vic takes the spheres behind his back

5 Vic either switches the spheres or not

6 Vic shows the spheres to Peggy

7 Peggy answers whether Vic switched the spheres or not

Algorithm 3.51: Color-blind

Theorem 3.52. Algorithm 3.51 is complete.

Proof. If Peggy knows how to differentiate the spheres (i.e. if she is not color-
blind) and Vic behaves according to the protocol, Peggy can always tell whether
Vic switched the spheres or not.

Theorem 3.53. Algorithm 3.51 is sound.

Proof. If Peggy cannot differentiate the colors, then she has only 50% of guessing
correctly whether Vic switched the spheres or not. In such a case, Peggy is
caught with a probability 1/2, and the probability that she survives n rounds
of the protocol undetected is negligible (2−n).

Remarks:

• The main intuition is that Peggy’s answers do not reveal anything
about the spheres. In each round, Peggy simply answers whether the
spheres are switched or not, and none of these answers tell which
one is red and which one is blue. It seems that this proves that our
protocol is zero-knowledge, but we need to be careful, zero-knowledge
is a strong attribute. In particular, zero-knowledge demands that Vic
cannot convince a third party that Peggy can see the colors. Does our
protocol fulfill this requirement?



3.9. ZERO-KNOWLEDGE PROOFS 67

• Say Vic records the whole interaction with Peggy as a movie and shows
the recording to you. Will you be convinced that Peggy can see color?

Theorem 3.54. Vic cannot convince a third party that Peggy can distinguish
colors.

Proof. Vic and Peggy can create the same movie even if Peggy is color-blind. Vic
and Peggy can first decide in what order to switch the spheres. After they have
agreed to the order, they start recording the movie. A third party seeing the
movie can never tell whether it was a recording, where Peggy can see color and
was genuinely proving to Vic that she could distinguish the colors, or whether
Peggy is color-blind and they agreed on the order beforehand.

Remarks:

• However, zero knowledge is an even stronger attribute. In particular,
zero knowledge requires that no information leaks during the protocol.

Theorem 3.55. Algorithm 3.51 is not zero-knowledge.

Proof. Consider a malicious Vic who has not 2 but 4 spheres: One red and one
blue (as before), plus a second set of spheres: Red and Blue. These upper-case
spheres look exactly the same as the lower-case spheres, but Vic knows their
color, because somebody told him. In the first round Vic shows the red and blue
spheres, just as in the normal protocol. In the second round however, Vic shows
the Red and Blue spheres. Now Peggy’s answer (switched or not) will directly
reveal the color of the original (lower-case) spheres to Vic. So the protocol was
not zero-knowledge.

Remarks:

• An example of a ZKP is Hamiltonian Cycle (HC), see Problem 2.68.
HC is particularly interesting because HC is NP-complete. This means
that a ZKP for HC can thus be used as a ZKP for every problem in
NP.

1 # n = security parameter

2 # G = large graph

3 def ZKP_HamiltonianCycle(G):

4 repeat n times:

5 Peggy creates graph H = permutation of G

6 Peggy hides each entry of H

7 Vic tosses a coin c = [perm, cyc]

8 if c == perm:

9 Peggy opens H and gives the permutation

10 Vic verifies that it is the original graph G

11 elif c == cyc:

12 Peggy opens only the entries of the cycle

13 Vic verifies it is a cycle



68 CHAPTER 3. CRYPTOGRAPHY

Algorithm 3.56: Hamiltonian Cycle ZKP

Remarks:

• A permutation H of G is the same graph, but we only permute the
names of the nodes of G.

• If c = cyc, the prover should be able to open only the cycle. This can
be done, for example, by using a matrix representation of graphs as
illustrated in Figure 3.59.

Theorem 3.57. Algorithm 3.56 is complete.

Proof. If Peggy knows the cycle in G, she can satisfy Vic’s demand in both
cases. In case c = perm, Peggy opens the whole matrix and also returns the
renaming of G’s nodes in H. In case c = cyc, Peggy can easily construct and
return a cycle in H by applying the permutation in the original cycle in G.

Theorem 3.58. Algorithm 3.56 is sound.

