
Chapter 6

Neural Networks

Computers are better than humans at playing Chess, Go, Poker, Dota, or Star-
craft. They compose pop songs, write fiction stories, draw paintings, replace
actors in movies, and drive vehicles. Whenever a computer does something
mind-boggling, you can bet that a neural network is involved. Neural networks
have become fascinating function approximators. How so? At their core, neural
networks are based on simple linear mappings, combined with non-linear activa-
tion functions and gradient descent. So conceptually neural networks are not so
different from our discussions in Chapter 5. But size matters! The biggest neu-
ral networks have up to 530 billion weights. So training needs data, hardware
and patience.

6.1 Nodes and Networks

Definition 6.1 (Node). A node (or neuron) is a computing unit v that produces
an activation value y. The node v first calculates an affine transformation on
x ∈ Rd, then applies an activation function σ : R→ R:

y = σ(wTx),

where x is an input vector and w ∈ Rd are learned weights. We call z = wTx the
pre-activation value. Like in Chapter 5 (Definitions 5.5 and 5.30), we assume
that w0 is integrated into w, i.e., w = (w0, w1, . . . , wd−1)T , and x includes an
additional constant 1, i.e., x = (1, x1, . . . , xd−1)T .

Remarks:

• In the literature, the intercept w0 is sometimes referred to as “bias”
b, and kept separate from w, i.e., y = σ(wTx + b). This naming
complicates the vector notation; it may also be confusing since we
used the term bias for a model property in Section 5.4.

• The activation function σ can take many different forms. Some nodes
may simply use the identity as activation function, i.e., σ(z) = z.
Most nodes apply non-linear activation functions in order to allow the
model to approximate non-linear functions, e.g. the sigmoid function
ψ(wTx) = 1

1+exp(−wTx)
of Definition 5.30.

118



6.1. NODES AND NETWORKS 119

• In order to allow for gradient-based training, the activation function
must be differentiable.

• We combine many neural nodes into a network:

Definition 6.2 (Neural Network). A neural network is a directed acyclic graph
(DAG) formed by a set of nodes V that are connected by a set of directed edges
E. The input x of the network is stored by the n input nodes Vi (with no
incoming edges). The output y of the network will be computed by the m output
nodes Vo (with no outgoing edges). All other nodes (with incoming and outgoing
edges) are called hidden nodes Vh. We have Vi + Vh + Vo = V. Note that we use
the letters x and y to refer to both, the input and output of the whole network
as well as the input and output of a single node. We will use subscripts if the
usage is not clear from the context.

In neural networks the function is computed in the forward direction: The
input xv of each node v is the vector of computed outputs y of its DAG prede-
cessor nodes. Then, v computes its own output as yv = σ(wT

v xv). Hence the
nodes must be processed in DAG order.

Given an input x ∈ Rn, a neural network as a whole then approximates a
function f(x) : Rn → Rm by calculating f̂(x) ≈ f(x).

1 # V = Vi ∪ Vh ∪ Vo = network

2 # v.x = v's input, the output of v's DAG input-nodes

3 def forward(V ):

4 for v in Vh ∪ Vo (in DAG order):

5 v.y = v.σ(v.w,v.x) # Definition 6.1

6 return Vo

Algorithm 6.3: Feed-forward computation in DAG.

x1

x3

v1

v2

v3

v4

v6

v7

y1

y2

v5

v8

Figure 6.4: Example of a neural network for an input x and an output y with
three input nodes, eight hidden nodes and two output nodes.

Remarks:

• There exist cyclic neural networks as well, see Definition 6.22.

• In neural networks, nodes generally follow a structure that can be
represented with layers.



120 CHAPTER 6. NEURAL NETWORKS

Definition 6.5 (Multi-Layer Perceptron or MLP). The nodes are often orga-
nized in layers. The first layer are the input nodes Vi, the last layer the output
nodes Vo. Each hidden node is in a layer l, and all nodes of layer l have the
same input, namely the outputs yv of all nodes v of layer l−1. Layered networks
are known as Multi-Layer Perceptrons, where perceptron is an older name for
node.

Remarks:

• Layering will help us to speed up computation, as the pre-activation
of a whole layer can be computed with a single matrix-vector multi-
plication z = W · x, where the matrix W is composed of the weight
rows w, z is the vector of pre-activation values in the nodes and x are
the output values of the previous layer (with the additional 1).

• The number of layers determines the depth of the network. A “deep”
network is a neural network with multiple layers.

• Can a neural network compute/approximate any function?

6.2 Universal Approximation

Theorem 6.6 (Universal Approximation Theorem). Given a continuous func-

tion f : R+ → R (for simplicity, input x ≥ 0), there exists a neural network f̂
with one hidden layer that approximates f arbitrarily well. That is

|f̂(x)− f(x)| < ε for all x ≥ 0 and ε > 0.

Proof. We construct a neural network with sigmoid non-linearities in the hidden
nodes vi (i > 0) and a single linear output node vo.

The single output node vo computes function f̂(x) = wTy, where w are vo’s
weights, and yi are the outputs produced by the hidden nodes. As usual, w
includes an additional value w0, and y starts with a additional constant 1. We
choose w0 = f(0), such that f̂(0) = f(0) even without any hidden nodes. Every
hidden node vi computes yi = gi(x) = ψ (κ · x+ bi) , where κ → ∞ is a large
constant. While the sigmoid function ψ(z) = 1

1+exp(−z) from Definition 5.30 is

a smooth step function, κ→∞ will make that step sharp.
The construction is inductive. We start out with x = 0, hence f̂(x) = f(x).

