
Chapter 4

Databases

A computer does more than just computation. In particular, a computer can
also store and retrieve large amounts of data efficiently. In this chapter, we want
to understand some of the key ingredients of databases.

4.1 Dictionary

We manage a library and want to be able to quickly tell whether we carry a
given book or not. We need the capability to insert, delete, and search books.

Definition 4.1 (Dictionary). A dictionary is a data structure that manages → notebook

a set of objects. Each object is uniquely identified by its key. The relevant
operations are

• search: find an object with a given key

• insert: put an object into the set

• delete: remove an object from the set

Remarks:

• There are alternative names for dictionary, e.g. key-value store, asso-
ciative array, map, or just set.

• If the dictionary only offers search, it is called static; if it also offers
insert and delete, it is dynamic.

• When discussing the algorithms, we will often ignore that we actually
have a set of objects, each of which is identified by a unique key, and
just talk about the set of keys. With regard to the library example,
books are globally uniquely identified by a key called ISBN. Whenever
we say we insert/delete/search a key, we can just drag the key’s object
along.

• The classic data structure for dictionaries is a binary search tree.

80

https://colab.research.google.com/drive/15i3GdgYlEQrXdTeJ9UsSsvkmkuhUqUBL#scrollTo=RxvjIjXwQgFF

4.2. HASHING 81

Definition 4.2 (Binary search tree). A binary search tree is a rooted tree,
where each node stores a key. Additionally, each node may have a pointer to a
left and/or right child tree. For all nodes, if existing, the nodes in the left child
tree store smaller keys, and those in the right child tree store larger keys.

→ notebook
1 def search(self, key): # self is current node, initially root

2 if key < self.key:

3 if self.left is None: return None

4 else: return self.left.search(key)

5 elif key > self.key:

6 if self.right is None: return None

7 else: return self.right.search(key)

8 return self.val

Algorithm 4.3: Search Tree: Search

Remarks:

• The cost of searching in a binary search tree is proportional to the
depth of the key, which is the distance between the node with the key
and the root.

• There are search trees called splay trees that keep frequently searched
keys close to the root for quick access. On the other hand, there may
be rarely accessed keys deep in a splay tree.

• Using balanced search trees, we can maintain a dictionary with worst-
case logarithmic depth for all keys, and thus worst-case logarithmic
cost per insert/delete/search operation.

• Is there a way to build a dictionary with less than logarithmic cost
and with keys that cannot be ordered?

4.2 Hashing

In this section we use hashing to implement an efficient dictionary.

Definition 4.4 (Universe, Key Set, Hash Table, Buckets). We consider a uni-
verse U containing all possible keys. We want to maintain a subset of this
universe, the key set N ⊆ U with |N | =: n, where |N | � |U |. We will use a
hash table M , i.e. an array M with m buckets M [0],M [1], . . . ,M [m− 1].

Remarks:

• The standard library of almost every widely used programming lan-
guage provides hash tables, sometimes by another name. In C++,
they are called unordered map, in Python dictionary, in Java HashMap.

https://colab.research.google.com/drive/15i3GdgYlEQrXdTeJ9UsSsvkmkuhUqUBL#scrollTo=AVkQ3mmTWY17

82 CHAPTER 4. DATABASES

• The translation from virtual memory to physical memory uses a piece
of hardware called translation lookaside buffer (TLB), which is a hard-
ware implementation of a hash table. It has a fixed size and acts like
a cache for frequently looked up virtual addresses.

• Compilers make use of hash tables to manage the symbol table.

Definition 4.5 (Hash Function). Given a universe U and a hash table M , a
hash function is a function h : U →M . Given some key k ∈ U , we call h(k)
the hash of k.

Remarks:

• A hash function should be fast to compute and distribute hashes
nicely, e.g. h(k) = k mod m for a key k ∈ N; in contrast to Chapter
3, we do not care whether a hash function is one-way.

• If we use ISBN mod m as our library hash function, can we insert/de-
lete/search books in constant time?!

• What if two keys k 6= k′ have h(k) = h(k′)?