Proof. If someone knew how to answer both questions, then they can construct
the cycle: Take the cycle in H and do the reverse permutation to get the cycle
in G.

If Peggy does not know the cycle, the previous argument implies that she
can only answer one of these questions. In such a case, Peggy is caught with
probability 1/2, and the probability that she survives n rounds of the protocol
undetected is negligible (2−n).

Remarks:

• The exact math is a bit tricky and the probability is not precisely 1/2
since there is a (small) chance that Peggy might guess randomly a cor-
rect cycle. Formalizing soundness in this example is usually difficult,
and out of the scope of this lecture.



3.9. ZERO-KNOWLEDGE PROOFS 69

x1

x2

x6

x3

x4

x5

x3

x5

x4

x1

x6

x2

0 1 0 0 0 0

0 0 1 1 0 0

0 0 0 1 1 1

0 0 0 0 1 0

0 0 0 1 0 1

1 1 0 0 0 0





0 1 0 1 0 1

0 0 0 1 0 1

0 0 0 0 1 0

0 0 1 0 1 0

1 0 0 0 0 1

0 1 0 0 0 0





� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �





0 1 0 1 0 1

0 0 0 1 0 1

0 0 0 0 1 0

0 0 1 0 1 0

1 0 0 0 0 1

0 1 0 0 0 0





revert

x1 ←− x3
x2 ←− x5
x3 ←− x1
x4 ←− x6
x5 ←− x2
x6 ←− x4

� � � � � 1

� � � 1 � �
� � � � 1 �
� � 1 � � �
1 � � � � �
� 1 � � � �





permute

x1 −→ x3
x2 −→ x5
x3 −→ x1
x4 −→ x6
x5 −→ x2
x6 −→ x4

hide the values

c = perm c = cyc

Figure 3.59: An illustration of the ZKP for Hamiltonian Cycle

Remarks:

• What about the zero-knowledge property? The main intuition is that
Peggy’s answers do not reveal the original cycle in G. In each round,
if the challenge is c = perm Vic only sees a permutation of G. On the
other hand, if the challenge is c = cyc, Vic sees that there is a cycle in
the hidden graph. However, for all we know, the hidden matrix could
be filled all with ones. So in both cases, zero information about the
cycle is revealed. As explained in Theorem 3.55, such an argument is
not enough.



70 CHAPTER 3. CRYPTOGRAPHY

• Say Vic records the whole interaction with Peggy as a movie and shows
the recording to a third party. Will the third party be convinced that
Peggy knows the cycle?

Theorem 3.60. Vic cannot convince a third party that Peggy knows a cycle.

Proof. Even if Peggy does not know the cycle, Peggy and Vic can create the same
movie by agreeing on the order of the challenges beforehand. If the challenge
is to open the permutation, Peggy hides a random permutation of the graph.
This way she can easily answer the challenge c = perm. If the challenge is to
open a cycle, Peggy hides a matrix that contains only ones. This way, Peggy
can also easily open a random cycle. Similar to the color-blind example, a third
party can never tell whether it is a genuine recording or the one where Peggy
and Vic decided on the order beforehand.

Remarks:

• We have seen that our color-blind example also fulfilled this condition
and yet it wasn’t zero-knowledge. How can we prove that this protocol
is zero-knowledge? Remember that zero-knowledge is an even stronger
attribute. It requires that absolutely no information leaks.

• One can formally prove that Algorithm 3.56 is zero-knowledge. How-
ever, formally proving zero-knowledge is usually difficult and beyond
the scope of this lecture.

• But how can we hide the entries of a matrix? We can use commitment
schemes.

3.10 Commitment Schemes

Commitment schemes are the digital analogue of a safe.

Definition 3.61 (Commitment Scheme). A commitment scheme is a two-phase
interactive protocol between Alice, the sender, and Bob, the receiver.

• Commit phase: Alice commits to a message m by producing a public
commitment c and a secret decommitment d. Alice sends c to Bob.

• Reveal phase: Alice sends m and d to Bob. Bob verifies that the message
m corresponds to the commitment c.