As long as the difference between f̂(x) and f(x) is less than ε we keep growing

x. As soon as |f(x)− f̂(x)| ≥ ε, we introduce a new hidden node vi. The value
bi of the hidden node vi is representing the current position x, as bi = −κ · x.
This makes sure that vi will introduce a new step in f̂ right at the current x.
The weight wi of vo for the new input yi is set as wi = f(x)− f̂(x). This corrects

the output of f̂ for the newly accumulated error. If f(x) was increasing, then
a correcting +ε step is added, if f(x) was decreasing, a correcting −ε step is

added. In both cases, we again get f̂(x) ≈ f(x). Figure 6.7 visualizes the effects
of the parameters bi and wi.



6.3. TRAINING NEURAL NETWORKS 121

𝜅→∞ Shift by bi Scale 

x

+ 𝜺

Figure 6.7: Effect of weights on the sigmoid function.

Remarks:

• Our proof is a simplified version of the original. The full theorem is
more general, also applicable to continuous functions with inputs from
a multi-dimensional compact set. There exist also versions using other
activation functions than sigmoid, and multidimensional version, etc.

• The theoretical construction given in the proof is not used in practice,
as it would lead to numerical instabilities (κ→∞).

• However, the promise of a neural network is not only to approximate
any function, but rather to learn how to approximate any function.
It can be shown via various reductions (Definition 2.8) that learning
is NP-hard (Definition 2.20).

6.3 Training Neural Networks

During training, neural networks learn to automatically extract features from
the raw input: In the forward computation the representation of the data held
by the network becomes progressively closer to the value of the approximated
function. Therefore, neural networks are effectively feature extractors.

Definition 6.8 (Feature Extractor φ). A feature extractor φ is a function that
transforms raw input data x into features. These features represent the initial
data in a way that simplifies approximating a function f .

Remarks:

• In Section 5.2 we manually engineered φ. In Sections 5.3 and 5.4 we
then learned how to tell whether we did a good job.

• Neural networks on the other hand automatically learn φ and thus, no
manual feature extraction is needed. The idea is that every additional
hidden layer of the network represents the data more abstractly than
the previous one. With every layer, the representation of the data is
less like input x and more like output y.

• Why and how exactly this works is not well understood – this is the
mystique of deep neural networks.

• Training a neural network is similar to training a linear regression
node with gradient descent (Chapter 5): We calculate the gradient
of the loss with respect to the network parameters and adjust the
parameters accordingly. This is called backpropagation.



122 CHAPTER 6. NEURAL NETWORKS

Definition 6.9 (Backpropagation). Backpropagation is an algorithm that com-
putes the gradient of the loss L with respect to the parameters W of the neural
network. In the DAG representation of a neural network, each node computes
its pre-activation value z as a weighted sum over its input values x. By the
chain rule, we can calculate the error of the output nodes with respect to z as

∂L(f̂ , D)

∂z
=
∂L

∂y
· ∂y
∂z
.

Given this gradient, and using z = wTx, we can calculate the error with
respect to the weights wi and the error with respect to the node’s inputs xi as

∂L

∂wi
=
∂L

∂z
· xi, and

∂L

∂xi
=
∂L

∂z
· wi.

The gradients with respect to the weights w can then be used for updating
the weights, while the gradient with respect to the inputs can be aggregated to
pass the gradient ∂L

∂y to the preceding nodes in the network. Concretely, each

node in the network adjusts its own weights w based on the error signal ∂L
∂w and

tells its input nodes xi to adjust by backpropagating ∂L
∂xi

. The backpropagation
algorithm is given in Algorithm 6.10.

1 # v.x = v's input, stored during forward computation

2 # v.z = pre-activation value, stored during forward computation

3 # v.err = initial error of the node, set to ∂L
∂y for output nodes

4 # v.err = 0 initially for hidden and input nodes

5 # v.w_grad = gradient vector of node v

6 # v.prev = list of indices of v's input nodes

7 def backward(V ):

8 for v in V (in reversed DAG order):

9 v.z_err = v.err * ∂v.y
∂v.z # ∂y

∂z is the gradient of σ(z)

10 v.w_grad = v.z_err * v.x # v.w_grad and v.x are vectors

11 for v_i in v.prev:

12 v_i.err += v.z_err * v.w[v_i]

13 return [v.w_grad for v in V ]

Algorithm 6.10: Backpropagation Algorithm

Remarks:

• Many libraries backpropagate gradients with a simple function call. → notebook

• Memory may be problem, since we need to memorize x and z at every
node.

• Backpropagation is only the method for computing the gradient, while
another algorithm, such as stochastic gradient descent (Definition
5.26), is used to perform the parameter update using this gradient.

https://colab.research.google.com/drive/11Hr_FBnuaXWxe4X79OBRhts5ducL-RiV#scrollTo=u3vfRaNzj37h&line=25&uniqifier=1


6.3. TRAINING NEURAL NETWORKS 123

• Backpropagating gradients, i.e., applying the chain rule, means per-
forming a number of multiplications. For deep neural networks this
can lead to numerical issues.

Definition 6.11 (Vanishing Gradients). Gradient descent updates can stagnate
due to vanishing gradients, i.e., gradients that are close to 0. These can occur
during backpropagation for different reasons:

• The activation function σ(·) saturates, i.e. the gradient ∂y
∂z ≈ 0. In this

case, the gradient ∂L
∂wi

of all weights wi and the backpropagated gradients
∂L
∂xi

of the node will also be close to zero. The node stops learning.

• The summation in Line 12 of Algorithm 6.10 can accidentally become 0
(when terms cancel each other).

