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1 Choose the Correct Answer (18 points)

Each question has exactly one correct answer. Indicate your answer by checking the corre-
sponding circle. A correct answer gives 2 points, a wrong answer gives 0 points, and no answer
gives 0 points. You do not need to explain your answers.

a) To achieve the most exact synchronization, NTP most importantly requires:

# Low network delay times

# Stable network delay times between multiple calls

# Symmetric network delay times

# Many iterations until it converges

b) In Bitcoin, running a full-node does not let the operator:

# Broadcast their transactions to the Bitcoin network.

# Get their share of the block reward (minus fees).

# Verify whether their own transactions got confirmed or not.

# Help other nodes “catch-up” from scratch to the current state of the blockchain.

c) Regarding Bitcoin’s UTXO set size and the blockchain size:

# Both increase monotonically.

# UTXO set stays static and the blockchain size increases monotonically.

# UTXO set size increases monotonically, and the blockchain size could in theory
go down to zero.

# UTXO set size changes over time, and the blockchain size increases monotoni-
cally.

d) In Bitcoin, a selfish miner starts mining the next block on top of a previous block without
broadcasting the previous block to the network. What information are they trying to hide?

# The block-hash of the newly mined block.

# Their share of the total network hash-power.

# The confirmed transactions of the newly mined block.

# The nonce that allowed them to solve the Proof of Work function.

e) A quorum system is defined over 100 servers. Which of the following might be true?

# The load is 0.01.

# The work is 0.5.

# The system is 4-masking and there is a quorum Q in the system with |Q| = 8.

# None of the above.

f) In PBFT, a correct backup b has executed a request r with sequence number s in view v.
Which of the following is guaranteed?

# No node executes a request r′ ̸= r with sequence number s.

# No node can create a prepared-certificate for (v, s, r′) with r′ ̸= r.

# At the time when b executed r, every correct backup was in view v.

# Every correct backup eventually pre-prepares r for (v, s).



g) Which statement about an algorithm satisfying all-same validity is wrong?

# If no correct node starts with the input v, the decision value cannot be v.

# Correct nodes can decide on a value that was also proposed by byzantine nodes.

# If all nodes start with the same input v, the decision value must be v.

# None of the above.

h) Regarding consensus, which statement is true?

# A single crash can prevent any deterministic algorithm from reaching consensus
in the asynchronous model.

# A single byzantine node can prevent any deterministic algorithm from reaching
consensus in the asynchronous model.

# No algorithm satisfies byzantine agreement with n = 3f .

# All of the above.

i) In a scenario where 12 nodes act as client and server simultanously during an execution
of the Paxos algorithm, which of the following is true?

# Paxos tolerates the crash of at most 6 nodes.

# Paxos tolerates the crash of at most 11 nodes.

# Paxos tolerates 1 byzantine node.

# None of the above.
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Solutions

a) (3) NTP only measures the total network RTT and for synchronization assumes that half
of that is the network delay in each direction. Therefore, the more symmetric this delay
is, the more accurate the synchronization.

b) (2) Running a full node doesn’t give any block rewards to the operator.

c) (4) The answer is “UTXO set size changes over time, and the blockchain size increases
monotonically”. Varying numbers of UTXO’s are consumed and produced in any single
transaction, and the set grows or shrinks based on such usage. The blockchain stores all
historical transactions and hence keeps growing in size.

d) (1) The block-hash of the newly mined block. The selfish miner wants to be the only one
mining on top of that block - so that they have a chance to take the lead.

e) (4) None of the above.

The theorems in “Chapter 21: Quorum Systems” help us. By Theorem 21.6 the load of
the system is at least 1/

√
n = 1/10 = 0.1, so the first option is incorrect. Work is defined

as the expected size of the chosen quorum, with respect to the access strategy. Since all
quorums have size at least 1, this value is also at least 1, ruling out the second option.
By definition, in a 4-masking system the intersection of any two quorums has size at least
2 · 4 + 1 = 9, so all quorums need to have sizes at least 9, also ruling out the third option.

f) (2) No node can create a prepared-certificate for (v, s, r′) with r′ ̸= r.

The first option is incorrect: faulty nodes can choose to execute different requests.

The second option follows from Lemma 26.18 in “Chapter 26: Authenticated Agreement”.
As backup b executed request r with sequence number s in view v, at least one correct
backup has created a prepared-certificate for (v, s, r). Then, using Lemma 26.18, we obtain
that no node can create a prepared-certificate for (v, s, r′) with r′ ̸= r.

The third option is incorrect: it is possible that a correct backup is slow and is in view
v′ < v.

The fourth option is incorrect: the primary is not guaranteed to be correct. Hence, some
correct backups may never receive the required pre-prepare message from the primary.

g) (1) The first option does not hold true, and is thus the right answer. Indeed, if it’s not
the case that all correct nodes start with the same value, then all-same validity does not
restrict the decision value at all. Thus, option two is true and so is option three, as ’all
nodes’ includes ’all correct nodes’, and thus if all nodes start with the same value, all-same
validity dictates the decision value.

h) (4) Theorem 16.14 proves that the first two statements hold true. The third statement
holds true by Theorem 17.13. Thus all statements are correct.

i) (4) Paxos tolerates less than n
2 crash failures, which means at most 5 in our example. Thus

the first two statements are false. Paxos does not tolerate a single byzantine node, which
means no statement holds true.