A commitment scheme must be correct, binding and hiding.

• Correctness: If both Alice and Bob follow the protocol, then Bob always
returns True in the reveal phase.

• Hiding: A commitment scheme is hiding if Bob cannot extract any in-
formation about the committed message before the reveal phase.

• Binding: A commitment scheme is binding if Alice cannot change her
commitment after the commit phase.



3.10. COMMITMENT SCHEMES 71

Remarks:

• Is there a simple way to create a commitment scheme? How about
using hash functions?

1 # m,h as defined earlier

2 # n = security parameter

3

4 def commit_Alice(m):

5 Pick a random n-bit string r

6 Send c = h(r;m) to Bob

7

8 def reveal_Bob(c,m, r): # Bob receives m, r from Alice

9 return c == h(r;m)

Algorithm 3.62: A Simple Commitment

Theorem 3.63. Any cryptographic hash function can produce a (computation-
ally binding and computationally hiding) commitment scheme.

Proof. Assume Alice committed to a value m by sending h(r,m).

• Computationally binding: To change her commitment, Alice needs to find
a collision (i.e. an r′,m′) such that h(r′;m′) = h(r;m). This is hard for a
computationally bounded Alice.

• Computationally hiding: The main idea is that for Bob to find what is
the committed value, he needs to invert the given hash function. This
is hard for a computationally bounded Bob. However, this procedure is
only heuristically secure. In order to be provably safe, the selected hash
function must have special properties.

Remarks:

• The protocol is only heuristically computationally hiding, since one
might be able to still get partial information about the message. For
example, one might learn that the committed value is an odd number.
The hash function would still be hard to invert, but the committed
value is not hidden anymore.

• One might also think that this scheme is perfectly hiding, since there
are infinitely many values that could be committed. We then deduce
that even if Bob has unlimited computational power he cannot find the
committed value. This is not the case, because we have not specified
how the hash function looks like. For example, it might happen that
for a particular value there is no collision, and thus Bob with unlimited
computational power would be able to find the committed value.



72 CHAPTER 3. CRYPTOGRAPHY

• What if Alice or/and Bob are computationally unbounded?

1 # p, g,m, n as defined earlier

2 # y = a random value in {1, 2, . . . , p− 1}
3 # x with y = gx mod p is unknown

4

5 def commit_Alice(m):

6 Pick a random r ∈ {1, 2, . . . , p− 1}
7 c = gm · yr mod p

8 Send c to Bob

9

10 def reveal_Bob(m, c, r): # Bob receives m, c, r from Alice

11 return c == gm · yr mod p

Algorithm 3.64: Pedersen Commitment

Theorem 3.65. Pedersen commitments are correct.

Proof. Given m, c, r, y, Bob can verify c = gm · yr mod p. Thus, the Pedersen
commitment scheme is correct.

Theorem 3.66. Pedersen commitments are perfectly hiding.

Proof. Given a commitment c, every message m is equally likely to be the
committed message to c. That is because given m, r and any m′, there exists
(a unique) r′ such that gm · yr = gm

′ · yr′ mod p. With y = gx mod p (such a
value x always exists since g is a primitive root), we just have to solve the linear
equation m′ + x · r′ = m+ x · r mod p− 1.

Theorem 3.67. Pedersen commitments are computationally binding.

Proof. We show that DL ≤ ChangingCommitment, where ChangingCommit-
ment is defined as the problem where Alice needs to find different values m′, r′

that have the same commitment c = gm · yr (i.e. gm · yr = gm
′ · yr′).

Given g, y = gx our goal is to find x. We create an instance for ChangingCom-
mitment by first choosing any m, r and commit to c = gm · yr. We assume
we can solve ChangingCommitment and thus Alice can find m′, r′ such that
gm ·yr = gm

′ ·yr′ . The previous equation can also be written as gm−m
′

= yr
′−r.

We can now compute x = (m−m′) · (r′ − r)p−3 mod p− 1, because

gx = g(m−m
′)·(r′−r)p−3

=
(
g(m−m

′)
)(r′−r)p−3

= y(r
′−r)·(r′−r)p−3

= y(r
′−r)p−2

= y(r
′−r)p−2 mod p−1 = y.