Definition 6.12 (Exploding Gradients). The gradient calculations with back-
propagation can also lead to devastatingly large gradients, called exploding gra-
dients. Note that gradient descent only converges for sufficiently small gradient
steps and too large gradients can lead to divergence. Reasons are:

• Some large weight |wi| � 1 boosts the backpropagated error.

• The summation in Line 12 of Algorithm 6.10 can accidentally become large
because of many positive (or negative) terms.

Remarks:

• Vanishing or exploding gradients can propagate in a network, i.e.
nodes with vanishing or exploding gradients can backpropagate the
problem to their predecessor nodes.

• Simple yet generally effective solutions include reducing the number
of layers or clipping the gradients (for the exploding case). A related
solution is to normalize the activation values, as done in techniques
such as batch normalization or layer normalization.

• Another effective solution for the vanishing gradient problem is the in-
troduction of skip connections (connect nodes which are not in neigh-
boring layers) which provide an additional path for the flow of informa-
tion. During backpropagation this helps the gradients to continuously
flow backwards, even if they vanish in certain points of the network.

• An additional option for mitigating the vanishing gradients problem
is to use activation functions that do not saturate in both directions
(positive and negative). The best-known of such activation functions
is the Rectified Linear Unit activation (ReLU).

Definition 6.13 (ReLU). The Rectified Linear Unit activation is defined as:

σ(x) = max(0, x)



124 CHAPTER 6. NEURAL NETWORKS

Remarks:

• The ReLU activation function introduces a nonlinear transformation
that remains very close to linear (piecewise linear with only two pieces)
and does not saturate in the positive direction.

• Remarkably, ReLU is non-differentiable, which violates Definition 6.1.
In fact, for gradient-based learning it is enough if the subderivatives
of the function exist (and for ReLU they do).

• The gradient ∂y
∂z of the ReLU activation is 0 when x ≤ 0, 1 otherwise.

This simplicity speeds up the computation of backpropagation.

• ReLU activation is the current default choice for neural networks.
However, a large number of related activation functions exist, which
modify some aspects of the function, e.g., leakyReLU has a non-zero
slope for values smaller than 0. Some other functions are: PReLU,
GeLU, SeLU, Maxout, etc.

• Another design choice that impacts the performance of the model is
the initialization scheme.

Definition 6.14 (Initialization scheme). Rule that determines the initial pa-
rameter values W of a neural network, i.e., the values before training starts.

Remarks:

• As seen in Figure 5.27, when the loss function is non-convex (has
multiple local minima), starting the learning process at different points
can lead to different solutions.

• Stochastic initialization is a good default for initializing the param-
eters of a neural network. These schemes give random initial values
(with some constraints) to the parameters of the network in order to
“break the symmetry”, i.e., to prevent that nodes with the same input
and same activation converge to the same values during optimization.

• The loss landscape of neural networks is complex, with a large number
of local minima. Surprisingly, converging to a local minimum during
training is good enough for a neural network to perform well usually.

6.4 Practical Considerations

The complex loss landscape of neural networks makes the learning process signif-
icantly more complicated than in classical machine learning models. Therefore,
sophisticated learning algorithms (also called optimizers) that build on top of
stochastic gradient descent (Section 5.6) are used in practice. There is no con-
sensus on which of the existing algorithms is best.



6.5. REGULARIZATION 125

Remarks:

• Adam optimizer is currently considered a good default. It belongs
to the family of adaptive learning rate algorithms, which adapt the
learning rate for each parameter individually throughout the course
of learning.

• Other popular optimizers include SGD with Momentum, RMSProp,
and linear learning rate decay.

• The learning scheme/rate is probably the most important hyperpa-
rameter in neural networks. Finding an appropriate learning rate can
produce a dramatic improvement in the performance of the network.

• Neural networks often have a remarkably large amount of hyperparam-
eters, which do have a strong impact on the performance of the model.
Although tuning hyperparameters is more an art than a science there
are automatic hyperparameter optimization algorithms that can help
in this process.

Definition 6.15 (Hyperparameter Optimization Algorithm). A hyperparame-
ter optimization algorithm is an algorithm that wraps the learning algorithm of
a model and chooses its hyperparameters, hiding this choice from the user.

Remarks:

• When there are few hyperparameters to set, a common approach is
Grid Search as discussed in Definition 5.24. The main problem of
Grid Search is that the computational cost grows exponentially with
the number of hyperparameters, which makes it expensive for large
neural networks.

• An alternative is Random Search: the hyperparameter values are sam-
ples from a uniform distribution in a certain interval. Random search
converges faster to an optimum.

• A large number of hyperparameter optimization algorithms exist using
techniques such as evolutionary algorithms, Bayesian optimization or
population-based-training.

• Hyperparameter optimization algorithms often have their own hyper-
parameters, such as the range of values that have to be explored.
Fortunately, these secondary hyperparameters are easier to set in the
sense that similar secondary hyperparameters can lead to acceptable
performance in a wide range of tasks.

6.5 Regularization

Everything discussed so far portraits neural networks as powerful function ap-
proximators. Neural networks can approximate any continuous functions and
even functions of high complexity, e.g., functions from a family with high VC di-
mension. The issue with this is that neural networks tend to overfit. To give an



126 CHAPTER 6. NEURAL NETWORKS

intuitive explanation why this is the case, recall the bias-variance trade-off from
the previous chapter. There, we saw that polynomials of too high degree yield
a high variance which leads to a bad generalization performance. Now, the uni-
versal approximation theorem states that a sufficiently large neural network can
approximate any continuous function. Hence, a sufficiently large neural network
can also approximate any polynomial. Without any restrictions, the variance
of a neural network can be very high and the generalization performance very
poor.