Definition 4.6 (Collision). Given a hash function h : U → M , two distinct
keys k, k′ ∈ U produce a collision if h(k) = h(k′).

Remarks:

• Since keys may experience collisions, the key must be stored in the
bucket.

• There are competing objectives we want to optimize for when hashing.
On the one hand, we want to make the hash table small since we want
to save memory. On the other hand, small tables will have more
collisions. How likely is it to get a collision for a given n and m?

Theorem 4.7 (Birthday Problem). If we throw a fair m-sided dice n ≤ m
times, let D be the event that all throws show different numbers. Then D satisfies

P[D] ≤ exp

(
−n(n− 1)

2m

)
.

Proof. We have that

P[D] =
m

m
· m− 1

m
· . . . · m− (n− 1)

m
=

n−1∏
i=0

m− i
m

=

n−1∏
i=0

(
1− i

m

)
= exp

(
n−1∑
i=0

ln

(
1− i

m

))
We can use that ln(1 + x) ≤ x for all x > −1 and the monotonicity of ex:

P[D] = exp

(
n−1∑
i=0

ln

(
1− i

m

))
≤ exp

(
n−1∑
i=0

− i

m

)
= exp

(
−n(n− 1)

2m

)

4.3. KEY-VALUE DATABASES 83

Remarks:

• Theorem 4.7 is called the “birthday problem” since traditionally, peo-
ple use birthdays for illustration: In order to have a chance of at least
50% that two people in a group share a birthday, we only need a group
of 23 people.

• If we insert more than roughly n ≈
√
m keys into a hash table, the

probability of a collision approaches 1 quickly. In other words, unless
we are willing to use at least m ≈ n2 space for our hash table, we will
need a good strategy for resolving collisions.

• Theorem 4.7 assumes totally random hash functions — for non-random
distributions of hashes, we might have more collisions. In particular,
if we fix a hash function, then we can always end up with a key set N
that suffers from many collisions. E.g., if many books have an ISBN

that ends in 000, then ISBN mod 1000 is a terrible hash function.

• Maybe we can use modulo, but with a different m?

• In general, several efficient ways to deal with collisions are known, e.g.,
hashing with chaining, hashing with probing, static hashing, cuckoo
hashing. We do not discuss these advanced methods in this class.

• Universal hashing is a particularly intriguing technique, as it guaran-
tees that a random hash function from a larger family as good as it
gets.

4.3 Key-Value Databases

Definition 4.8 (Key-Value Database System). The concept of dictionaries is
used in key-value database systems. The server maintains the dictionary and
clients can insert and query the stored data using the keys.

Remarks:

• Popular key-value databases are Redis and Memcached. They are
often used for caching in web services. Dynamically generated docu-
ments or results of queries to other databases can be stored temporar-
ily to allow fast access to often requested data.

• The data is often kept in main memory to speed up the access and
only duplicated to disk to recover the database in case of a system
failure.

• Depending on the used database, different data types can be stored
in the value. This can be an integer, a string, or even an array.

• Document databases are an extension of simple key-value database
systems. The value has to be in a format that the database under-
stands, such as a JSON or XML document. These databases allow
queries on the content of the documents. MongoDB and CouchDB
are popular document databases.

84 CHAPTER 4. DATABASES

4.4 Relational Databases

However, most databases offer queries beyond simple key searches. Questions
like “What is the movie with the largest cast?” or “How many directors have
directed more than ten movies?” should be answered without first writing a
new program. Relational databases can store large amounts of structured data
and answer possibly complex questions about it.

Definition 4.9 (Table, Row, Column, Database). A table consists of rows,
so that each row (data record) contains the same fields, i.e., kinds of entries.
When the rows of a table are written line by line, the fields form the columns
of the table. Each column is referred to by a descriptive name, and is associated
with the type of the respective field, e.g., integer, floating point, string, or a date.
A database is a collection of tables.

Remarks:

• In the database context, tables are also called relations, because the
entries in each row are related to each other, namely by belonging to
the same row.

movies
title director year
12 Angry Men Sidney Lumet 1957
Raiders of the Lost Ark Steven Spielberg 1981
War of the Worlds Steven Spielberg 2005
Manos: The Hands of Fate Harold P. Warren 1966

...