The last step assumes that p − 1 is prime and thus we can apply Fermat’s
Theorem. In practice, the group used always has a size that is a prime.



3.11. THRESHOLD SECRET SHARING 73

Remarks:

• The proof above is oversimplified. Note that if p is prime, then p− 1
cannot be prime. And we need both to be prime! In practice, people
choose a group with a size q = (p − 1)/2 (example p = 23, q = 11).
Instead of using all numbers from 1 to p − 1, we choose a subgroup
that again has prime order. Then, we have mod p in the base, and
mod q in the exponent. This way even in the exponent we can apply
Fermat’s little theorem.

• If Alice sends both c, r as a commitment to Bob, Pedersen commit-
ments can be perfectly binding and computationally hiding.

• But why compromise at all? Ideally, we want both: perfectly hiding
and perfectly binding.

Theorem 3.68. A commitment scheme can either be perfectly binding or per-
fectly hiding but not both.

Proof. Assume a commitment scheme is perfectly binding. Then Alice cannot
change her commitment and open another value, even if she is computationally
unbounded. This can be the case if and only if there is only a unique value
m that can be committed to c. But this means that for a computationally
unbounded Bob, he can simply generate all possible commitments and find the
value m. Thus the commitment scheme is not perfectly hiding.

Remarks:

• Commitment schemes have important applications in several cryp-
tographic protocols, such as zero-knowledge proofs, and multiparty
computation.

3.11 Threshold Secret Sharing

How does a company share its vault passcode among its board of directors so
that at least half of them have to agree to opening the vault?

Definition 3.69 (Threshold Secret Sharing). Let t, n ∈ N with 1 ≤ t ≤ n. An
algorithm that distributes a secret among n participants such that t participants
need to collaborate to recover the secret is called a (t,n)-threshold secret sharing
scheme.

→ notebook
1 # s = secret real number to be shared

2 # t = threshold number of participants to recover the secret

3 # n = total number of participants

4

5 def distribute(s, t, n):

6 Generate t− 1 random a1, . . . , at−1 ∈ R
7 Obtain a polynomial f(x) = s+ a1x+ . . .+ at−1x

t−1

https://colab.research.google.com/drive/1i6us2Xl46qBy3sNj18TsuxDJ34oJ6xSA#scrollTo=uNWTiDmLAhMQ


74 CHAPTER 3. CRYPTOGRAPHY

8 Generate n distinct x1, . . . , xn ∈ R \ {0}
9 Send (xi, f(xi)) to participant Pi

10

11 def recover(x = [x0, x1, . . . , xt], y = [f(x0), f(x1), . . . , f(xt)]):

12 f = lagrange(x, y)

13 return f(0)

Algorithm 3.70: Shamir’s (t, n) Secret Sharing Scheme

Theorem 3.71. Algorithm 3.70 is correct.

Proof. Any t shares will result in the reconstruction of the same polynomial,
hence the secret will be revealed.

Theorem 3.72. Algorithm 3.70 has perfect security.

Proof. A polynomial of degree t−1 can be defined only by t or more points. So,
any subset t−1 of the n shares cannot reconstruct a polynomial of degree t−1.
Given less than t shares, all polynomials of degree t− 1 are equally likely; thus
any adversary, even with unbounded computational resources, cannot deduce
any information about the secret if they have less than t shares.

Remarks:

• Note that for numerical reasons, in practice modulo p arithmetic is → notebook

used instead of real numbers.

• What happens if a participant is malicious? Suppose during recov-
ery, one of the t contributing participants publishes a wrong share
(x′i, f(x′i)). The t− 1 honest participants are blocked from the secret
while the malicious participant is able to reconstruct it. To prevent
this, we employ verifiable secret sharing schemes.

Definition 3.73 (Verifiable Secret Sharing or VSS). An algorithm that achieves
threshold secret sharing and ensures that the secret can be reconstructed even if
a participant is malicious is called verifiable secret sharing.

Remarks:

• Typically, a secret sharing scheme is verifiable if auxiliary information
is included that allows participants to verify their shares as consistent.