• To prevent it, classical parameter norm penalty can be applied, like the L2
(ridge) and L1 (lasso) penalties seen in Definition 5.23. These penalties
are applied by including the penalty term in the loss function of the model,
exactly the same as in Section 5.5.

• Furthermore, there are some other regularization techniques specific to
neural networks.

Definition 6.16 (Dropout). Dropout is a regularization technique: for each
sample at each training iteration, we set the output y of each node to zero with
probability p. After training has completed we do not drop nodes anymore as we
want to use the full capacity of the network. However, we multiply each activa-
tion where dropout was applied with 1 − p. This is done to keep the activation
on the same level as it was in expectation during training.

Remarks:

• Effectively, dropout trains a different model at each iteration, where
all models share the non-zeroed parameters. For large networks there
is no risk that dropout breaks the information flow between the input
and the output of the network.

• Dropout reduces the inter-dependencies between nodes in the network,
which helps the model to learn more robust features, and also reduces
overfitting.

• Dropout is computationally cheap and can be applied to any model
that uses distributed representations and that is trained with gradient
descent, i.e., any neural network.

• Dropout reduces overfitting but does not completely eliminate the
problem. Luckily, dropout can easily be combined with other regular-
ization strategies, for example, with early stopping.

Definition 6.17 (Early Stopping). Early stopping is a regularization strategy
that returns to the parameter setting that produces the lowest validation error. In
early stopping, training terminates when the best recorded validation error does
not improve for a predefined number of epochs; this number is called patience.



6.6. ADVANCED LAYERS 127

Remarks:

• Early stopping can be understood as an efficient algorithm for selecting
the number of training steps, which is a hyperparameter.

• The cost of early stopping in terms of computation is that the vali-
dation needs to be run periodically after each epoch and that at least
one copy of the parameters needs to be stored in memory. These costs
are however small and generally do not cause any limitation.

• Early stopping does not affect the learning dynamics, can be used in
conjunction with other regularization strategies, and is easy to imple-
ment.

6.6 Advanced Layers

While neural networks can theoretically learn any function, large networks (with
too many weights) often struggle to converge to good solutions. We can use
knowledge about the underlying problem to reduce the number of weights sub-
stantially. Some early successes of neural networks were achieved in image pro-
cessing, where methods from classical computer vision were adapted to neural
networks in the form of convolutions.

Definition 6.18 (Convolutional Neural Network or CNN). A convolutional
neural network is a neural network layer that works on structured input data
such as the pixels of an image. A CNN applies the same function (the same
weights) to all neighborhoods of the input layer.

Figure 6.19: Convolution operation for a 4 × 4 input image X, a 3 × 3 filter
W , and a 2 × 2 output Y . The filter W slides over the image and for each
position of the filter, a value yi is calculated as the dot-product of the filter and
the sub-matrix of X that it covers, e.g., y1 = w1x1 + w2x2 + · · ·+ w9x11.

Example 6.20. We want to detect vertical edges in images. Vertical edges can
be found calculating the convolution (with symbol ~) of the image and a vertical



128 CHAPTER 6. NEURAL NETWORKS

Sobel filter, given by the matrix W :

W =

1 0 −1
2 0 −2
1 0 −1


As an example, consider the 3 × 5 greyscale image X where each pixel takes a
value from 0 to 255 represented by the following matrix:

X =

80 92 163 234 230
85 98 237 233 232
83 96 236 235 231


To compute the convolution operation, the filter W slides over the image X.
Generally, we require that the output Y = X ~W is of the same size as the
input X, for this, we need to pad the matrix X. To prevent the padding from
creating artificial edges, we extend the image by copying the border pixels X′:

X′ =


80 80 92 163 234 230 230
80 80 92 163 234 230 230
85 85 98 237 233 232 232
83 83 96 236 235 231 231
83 83 96 236 235 231 231


In a convolution, the filter W slides over the image X. For each position of
the filter on the padded image (see Figure 6.19), one element of Y is calculated
as the sum of the element-wise multiplication of the overlap. As the filter slides
horizontally and vertically, this operation is repeated to obtain the values of each
element of Y . The resulting matrix Y is:

Y =

−49 −401 −561 −196 13
−51 −540 −551 −52 10
−52 −611 −552 20 13


The large values in the second and third column of matrix Y indicate that there
is a strong gradient (variation) between those columns in the image, i.e., the
image has a vertical dark/light edge. This edge is less pronounced in the first
row.

Remarks:

• In this example the filter W was given. A CNN does not know these
weights, but only the information that W is a 3× 3 convolution filter
between two layers. With appropriate training data, the CNN will
learn the weights of W by using backpropagation.

• Bias (w0) and non-linearity (e.g. ReLU activation) are omitted in our
examples for improved clarity.

• Compared to a fully connected network with the same input size, a
CNN has a significantly lower number of weights.



6.6. ADVANCED LAYERS 129

• Sometimes these learned patterns correspond to those that we as hu-
mans consider meaningful, e.g., edges. However, usually the patterns
extracted by CNNs are not understandable. The power of CNNs re-
side in learning complex patterns that humans would not be able to
design.

• Discrete convolutions can be performed beyond two dimensions. For
example, an audio signal can be represented by the signal intensity at
discrete time steps. In that case, a 1-dimensional convolution can be
applied over the time dimension to filter the signal.

• In general, to apply convolutions to a given input, the input has to be
structured as a tensor.

Definition 6.21 (Tensor). A tensor of order d is a d-dimensional array. A
tensor generalizes vectors (1-dimensional) and matrices (2-dimensional). The
shape of a tensor is a list of d integers defining the size of each dimension of
the tensor.