Figure 4.10: A database containing a single table called “movies” storing the
title, director, and year of release for each movie.

Remarks:

• Databases as we study them are accessed using the so-called structured
query language (SQL). Thus they are referred to as SQL or relational
databases.

• MySQL and PostgreSQL are two popular open source SQL database
systems.

• SQL database systems typically run as a daemon process on some
server. Client applications connect to the server and authenticate
themselves via username and password. Therefore, multiple users ac-
cessing the same database may result in concurrency issues. Some
form of concurrency control is necessary!

• Other database systems are tailored to single-user processing. They
relieve developers from the burden of implementing efficient data struc-
tures for relational data. SQLite is one such example, and is used, e.g.,
in Firefox, Chrome, Android, Adobe Lightroom, and Windows 10.

4.5. SQL BASICS 85

4.5 SQL Basics

Definition 4.11 (SQL Data Types). SQL defines the following types of columns.
• CHARACTER(m) and CHARACTER VARYING(m) for fixed and vari-

able length strings of (maximum) length m,
• BIT(m) and BIT VARYING(m) for fixed and variable length bit strings

of (maximum) length m,
• NUMERIC, DECIMAL, INTEGER, and SMALLINT for fixed point and

integer numbers,
• FLOAT, REAL, and DOUBLE PRECISION for floating point numbers,
• DATE, TIME, and TIMESTAMP for points in time, or
• INTERVAL for ranges of time.

Remarks:

• The range of each type includes the special value NULL. Note that
NULL is different from the string ’NULL’, the empty string, and from
the number 0 (zero). NULL indicates that the row has no value for
the corresponding field.

• Many database systems implement more types, e.g., geographic coor-
dinates, IP addresses, geometric objects, or large integers.

• All SQL statements end with a semicolon. The SQL language is case
insensitive, but by convention keywords are often typed in upper case.

• The SQL-92 specification is over 600 pages long, newer versions of the
standard even longer. To add insult to injury there are lots of vendor
specific “SQL dialects”, i.e., modifications and extensions. However,
the basic set of commands for creating, manipulating, and querying
tables are largely the same across database implementations.

CREATE DATABASE database-name; → notebook

Additional parameters allow to set database-specific options, e.g., user-
based permissions, or default character sets for text strings. How a database
is opened depends on the implementation.

CREATE TABLE table-name (field-name type, field-name type, . . .);
To enforce that all rows have a value for a particular field, one can add
NOT NULL to the type when creating the table. Fields have a default
value, which is NULL if not specified by adding DEFAULT value to the
type description.

Remarks:

• There are also GUI and web-based client applications (that execute
locally or on an http-server, respectively) and offer access to the
database in a more intuitive manner than the classic command line
tools. Examples for PostgreSQL are pgAdmin, DataGrip and DBeaver.

• Such tools are especially helpful for creating the databases and tables
and often support multiple database systems. They also feature im-
porting data from various formats, e.g., CSV files, instead of using
SQL statements to populate the tables.

https://colab.research.google.com/drive/15i3GdgYlEQrXdTeJ9UsSsvkmkuhUqUBL#scrollTo=k5uDB-F-ZHNp

86 CHAPTER 4. DATABASES

INSERT INTO table-name (field-name, . . .) VALUES (value, . . .); → notebook

Values must be listed in the same order as the corresponding field names.
When a field name (and thus its value) is omitted the field’s default value is
assumed. When the list of field names is omitted the field’s values must be
listed in the same order that was used when creating the table. To insert
more than one row in one statement, multiple rows may be separated by
commas.

→ notebook
SELECT * FROM movies;

SELECT * FROM movies WHERE director = 'Spielberg, Steven';

SELECT title FROM movies WHERE year BETWEEN 1990 AND 1999;

SELECT * FROM movies WHERE title IS NULL OR director IS NULL;

SELECT title, director FROM movies WHERE title LIKE '%the%';

Listing 4.12: Querying the movies table.