• VSS protocols guarantee the secret’s reconstruction even if the dis-
tributor of the secret (the dealer) is malicious.

• So far, we assumed a dealer knows the secret and all the shares. How-
ever, we want to avoid trusted third parties and distribute trust. A
strong cryptographic notion towards this direction is multiparty com-
putation.

https://colab.research.google.com/drive/1i6us2Xl46qBy3sNj18TsuxDJ34oJ6xSA#scrollTo=uNWTiDmLAhMQ


3.12. MULTIPARTY COMPUTATION 75

3.12 Multiparty Computation

Alice, Bob, and Carol are interested in computing the sum of their income
without revealing to each other their individual income.

1 # a, b, c = Alice's, Bob's and Carol's income

2

3 def Sum_MPC():

4 Alice picks a large random number r

5 Alice sends to Bob m1 = a+ r

6 Bob sends to Carol m2 = b+m1

7 Carol sends to Alice m3 = c+m2

8 Alice computes s = m3 − r
9 Alice shares s with Bob and Carol

Algorithm 3.74: Computation of the Sum of 3 Parties’ Income

Theorem 3.75. Algorithm 3.74 is correct, meaning the output is the desired
sum.

Proof. The output of the algorithm is m3 − r = c+m2 − r = c+ b+m1 − r =
c+ b+ a+ r − r = a+ b+ c.

Theorem 3.76. Algorithm 3.74 keeps the inputs secret.

Proof. Bob receives r + a, hence no information is revealed concerning Alice’s
income as long as r is large enough. In addition, both Carol and Alice cannot
deduce any information about the individual incomes as they are obfuscated.

Remarks:

• Algorithm 3.74 is an example of secure 3-party computation.

• The generalization of this problem to multiple parties is known as
multiparty computation.

Definition 3.77 (Multiparty Computation or MPC). An algorithm that al-
lows n parties to jointly compute a function f(x1, x2, . . . , xn) over their inputs
x1, x2, . . . , xn while keeping these inputs secret achieves secure multiparty com-
putation.

Remarks:

• Formal security proofs in MPC protocols are conducted in the re-
al/ideal world paradigm.

Definition 3.78. The real/ideal world paradigm states two worlds: In the ideal
world, there is an incorruptible trusted third party who gathers the participants’
inputs, computes the function, and returns the appropriate outputs. In contrast,
in the real world, the parties exchange messages with each other. A protocol is
secure if one can learn no more about each participant’s private inputs in the
real world than one could learn in the ideal world.



76 CHAPTER 3. CRYPTOGRAPHY

Remarks:

• In Algorithm 3.74, we assume all participants are honest. But what
if some participants are malicious?

• In MPC, the computation is often based on secret sharing of all the
inputs and zero-knowledge proofs for a potentially malicious partici-
pant. Then, the majority of honest parties can assure that bad be-
havior is detected and the computation continues with the dishonest
party eliminated or her input revealed.

Chapter Notes

In 1974, Ralph Merkle designed Merkle Puzzles [15], the first key exchange
scheme which works over an insecure channel. In Merkle Puzzles, the eaves-
dropper Eve’s computation power can be at most quadric to Alice’s and Bob’s
computational power. This quadratic difference is not enough to guarantee
security in practical cryptographic applications. In 1976, Diffie and Hellman in-
troduced a practically secure key exchange scheme over an insecure channel [6].

Diffie Hellman key exchange [6], Schnorr zero-knowledge proofs [19], ElGa-
mal signature and encryption schemes [7] all rely on the hardness of the discrete
logarithm problem [3]. So far we have been conveniently vague in our choice
of a group, but the discrete logarithm problem is solvable in polynomial-time
when we choose an inappropriate group. To avoid this, we can select a group
that contains a large subgroup. For example, if p = 2q+ 1 and q is prime, there
is a subgroup of size q, called the quadratic residues of p, which is often used in
practice.

Another frequently employed hard problem is integer factorization [12]. The
RSA cryptosystem [18], developed in 1977 at MIT by Ron Rivest, Adi Shamir,
and Leonard Adleman, depends on integer factorization. RSA was also the first
public-key encryption scheme that could both encrypt and sign messages.