Remarks:

• An image, represented by its RGB (red, green, blue) pixel values can → notebook

be naturally represented as a tensor of order 3 and shape [3, height,
width]. An index (0, x, y) into this tensor yields the intensity of red
in the pixel at location (x, y).

• Note that the memory requirements of higher order tensors can be
high. E.g., an order 5 tensor with 100 values in each dimension stores
1005 values, which, given a floating point precision of 32 bits, requires
40 GB of memory.

• We have seen that CNNs exploit translation invariance in the structure
of the data. Are there other such structural biases we can exploit? For
example, what if we want a neural network to remember important
features over several time steps of a sequential input?

Definition 6.22 (Recurrent Neural Network or RNN). In contrast to feed-
forward neural networks, a recurrent neural network operates with time steps t.
Each time step t gets an input xt and a state st. It outputs an updated state
st+1 and an output yt. More formally, we define the mappings

yt = ĝ(xt, st)

st+1 = ĥ(xt, st)

where {xt}τt=0 and {yt}τt=0 are the input and corresponding output sequence of

length τ and ĝ(·) and ĥ(·) are differentiable functions with learnable parameters.
The initial state s0 can be a vector of learnable parameters, or simply initialized
to 0.

https://colab.research.google.com/drive/11Hr_FBnuaXWxe4X79OBRhts5ducL-RiV?usp=sharing


130 CHAPTER 6. NEURAL NETWORKS

Remarks:

• There are several ways of how to define ĝ(·) and ĥ(·), from simple
linear projections to complex combinations of operations to combine
the given inputs.

Example 6.23. Consider that we want to solve the multi-path problem of wire-
less transmission, i.e., given a signal we wish to filter delayed copies from the
signal. To do this online, i.e., while the signal is received, we have to remember
the current input signal to filter a similar pattern later. We therefore seek to
train an RNN to remember a given input for a few time steps and then reproduce
it for filtering purposes. E.g., given the input signal [5, 10, 0, 1.5, 3.5, 1] we want
the RNN to output [5, 10, 0, 0, 0, 0]. This can be achieved if we initialize the state

s0 to 0 and parametrize st+1 = ĥ(xt, st) = Wst + wh · xt with W and wh as

W =


0 1 0 0
0 0 1 0
0 0 0 1
−0.1 −0.3 0 0

 wh = [0, 0, 0, 1]T

where W shifts the state and filters new inputs and wh reads in the new symbol.
The readout is given by yt = ĝ(xt, st) = wT

g st + xt with

wg = [−0.1,−0.3, 0, 0]T

Note that this parametrization simply reads the input symbol into the state st,
propagates the symbol for some time steps and then subtracts it from a later
input.

Remarks:

• Instead of these given weights, neural networks will learn ĝ (W ,wg)

and ĥ (wh) when trained on real world signals. This is particularly
useful if the input is a vector of multiple correlated noisy signals and
a simple remember-and-reproduce solution is sub-optimal.

• Earlier we discussed that neural networks are directed acyclic graphs
(DAGs). But RNNs are cyclic, as the state from step t gets fed back
to the network in step t+ 1. How can we train such a network?

• The solution is to copy the network τ times, i.e., unroll the cycle (see
Figure 6.24). This yields one long DAG where the state st, calcu-
lated as intermediate output of one copy, is fed into the next copy.
The calculated gradients for each copy are then summed to update
the parameters. This is called backpropagation through time (BPTT).
Note that this can lead to vanishing/exploding gradients as we are
essentially trying to train a network of depth τ.

• RNNs that are commonly used today are Gated Recurrent Units (GRUs)
and Long Short Term Memories (LSTMs). These address the issue

of vanishing/exploding gradients in their definition of ĝ and ĥ. The
resulting architectures implement ideas similar to that of skip connec-
tions in feed-forward neural networks, albeit historically GRUs and
LSTMs came long before people started talking about skip connec-
tions in MLPs and CNNs.



6.6. ADVANCED LAYERS 131

• As apparent from the equations in the definition above, RNNs are
inherently sequential. They can process one input only after the pre-
vious input has been processed. This is slower than approaches that
can process the whole sequence in parallel (such as CNNs).

• Both, CNNs and RNNs take advantage of weight sharing. In CNNs,
the same weights (filters) are applied to all locations of the image.

In RNNs, the same functions ĝ(·) and ĥ(·) (with the same learnable
weights) are applied to all time steps t.

• What if we do not want to apply the same function everywhere? More
specifically, what if only a selection of the input is of interest? Can
we design an architecture that favors solutions which select features
from the input instead of using the whole input? Can we index the
input in a differentiable way?

st

ĝ, ĥ

xt

yt

ĝ, ĥ

x0

y0

s0 ĝ, ĥ

x1

y1

s1 ĝ, ĥ

xτ

yτ

s2 sτ

Figure 6.24: Unrolling the RNN through time. At each time step, ĝ and ĥ
compute output yt and state st+1 respectively, given input xt and the previous
state st. BPTT propagates the gradients through the unrolled network.

Definition 6.25 (Attention). Attention is a method to aggregate inputs in a
selective manner. Given n input vectors {xi}n−1i=0 ∈ Rd, each input vector is
projected into a key vector ki ∈ Rdk and a value vector vi ∈ Rdv. The projection
is done by two learned matrices Wk ∈ Rd×dk and Wv ∈ Rd×d. Additionally,
attention is given a query vector q ∈ Rdk . For each input vector an attention
score si is calculated as the dot-product between the query q and the key vector
ki:

si = q ·Wkxi = q · ki
The attention scores are normalized by a softmax (Definition 5.34) operation and
each normalized score is multiplied by its corresponding value vector vi = Wvxi.
The results are added to produce the attention output y ∈ Rd:

y =

∑n−1
i=0 exp (si) · vi∑n−1
j=0 exp (sj)

Remarks:

• The attention mechanism described here is called dot-product atten-
tion. This is the most common type of attention, but other variants
exist as well.