SELECT field-name, . . . FROM table-name WHERE condition;
Lists all specified fields of all rows in the table that fulfill the condition.
The special field * lists all fields. The WHERE condition may be omitted
to list the whole table. A condition can include comparisons (<,>,=, <>)
between fields constants. The special value NULL can be tested with IS
NULL. Conditions can be joined using parenthesis and logic operators like
AND, OR, and NOT. Strings can be matched with patterns using field-
name LIKE pattern . In the pattern, an underscore () matches a single
character, whereas % matches arbitrarily many.

→ notebookSELECT MIN(year) FROM movies;

SELECT AVG(year) FROM movies WHERE director='Lumet, Sidney';

SELECT COUNT(*) FROM movies;

SELECT COUNT(DISTINCT director) FROM movies;

Listing 4.13: Aggregation with SQL.

SELECT aggregate, . . . ;
Functions for aggregation include AVG to compute the average of a certain
field, MIN and MAX for the minimum and maximum value, SUM for the
sum of a field, and COUNT to count the number of occurrences. In an
aggregation, the keyword DISTINCT indicates that only distinct values
should be considered.

→ notebook
SELECT director, COUNT(title) FROM movies GROUP BY director;

SELECT director, COUNT(title) FROM movies GROUP BY director

HAVING COUNT(title) > 10;

https://colab.research.google.com/drive/15i3GdgYlEQrXdTeJ9UsSsvkmkuhUqUBL#scrollTo=JNfPfpH-ZWBW
https://colab.research.google.com/drive/15i3GdgYlEQrXdTeJ9UsSsvkmkuhUqUBL#scrollTo=DDR_YJyBZkD0
https://colab.research.google.com/drive/15i3GdgYlEQrXdTeJ9UsSsvkmkuhUqUBL#scrollTo=UoZxMtohkAaZ
https://colab.research.google.com/drive/15i3GdgYlEQrXdTeJ9UsSsvkmkuhUqUBL#scrollTo=KHhxxlCIWj6o

4.6. MODELING 87

SELECT year, director, COUNT(title) FROM movies

GROUP BY director, year

ORDER BY year DESC, director ASC;

Listing 4.14: Grouping and sorting.

SELECT field-name |aggregate, . . . GROUP BY field-name,. . . ;
Aggregations may be partitioned using the group-by clause. Similar to
before, the query result can only include aggregates and fields by which
the result is partitioned.

Since WHERE clauses are applied before GROUP BY the result of aggre-
gations cannot appear in them. When the result should be conditioned
on the result of an aggregation, a HAVING clause can be used.

SELECT . . . ORDER BY field-name,. . . ;
After each field-name, the keyword ASC or DESC can be used to deter-
mine ascending or descending sorting order, respectively.

UPDATE movies SET title = 'Star Wars Episode IV: A New Hope'

WHERE title = 'Star Wars';

DELETE FROM movies WHERE title = '';

Listing 4.15: Updating and removing rows.

UPDATE table SET field-name = value,. . . WHERE condition;
Updates the specified fields in all rows fulfilling the condition.

DELETE FROM table-name WHERE condition;
Removes all rows fulfilling the condition from the table.

4.6 Modeling

The way our example table from Figure 4.10 is designed results in lots of dupli-
cate data—the director’s name is stored anew for each row, and two directors
with the same name cannot be distinguished. The situation worsens when we
want to store the cast of each movie. In other words, the way we modeled our
data can be improved. Entity-Relationship (ER) diagrams are a tool to find
good representations for data.

Definition 4.16 (Entity-Relationship Diagram). Rectangles denote entities
(tables), and diamonds with edges to entities indicate relations between those
entities. On such an edge, the number 1 or the letter n denotes whether the
corresponding entity takes part once or arbitrarily many times in the relation.
Entities and relations can have attributes (columns) with a name, drawn as
ellipses. Italicised attributes are key attributes which must be unique for each
such entity.

88 CHAPTER 4. DATABASES

directors

id name

movies

id title year

directing

1 n

actors

id name

acting

character

n n

Figure 4.17: Model for a movie database. Movies and directors are in a 1-
to-n relation: Each movie is directed by 1 director, and a director may work
on many movies. Movies and actors are in a n-to-n relation, which has an
additional attribute: An actor may appear in many movies, and each appearance
is associated with a character in that movie, played by that actor.