A trapdoor one-way function is a function that is easy to compute, difficult
to invert without the trapdoor (some extra information), and easy to invert with
a trapdoor [6, 25]. The factorization of a product of two large primes, used in
RSA, is a trapdoor function. While selecting and verifying two large primes and
multiplying them is easy, factoring the resulting product is (as far as known)
difficult. However, if one of the prime numbers is given as a trapdoor, then
it is easy to compute the other prime number. There are no known trapdoor
one-way functions based on the difficulty of discrete logarithms (either modulo
a prime or in a group defined over an elliptic curve), because there is no known
“trapdoor” information about the group that enables the efficient computation
of discrete logarithms. In general, a digital signature scheme can be built by
any trapdoor one-way function in the random oracle model [14].

A random oracle [1] is a function that produces a random output for each
query it receives. It must be consistent with its replies: if a query is repeated, the
random oracle must return the same answer. Hash functions are often modeled
in cryptographic proofs as random oracles. If a scheme is secure assuming the
adversary views some hash function as a random oracle, it is said to be secure
in the random oracle model.



BIBLIOGRAPHY 77

Secure digital signature schemes are unforgeable. There are several versions
of unforgeability. For instance, Schnorr signatures, a modification of ElGamal
signatures, are existentially unforgeable against adaptively chosen message at-
tacks (EUF-CMA) [20]. In the adaptively chosen message attack, the adversary
wants to forge a signature for a particular public key (without access to the
corresponding secret key) and has access to a signing oracle, which receives
messages and returns valid signatures under the public key in question. The
proof that Schnorr digital signatures are EUF-CMA is based on the proof that
the Schnorr zero-knowledge proof is sound.

Zero-knowledge proofs are a complex cryptographic primitive; formally defin-
ing zero-knowledge proofs was a delicate task that took 15 years of research [2,
10]. One key application for zero-knowledge proofs is in user identification
schemes. Another recent one is in cryptocurrencies, such as Monero [23].

The concept of information-theoretically secure communication was intro-
duced in 1949 by American mathematician Claude Shannon, the inventor of
information theory, who used it to prove that the one-time pad system was se-
cure [22]. Secret sharing schemes are information theoretically secure. Verifiable
secret sharing was first introduced in 1985 by Benny Chor, Shafi Goldwasser,
Silvio Micali and Baruch Awerbuch [5]. Thereafter, Feldman introduced a prac-
tical verifiable secret sharing protocol [9] which is based on Shamir’s secret
sharing scheme [21] combined with a homomorphic encryption scheme. Veri-
fiable secret sharing is important for secure multiparty computation to handle
active adversaries.

Multiparty computation (MPC) was formally introduced as secure two-party
computation (2PC) in 1982 for the so-called Millionaires’ Problem, a specific
problem which is a Boolean predicate, and in general, for any feasible com-
putation, in 1986 by Andrew Yao [24, 26]. MPC protocols often employ a
cryptographic primitive called oblivious transfer.

An oblivious transfer protocol, originally introduced by Rabin in 1981 [17],
allows a sender to transfer one of potentially many pieces of information to a
receiver, while remaining oblivious as to what piece of information (if any) has
been transferred. Oblivious transfer is complete for MPC [11], that is, given
an implementation of oblivious transfer it is possible to securely evaluate any
polynomial time computable function without any additional primitive! An “1-
out-of-n” oblivious transfer protocol [8, 16, 13] is a generalization of oblivious
transfer where a receiver gets exactly one database element without the server
(sender) getting to know which element was queried, and without the receiver
knowing anything about the other elements that were not retrieved. A weaker
version of “1-out-of-n” oblivious transfer, where only the sender should not know
which element was retrieved, is known as Private Information Retrieval [4].

This chapter was written in collaboration with Zeta Avarikioti, Klaus-Tycho
Foerster, Ard Kastrati and Tejaswi Nadahalli.

Bibliography

[1] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In Proceedings of the 1st ACM
conference on Computer and communications security, pages 62–73, 1993.