132 CHAPTER 6. NEURAL NETWORKS

Example 6.26. Consider that we want to find in what position a sequence of
n = 5 integers contains the value “3”. Our input is x = [7,−5,−2, 3, 4]T . We

use a ReLU for the keys: ki = ReLU [xi − 3, 3− xi]T . And we use a one-hot
encoding for the values vi. For example, x1 = 7 gets key and value

k1 = [4, 0]T ,v1 = [1, 0, 0, 0, 0]T .

Using q = [−1,−1]T we get the scores s = [−4,−8,−5, 0,−1]T . Plugging the
scores and values into the softmax gives

y = [0.013, 0.000, 0.004, 0.718, 0.264]T .

Because of the softmax, the output is not quite as clean as one might hope, since
“4 ≈ 3”.

Remarks:

• Thanks to weight sharing, attention can process input vectors of any
length.

• A neural network can consist of multiple attention aggregations to
select multiple (potentially different) inputs.

• If the scores are calculated based on the inputs, i.e., si = fi({xi}k−1i=0 )
for some functions fi, attention is also referred to as self-attention, as
the input “attends” to itself.

• Attention architectures yield the state-of-the-art performance in nat-
ural language processing tasks, as most of the time some words are
more important than others to understand a sentence.

• All architectures presented in this section, i.e., CNNs/RNNs and At-
tention, take some domain knowledge to tailor the neural network to
a specific purpose. This is also referred to as an inductive bias.

6.7 Architectures

In the previous section we introduced several building blocks that give different
inductive biases. Let us now see how different losses and architectures can be
combined to solve advanced computational challenges.

Definition 6.27 (Autoencoder). An autoencoder is a neural architecture formed
by two neural networks: an encoder fenc(·), which encodes the input x ∈ Rn

into a representation z ∈ Rm called latent code; and a decoder fdec(·), which
decodes the latent code back into an approximation of the original input, i.e.,
fdec(fenc(x)) ≈ x. The representation is often designed to compress information
by setting m � n. Autoencoders minimize a loss term named “reconstruction
loss”, that represents the difference between the output and the input.



6.7. ARCHITECTURES 133

Remarks:

• The encoder and the decoder can be any type of neural network, e.g.,
MLPs, CNNs, RNNs or a combination of them.

• An example of reconstruction loss is the L2 error:

L =
1

|D|
∑
x∈D
||x− fdec(fenc(x))||22

• A schematic depiction of an autoencoder is shown in Figure 6.28.

Encoder 
f
enc

Decoder 
f
dec

Latent code 
zInput Output

Figure 6.28: Schematic view of an autoencoder.

Remarks:

• The requirement m � n is not a necessity. We can also design au-
toencoders to have a specific structure in the latent code, or a latent
code tailored to a given purpose through an additional loss.

• The main advantage of autoencoders is that they learn the latent
representation (or code) in an unsupervised manner, i.e., without la-
bels. This makes them a versatile architecture that can be used in a
wide range of problems, such as dimensionality reduction, compres-
sion, data denoising or unsupervised feature extraction.

• There exist many different types of autoencoders, with different losses,
architectural elements or with additional inductive biases.

• Besides compression and encoding, neural networks can also be used
for data generation.

Definition 6.29 (Generative Adversarial Network or GAN). GANs are a class
of deep generative models in which two neural networks are trained simultane-
ously, while competing in a two-player minimax game. The generator’s fgen(r)
tries to produce realistic synthetic samples from a random input r. The bi-
nary classifier called discriminator fdis(x) estimates whether a sample x is real
or synthetic. The goal of the generator is to maximize the probability that the
discriminator makes a mistake on fdis(fgen(r)).



134 CHAPTER 6. NEURAL NETWORKS

Remarks:

• As in the case of autoencoders, the discriminator and generator can
be any type of neural network.

• During training, the discriminator improves its ability to recognize
synthetic samples while the generator learns to produce increasingly
realistic samples to deceive the discriminator. In this adversarial set-
ting, the equilibrium is reached when the generator produces realistic
samples such that the discriminator cannot distinguish whether they
are real or synthetic.

• The architecture of a vanilla GAN is shown in Figure 6.32.

• GANs achieved remarkable results in image generation. In partic-
ular, they can generate realistic-looking pictures and videos, which
has raised concerns about malicious uses of these models to generate
deepfakes.

• A GAN is a fully automated Turing Test with generator = testee, and
discriminator = tester.

Figure 6.30: GAN architecture for generation of synthetic images of celebrities.
For each sample, the discriminator needs to decide whether its input corresponds
to a real or to a synthetic celebrity.

Example 6.31. Faceswap-GAN is a popular implementation of a model trained
for deepfake generation. At high level, this model uses an autoencoder as gener-
ator. Given an image of a human face, it produces a segmentation mask as well
as the reconstructed input image. A segmentation mask is a representation of
an image that delineates the most important objects in the image; in the case of
human faces, these are the eyes, nose, ears, etc. Roughly speaking, an arbitrary
image of a face A can be combined with the segmentation mask of another face
B in order to generate an image that replaces the features of image B with those
of A, i.e., a deepfake. This is what the model does at inference time.

During training, Faceswap-GAN used a discriminator that determines whether
an input image is a real face or a deepfake, as well as some other advanced meth-
ods such as a perceptual loss that improve image quality.