Remarks:

• It is standard practice to assign a so-called key attribute, often named
id, to every entity.

• What do ER diagrams have to do with SQL? Primarily, ER diagrams
are for conceptually modeling the kind of data and relations one wishes
to store. They can be translated into databases. Each entity corre-
sponds to a table with the corresponding attributes as columns. An n-
to-n relation is represented by a table with columns for each attribute,
and a column for the key attribute of each entity in the relation.

• A close relative of the ER diagram is the Unified Modeling Language
(UML). UML is used to represent the tables of a database (or classes
of object oriented software) accurately, with detailed information, e.g.
fields.

actor
id name
1 Harrison Ford
2 Tom Cruise

...

acting
actor id character movie id

1 Indy 2
2 Ray Ferrier 3

...

Figure 4.18: The actor table and a table capturing the acting relation.

Remarks:

• The same scheme can be used for 1-to-1 and 1-to-n relations. However,
one may also include the relation in the table storing the entity on the
1-side.

4.7. KEYS & CONSTRAINTS 89

directors
id name
1 Sidney Lumet
2 Steven Spielberg
3 Harold P. Warren

...

movies
id title year director id
1 12 Angry Men 1957 1
2 Raiders of the Lost Ark 1981 2
3 War of the Worlds 2005 2
4 Manos: The Hands of Fate 1966 3

...

Figure 4.19: The movie and director tables using the new database layout. The
director table simply maps ids to director names. Since the directing relationship
is 1-to-n, it can be represented by adding a column to the movies table that
stores the director for each movie.

Remarks:

• Similarly, a 1-to-1 relation can be turned into an attribute of one of
the entities.

• Tables dedicated to capturing relations are often called join tables.

4.7 Keys & Constraints

What is stopping us from inserting a row in the acting table that contains an
actor id or a movie id that does not exist? Or from creating a director with a
duplicate id?

Definition 4.20 (Key). In a table, a column (or set of columns) is a unique
key if the corresponding values uniquely identify the rows within the table. The
primary key of a table is a designated unique key. A foreign key is a column
(or set of columns) that references the primary key of another table.

Remarks:

• SQL databases can automatically enforce these constraints. For exam-
ple, a row containing a foreign key can only be inserted if it references
an existing primary key. Vice versa, a row may only be removed if its
primary key is not referenced by any foreign key.

ALTER TABLE table
ADD CONSTRAINT UNIQUE (field-name,. . .); → notebook

Any two rows must differ in at least one of the specified fields.

ALTER TABLE table ADD PRIMARY KEY (field-name,. . .);
Sets the specified fields as the primary key for the table. Any two rows
must differ in at least one of the specified fields. The entries in these fields
must not be NULL.

ALTER TABLE left-table ADD FOREIGN KEY (field-name,. . .)
REFERENCES right-table;
Ensures that the values in the specified fields in the left table are the
primary key of a row in the right table.

https://colab.research.google.com/drive/15i3GdgYlEQrXdTeJ9UsSsvkmkuhUqUBL#scrollTo=V5kkxbRK-zrR

90 CHAPTER 4. DATABASES

Remarks:

• Constraints for new tables can also be set using CREATE TABLE.

• Other ALTER TABLE queries add different constraints (e.g., checking
that an integer field contains only certain values), remove constraints,
and change the name, type or default value of fields.

• To ensure that checking constraints and searching for data is fast,
database systems rely on index data structures.

4.8 Joins

How can we access the data, which is now scattered across multiple tables?

→ notebookSELECT movie.title, director.name AS director, movie.year

FROM movie

INNER JOIN director ON movie.director_id = director.id;

Listing 4.21: Example query that returns the table depicted in Figure 4.22.

SELECT . . .
FROM left-table INNER JOIN right-table ON condition;
Returns all rows that can be formed from a row in the left-table and a
row in the right-table that satisfy the specified condition.

movie.title director movie.year
12 Angry Men Sidney Lumet 1957
Raiders of the Lost Ark Steven Spielberg 1981
War of the Worlds Steven Spielberg 2005
Manos: The Hands of Fate Harold P. Warren 1966

...