78 BIBLIOGRAPHY

[2] Manuel Blum, Alfredo De Santis, Silvio Micali, and Giuseppe Persiano.
Noninteractive zero-knowledge. SIAM Journal on Computing, 20(6):1084–
1118, 1991.

[3] Dan Boneh. The decision diffie-hellman problem. In International Algo-
rithmic Number Theory Symposium, pages 48–63. Springer, 1998.

[4] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private
information retrieval. In Proceedings of IEEE 36th Annual Foundations of
Computer Science, pages 41–50. IEEE, 1995.

[5] Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awerbuch. Veri-
fiable secret sharing and achieving simultaneity in the presence of faults. In
26th Annual Symposium on Foundations of Computer Science (sfcs 1985),
pages 383–395. IEEE, 1985.

[6] Whitfield Diffie and Martin Hellman. New directions in cryptography.
IEEE transactions on Information Theory, 22(6):644–654, 1976.

[7] Taher ElGamal. A public key cryptosystem and a signature scheme
based on discrete logarithms. IEEE transactions on information theory,
31(4):469–472, 1985.

[8] Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized pro-
tocol for signing contracts. Communications of the ACM, 28(6):637–647,
1985.

[9] Paul Feldman. A practical scheme for non-interactive verifiable secret shar-
ing. In 28th Annual Symposium on Foundations of Computer Science (sfcs
1987), pages 427–438. IEEE, 1987.

[10] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield noth-
ing but their validity and a methodology of cryptographic protocol design.
In Providing Sound Foundations for Cryptography: On the Work of Shafi
Goldwasser and Silvio Micali, pages 285–306. 2019.

[11] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptogra-
phy on oblivious transfer–efficiently. In Annual international cryptology
conference, pages 572–591. Springer, 2008.

[12] Thorsten Kleinjung, Kazumaro Aoki, Jens Franke, Arjen K Lenstra, Em-
manuel Thomé, Joppe W Bos, Pierrick Gaudry, Alexander Kruppa, Peter L
Montgomery, Dag Arne Osvik, et al. Factorization of a 768-bit rsa modulus.
In Annual Cryptology Conference, pages 333–350. Springer, 2010.

[13] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Ef-
ficient batched oblivious prf with applications to private set intersection.
In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pages 818–829, 2016.

[14] Leslie Lamport. Constructing digital signatures from a one-way function.
Technical report, 1979.

[15] Ralph C Merkle. Secure communications over insecure channels. Commu-
nications of the ACM, 21(4):294–299, 1978.



BIBLIOGRAPHY 79

[16] Moni Naor and Benny Pinkas. Oblivious polynomial evaluation. SIAM
Journal on Computing, 35(5):1254–1281, 2006.

[17] Michael O Rabin. How to exchange secrets with oblivious transfer.

[18] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for ob-
taining digital signatures and public-key cryptosystems. Communications
of the ACM, 21(2):120–126, 1978.

[19] Claus-Peter Schnorr. Efficient identification and signatures for smart cards.
In Conference on the Theory and Application of Cryptology, pages 239–252.
Springer, 1989.

[20] Yannick Seurin. On the exact security of schnorr-type signatures in the
random oracle model. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques, pages 554–571. Springer,
2012.

[21] Adi Shamir. How to share a secret. Communications of the ACM,
22(11):612–613, 1979.

[22] Claude E Shannon. Communication theory of secrecy systems. The Bell
system technical journal, 28(4):656–715, 1949.

[23] Nicolas van Saberhagen. Monero whitepaper. Technical report, 2013.

[24] Andrew C Yao. Protocols for secure computations. In 23rd annual sympo-
sium on foundations of computer science (sfcs 1982), pages 160–164. IEEE,
1982.

[25] Andrew C Yao. Theory and application of trapdoor functions. In 23rd
Annual Symposium on Foundations of Computer Science (SFCS 1982),
pages 80–91. IEEE, 1982.

[26] Andrew Chi-Chih Yao. How to generate and exchange secrets. In 27th
Annual Symposium on Foundations of Computer Science (sfcs 1986), pages
162–167. IEEE, 1986.