6.7. ARCHITECTURES 135

Encoder 
f
enc

Decoder 
f
dec

Input Segmentation 
mask

Reconstructed 
image

Discriminator
f
dis

Fake

Real
Real/Fake

Generator

Discriminator

Figure 6.32: Architecture of Faceswap-GAN.

Remarks:

• Although originally conceived for generative tasks such as denoising,
reconstruction or data generation, GANs have proved useful in other
domains such as supervised learning, semi-supervised learning or re-
inforcement learning.

• Deep learning is applied in many different areas and consequently,
there is a wide range of architectures. We list some promising archi-
tectures in Table 6.33.



136 CHAPTER 6. NEURAL NETWORKS

Name Description Purpose

Transformer A family of sequence-to-
sequence models based on the
self-attention operation.

State of the art in natural lan-
guage processing (NLP) and
gaining relevance in other ar-
eas. Recently received a lot of
media attention with models
like BERT and GPT-3.

Variational
Auto-
Encoder
(VAE)

A generative model that tries
to match the data distribu-
tion by enforcing a simpli-
fied posterior distribution in
the latent space of an auto-
encoder.

Data generation and pos-
terior approximation in in-
herently stochastic models.
Disentangled representation
learning.

Contrastive
Learning

The same network applied to
different inputs, trained to re-
cover a notion of similarity in
the output representation.

Unsupervised representation
learning (e.g., recovering an
approximately metric space),
authentication, hashing and
matching

Graph
Neural
Network

Replicating a network on all
nodes of a graph and incorpo-
rating operations for message
exchanges with neighbors on
the graph.

Graph/node/edge classifica-
tion, community detection in
social network and predict-
ing protein/molecular inter-
actions

Implicit
Network

Training a neural network to
recover a value from an index.

Data compression, super-
resolution, image in-painting

Hyper
Network

A neural network that out-
puts the weights of another
neural network.

Mode abstraction and meta
learning

Table 6.33: A glossary of promising architectures.

6.8 Reinforcement Learning

A neural network and its corresponding loss have to be end-to-end differentiable
in order to apply gradient descent. So what if a problem is not differentiable?
What if we want to find an optimum in a sequential setting, like an optimal
sequence of decisions to reach a desired goal in an environment?

Definition 6.34 (Markov Decision Process or MDP). A Markov decision pro-
cess formally defines an environment. An MDP is a 5-tuple (S,A, T,R, s0),
where S is a set of states, A is a set of possible actions, T : S × A → S is a
state transition function, which describes the next state based on current state
and action. However, T could also be probabilistic, i.e., T : S ×A→ S × [0, 1].
s0 ∈ S (or s0 : S → [0, 1]) is an initial state (distribution). Finally, R is a re-
ward function. Rewards can be given when reaching certain states (R : S → R),
or when taking the right action in a state, R : S ×A→ R.

Problem 6.36. Figure 6.35 shows a simple example of an MDP with 6 states
S = {u0, u1, u2, u3, fail, pass} and two possible actions A = {study, party}. The



6.8. REINFORCEMENT LEARNING 137

u0 u2

u1 u3

fail

pass

0.7

0.3

0.7

0.3

0.
3

0.
7

0.
30.

7

0.3

0.7

0.7

0.3

0.7
0.3

0.3

0.7

Figure 6.35: An example Markov decision process to figure out whether and
when one should study (black) or party (red) ahead of an exam.

states fail and pass are terminal states, and represent whether the agent fails
or passes the exam, respectively. The agent starts in state u0, i.e., s0 = u0.
The transition probabilities for choosing the ‘party’ action (red) or ‘study’ action
(black) are shown in the figure. Every time the agent chooses to party, it receives
a reward of +1. If the agent chooses to study, it receives a reward of -1 (studying
is painful). At the terminal states, the agent gets a reward of +10 for passing the
exam and -10 for failing. Intuitively, the states u1 and u3 represent states where
the agent has learned something. These states are more likely to be reached when
studying rather than partying, and from these states the agent is more likely
to pass the exam. How should the agent act? We can calculate the solution
backward from the terminal states by filling in a 2 × 4 matrix Q giving the
quality of each action in each of the non-terminal states. In u3 taking the
action ‘study’ will yield an expected reward of Q[u3, study] = −1 + 0.7 ·10 + 0.3 ·
(−10) = 3. Similarly, choosing ‘party’ in this state yields an expected reward
of Q[u3, party] = +1 + 0.3 · 10 + 0.7 · (−10) = −3. In all earlier states we can
assume that we take the action with higher expected reward in later states and
thereby calculate the remaining values recursively as given in Table 6.37.

State study party
u3 3 -3
u2 -1.9 -5.1
u1 0.53 0.57
u0 -1.171 -0.159

Table 6.37: Expected reward Q for each action in each non-terminal state. It’s
best to party in states u0 and u1, and best to study in states u2 and u3. Note
that filling in this table is dynamic programming (Definition 1.11).

Definition 6.38 (Policy). A policy π : S × A → [0, 1] describes how the agent
acts in the environment, i.e., how likely it will take an action a ∈ A in a given
state s ∈ S.



138 CHAPTER 6. NEURAL NETWORKS

Remarks:

• Given an MDP and a policy, the state distribution of the agent after
τ steps, i.e., how likely it is that the agent is in a given state after τ
actions can be calculated.

• The goal in reinforcement learning is to find a good policy π, that is,
a policy that accumulates positive rewards.