Figure 4.22: The result returned by the query in Listing 4.21.

Remarks:

• In a query, one can create aliases for field and table names using the
AS keyword, see Listing 4.21.

• The result of a JOIN clause can be ordered, fields can be aggregated
and grouped, and conditions can be added using WHERE clauses.

• For example, we can combine joins and aggregations to answer our
initial question of which movie has the largest cast.

→ notebook

https://colab.research.google.com/drive/15i3GdgYlEQrXdTeJ9UsSsvkmkuhUqUBL#scrollTo=lsCXH4_TYk9E
https://colab.research.google.com/drive/15i3GdgYlEQrXdTeJ9UsSsvkmkuhUqUBL#scrollTo=_-09nB26obZP

4.8. JOINS 91

SELECT movie.title, COUNT(*) AS cast_size

FROM acting INNER JOIN movie ON acting.movie_id = movie.id

GROUP BY movie.id ORDER BY cast_size DESC LIMIT 10;

Listing 4.23: Finding the 10 movies with the largest cast.

Remarks:

• The query from Listing 4.23 uses a LIMIT clause to return only the
ten first entries of the sorted results.

• An INNER JOIN where the condition is TRUE returns the Cartesian
product of both tables. This special case can also be obtained with
the CROSS JOIN clause.

• An inner join will only return those rows of one table that have a
matching row (that satisfies the condition) in the other table. For
example, in Listing 4.21, a director with id 5 would not appear in the
result if there are no movies which have director id=5.

• If you want unmatched rows to appear in the result, you need to use
an OUTER JOIN.

→ notebook
SELECT movie.title, director.name AS director, movie.year

FROM movie

RIGHT OUTER JOIN director ON movie.director_id = director.id;

Listing 4.24: Example query that returns the table depicted in Figure 4.25.

movie.title director movie.year
12 Angry Men Sidney Lumet 1957
Raiders of the Lost Ark Steven Spielberg 1981
War of the Worlds Steven Spielberg 2005
Manos: The Hands of Fate Harold P. Warren 1966
NULL Jon Doe NULL

...

Figure 4.25: The result returned by the query in Algorithm 4.24. The right outer
join includes all rows from the inner join (see Figure 4.22) and, additionally, all
entries from the directors table for which there is no matching entry in the
movies table. In our example, “director” Jon Doe has not directed any movies,
hence the movie title and year column are filled with NULL values.

SELECT . . .
FROM left-table LEFT|RIGHT|FULL OUTER JOIN right-table
ON condition;
Returns all rows from the inner join. In addition, a LEFT or RIGHT

https://colab.research.google.com/drive/15i3GdgYlEQrXdTeJ9UsSsvkmkuhUqUBL#scrollTo=SHU6ONPYpmh9

92 CHAPTER 4. DATABASES

OUTER JOIN also returns all rows from the left or right table that have no
matching row on the opposite table, respectively. The fields in unmatched
rows that cannot be filled from the other table are filled with NULL values.
A FULL OUTER JOIN returns both of the above.

Remarks:

• A LEFT OUTER JOIN in Listing 4.24 would include the movies with
no director instead of the directors who have not directed any movie.

• Queries may use more than one JOIN clause.

→ notebookSELECT movie.title

FROM actor INNER JOIN acting

ON acting.actor_id = actor.id AND actor.name = 'Ford, Harrison'

RIGHT OUTER JOIN movie ON acting.movie_id = movie.id

WHERE acting.actor_id IS NULL;

Listing 4.26: Finding all movies that Harrison Ford did not appear in.

Remarks:

• The conditions for the first join in Listing 4.26 ensure that only movies
with Harrison Ford are taken into account for the second OUTER
JOIN. That second join in turn delivers all movies that cannot be
matched, yielding a NULL entry for the actor id for movies without
Harrison Ford.

Chapter Notes

Dictionaries based on search trees are useful for providing additional operations
such as nearest neighbor queries or range queries, where we want to find all
keys in a certain range. Binary search trees were first published by three in-
dependent groups in 1960 and 1962 (for references, see Knuth [13]). The first
instance of a self-balancing search tree that guarantees logarithmic cost for in-
sert/search/delete is the AVL-tree, named so after its inventors Adelson-Velski
and Landis [1]. For multidimensional keys, e.g. geometric data or images, there
are specialized tree structures such as kd-trees [2] or BK-trees [4].

Hashing has a long history and was initially used and validated based on
empirical results. One of the first publications was Peterson’s 1957 article [14]
where he defined an idealized version of probing and empirically analyzed linear
probing. Universal hashing was introduced two decades later by Carter and
Wegman in 1979 [5]. Perfect static hashing was invented in 1984 by Fredman
et al. [10] and is sometimes also referred to as FKS hashing after its inventors.
Its dynamization by Dietzfelbinger et al. took another decade until 1994 [9].

In 1970, Edgar F. Codd proposed the relational database model [8] while
working at IBM research. Later in the 70s, another group at IBM developed
SQL’s predecessor SEQUEL (Structured English QUEry Language) [6]. After

https://colab.research.google.com/drive/15i3GdgYlEQrXdTeJ9UsSsvkmkuhUqUBL#scrollTo=xI4e2XHt_wKK

BIBLIOGRAPHY 93

being renamed SQL due to trademark issues, it was standardized by the ISO
in 1987 and later revised [11]. Other companies started developing relational
database systems, and nowadays there are many SQL databases implementing
different feature sets to choose from.

Around the same time, ER diagrams were conceived as a modeling tool [3, 7].
The Unified Modeling Language (UML), first standardized by the ISO in 1995
[12] and revised in 2012, also includes diagrams that model databases.

This chapter was written in collaboration with Georg Bachmeier and Jochen
Seidel.

Bibliography

[1] M Adelson-Velskii and Evgenii Mikhailovich Landis. An Algorithm for the
Organization of Information. Doklady Akademii Nauk USSR, 146(2):263–
266, 1962.

[2] Jon Louis Bentley. Multidimensional binary search trees used for associative
searching. Commun. ACM, 18(9):509–517, 1975.

[3] A. P. G. Brown. Modelling a real world system and designing a schema
to represent it. In IFIP TC-2 Special Working Conference on Data Base
Description, 1975.

[4] W. A. Burkhard and R. M. Keller. Some approaches to best-match file
searching. Commun. ACM, 16(4):230–236, 1973.

[5] J.Lawrence Carter and Mark N. Wegman. Universal classes of hash func-
tions. Journal of Computer and System Sciences, 18(2):143 – 154, 1979.

[6] Donald D. Chamberlin and Raymond F. Boyce. Sequel: A structured
english query language. In Proceedings of the 1974 ACM SIGFIDET (Now
SIGMOD) Workshop on Data Description, Access and Control, SIGFIDET
’74. ACM, 1974.

[7] Peter Pin-Shan Chen. The entity-relationship model—toward a uni-
fied view of data. ACM Trans. Database Syst., 1976.

[8] E. F. Codd. A relational model of data for large shared data banks. Com-
mun. ACM, 1970.

[9] Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Heide, Hans Rohnert, and Robert E. Tarjan. Dynamic perfect
hashing: Upper and lower bounds. SIAM J. Comput., 23(4):738–761, 1994.

[10] Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a sparse
table with 0(1) worst case access time. J. ACM, 31(3):538–544, 1984.

[11] International Organization for Standardization. Information technology –
Database languages – SQL – part 1: Framework (SQL/Framework), 2011.
ISO/IEC 9075-1.

[12] International Organization for Standardization. Information technology –
Object Management Group Unified Modeling Language (OMG UML) –
Part 1: Infrastructure, 2012. ISO/IEC 19505-1.

94 BIBLIOGRAPHY

[13] Donald E. Knuth. The Art of Computer Programming, Volume 3: (2Nd
Ed.) Sorting and Searching. Addison Wesley Longman Publishing Co., Inc.,
Redwood City, CA, USA, 1998.

[14] W. W. Peterson. Addressing for random-access storage. IBM J. Res. Dev.,
1(2):130–146, 1957.