• More formally, we want to find the optimal policy π∗ that maximizes
the expected cumulative γ-discounted reward:

π∗ = max
π

E

[ ∞∑
t=0

γtR(st)

]

where γ ∈ [0, 1] is a discount factor that weighs immediate returns
relative to future returns, where st is the state at time step t, respec-
tively. The expectation is taken over actions sampled from the policy
and states sampled from the transition distribution P (·|s, a) given the
state s and action a.

• To find such a policy, we need to know how valuable each state is to
a given policy.

Definition 6.39 (Value Function). A value function Vπ : S → R is a policy
specific function that given a state returns the expected cumulative discounted
reward of the policy starting in state st.

Vπ(st) = E

[ ∞∑
τ=t

γτ−tR(sτ )

]

Definition 6.40 (Action-Value Function or Q-Function). An action-value func-
tion or Q(uality)-function Qπ : S×A→ R is a policy specific function that given
a state s and an action a returns the expected cumulative discounted reward of
taking action a in state s and following policy π thereafter. That is

Qπ(s, a) = R(s) + E [γVπ(s′)]

where the expectation is over states s′ sampled according to T (s′|a, s).

Remarks:

• The value function can also be defined in terms of the Q function as

Vπ(s) = Ea∼π [Qπ(s, a)] .

• Given the general definition of value and action-value function, we
can get a better understanding of what we want to find: the optimal
policy π∗

• Note that Vπ∗ gives us for each state s ∈ S the maximal expected
cumulative reward that can be achieved when starting in state s.



6.8. REINFORCEMENT LEARNING 139

• Further, if we are given Qπ∗ it is easy to derive the optimal policy by
simply taking the action that maximizes Qπ∗ , i.e.

π∗(a|s) =

{
1 if a = argmaxa′ Q

π∗(a′, s)

0 else

In other words, the optimal policy in an MDP is deterministic!

• Knowing that we can derive the optimal policy from a quantity which
requires the optimal policy might be a bit “recursive”, but we can
nevertheless try:

1 # S = states

2 # A = actions

3 # T = transitions

4 # R = rewards

5 def value_iteration(S, A, R, T):

6 V = zero vector of size len(S)

7 Q = zero matrix of size len(S) × len(A)

8 while Q not converged:

9 for s in S:

10 for a in A:

11 Q[s][a] = R(s) + γ
∑
s′∈S T(s′|a,s) * V[s′]

12 V[s] = max(Q[s]) # max over a in A

13 return Q

Algorithm 6.41: Value iteration

Remarks:

• If the MDP has cycles and γ → 1, then this algorithm may not con-
verge.

Lemma 6.42. If we are given an MDP that can be represented as a DAG, value
iteration converges in one iteration if we process the states s ∈ S in reversed
DAG order.

Proof. Reversed DAG order means we will start at the terminal states and
propagate the cumulative rewards back to the initial states. By induction, we
always propagate the maximal achievable value by the max operation in Line
12 of Algorithm 6.41. Therefore, after one iteration, all states have the optimal
value Vπ∗ assigned.



140 BIBLIOGRAPHY

Remarks:

• However, in many real world applications, the state space is just hi-
lariously large. The game Go for instance has 319×19 ≈ 10172 possible
states, so it is infeasible to compute or even store the whole Q-table.
We can however train a neural network to approximate how likely
a given position is to lead to a win. In combination with a bit of
look-ahead planning (recursion) a neural network was able to beat
the world champion.

Chapter Notes

While the beginnings of artificial neural networks go back to the 1940s [5], deep
learning only became widely adapted and efficient in recent years with the use
of GPUs to run computations in parallel. However, many of the theoretical
investigations and architectures presented here have been known for quite some
time by now. The universal approximation capability of neural networks was
first shown for sigmoid non-linearities [1] and later generalized to other non-
linearities [3]. Even before it was shown that learning various functions is NP-
complete [4, 6]. This is still an active research area, e.g. [2]. The VC Dimension
discussion is even older [7]. We summarize further milestones achieved by neural
networks in the table below.

Year Name Milestone
1989 MNIST Handwritten digit classification
2005 DARPA Self-driving car challenge: 212km in 7h
2012 AlexNet Image classification breakthrough
2014 Deepface Human level performance in face recognition
2014 DQN Superhuman performance in many Atari games
2016 AlphaGo Beats Champion in Go
2017 Waymo Fully autonomous self-driving on public roads
2018 Obvious Sells art generated by a GAN for $432,500
2020 AlphaFold Achieves 90% in CASP protein folding
2021 DALL-E Text/Image model
2022 ChatGPT Large language model

Table 6.43: Neural Network Milestones

This chapter was written in collaboration with Damian Pascual and Oliver
Richter.

Bibliography

[1] G. Cybenko. Approximation by superpositions of a sigmoidal function.
Mathematics of Control, Signals and Systems, 2(4):303–314, Dec 1989.

[2] Surbhi Goel, Adam Klivans, Pasin Manurangsi, and Daniel Reichman. Tight
hardness results for training depth-2 relu networks. 2021.

[3] Kurt Hornik. Approximation capabilities of multilayer feedforward networks.
Neural Networks, 4(2):251 – 257, 1991.



BIBLIOGRAPHY 141

[4] Stephen Judd. On the complexity of loading shallow neural networks. Jour-
nal of Complexity, 4(3):177 – 192, 1988.

[5] Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas imma-
nent in nervous activity. The bulletin of mathematical biophysics, 5(4):115–
133, Dec 1943.

[6] Nimrod Megiddo. On the complexity of polyhedral separability. Discrete
Computational Geometry, 3:325–337, 1988.

[7] V. N. Vapnik and A. Ya. Chervonenkis. On the uniform convergence of
relative frequencies of events to their probabilities. Theory of Probability &
Its Applications, 16(2):264–280, 1971.