2 Paxos (18 points)

a) [6] What consensus properties does Paxos satisfy? Devise an “Anti-Paxos” consensus
algorithm for binary inputs which satisfies the opposite consensus properties to Paxos
(satisfies the properties that Paxos does not satisfy, and does not satisfy the properties
that Paxos does satisfy).

Algorithm 1 Anti-Paxos

vi ∈ {0, 1} ◁ node’s input bit

return vi ◁ final value chosen by the node



From now on, let us consider the “Changed Paxos” algorithm below, where line 8 was changed
from

Pick (Tstore, C) with largest Tstore

to

Pick (Tstore, C) with smallest Tstore .

Algorithm 2 Changed Paxos

Client (Proposer)

Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c ◁ command to execute
t = 0 ◁ ticket number to try

Phase 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1: t = t+ 1
2: Ask all servers for ticket t

Phase 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7: if a majority answers ok then
8: Pick (Tstore, C) with smallest Tstore

9: if Tstore > 0 then
10: c = C
11: end if
12: Send propose(t, c) to same

majority
13: end if

Phase 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

19: if a majority answers success then
20: Send execute(c) to every server
21: end if

Server (Acceptor)

Tmax = 0 ◁ largest issued ticket

C = ⊥ ◁ stored command
Tstore = 0 ◁ ticket used to store C

3: if t > Tmax then
4: Tmax = t
5: Answer with ok(Tstore, C)
6: end if

14: if t = Tmax then
15: C = c
16: Tstore = t
17: Answer success
18: end if



b) [8] This version of the algorithm does not always work. Assume that we have three clients
(A, B, C) that want to execute their respective commands (a, b, c) on three servers (S1,
S2, S3). Provide a sequence of events that leads to servers failing agreement.

c) [4] Fix the pseudocode of Changed Paxos, without changing line 8, such that Changed
Paxos works properly. This only requires minor changes. You can write the changes on top
of the pseudocode above.
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a) Paxos does not achieve termination, but achieves validity and agreement. So, we need an
algorithm, which achieves termination, but does not always achieve validity and agreement.
The following algorithm terminates after one round. However, it picks values randomly,
so it is unlikely that all of the nodes agree on the value. If input values are all 1 or all 0
output will not satisfy the validity requirement.

Algorithm 3 Anti-Paxos

1: vi ∈ {0, 1} ◁ input bit
2: Choose vi randomly, with Pr[vi = 0] = Pr[vi = 1] = 1/2
3: return vi

b) C1 stores command a on S1. C2 then stores command b on S2 and S3 and slows down.
Now client C3 starts and supports command a, which has the smallest Tstore, it gets stored
on S2, while the message to S3 gets delayed. C2 can now execute command b, while C3
can execute a as both had achieved a majority. Command a gets executed on S1 and S2
and command b gets executed on S3.

c) The Changed Paxos would work if line 1 would be t = t − 1 and lines 3 and 9 would use
< comparison instead of >. This would result in an equivalent algorithm to the original
Paxos just with tickets going from 0 to −∞ instead of going from 0 to +∞.



3 Agreement (20 points)

A group of friends wishes to decide whether they should hold a party to celebrate their successful
exams. Since they suspect that some friends might actively want to prevent them from reaching
agreement, Alice suggests an improvement to the Ben-Or algorithm, such that it works for
f < n/5. Your task is to help the group of friends, by completing the missing value on line 21
and proving the algorithm’s correctness, as depicted below.

Algorithm 4 Asynchronous Byzantine Agreement (Ben-Or)

1: xu ∈ {0, 1} ◁ input value of node u
2: round = 1 ◁ round
3: while true do
4: Phase 1
5: Broadcast myValue(xu, round)
6: Wait until n− f myValue messages of current round arrived
7: if more than n+f

2 myValue messages contain the same value x then
8: xu = x
9: else

10: xu = ⊥
11: end if
12:

13: Phase 2
14: Broadcast propose(xu,round)
15: Wait until n− f propose messages of current round arrived
16:

17: if at least 3f + 1 propose messages contain same value x with x ̸= ⊥ then
18: Broadcast myValue(x,round + 1)
19: Broadcast propose(x,round + 1)
20: Decide for x and terminate
21: else if at least . . . propose messages contain same value x with x ̸= ⊥ then
22: xu = x
23: else
24: choose xu randomly, with Pr[xu = 0] = Pr[xu = 1] = 1/2
25: end if
26: round = round + 1
27: end while

a) [4] Prove that if after Phase 1 two correct nodes u and v have an input value different
from ⊥ (i.e., xu ̸= ⊥ and xv ̸= ⊥), then xu = xv.



b) [4] Find the minimal value to complete line 21 such that the following statement holds
true: If a correct node u sets xu = x on line 22, no other correct node v sets xv to a value
different from x. Then prove that this statement holds true with your suggested value.

c) [8] Prove that this algorithm satisfies agreement.

d) [4] Bob proposes to use FIFO broadcast in line 14, instead of the regular Best-Effort
broadcast. Can the amount of proposals in the condition of line 17 and line 21 be lowered
while still satisfying byzantine agreement? If so, by how much?
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a) Assume xu ̸= xv, with xu ̸= ⊥ and xv ̸= ⊥. Both u and v have each seen a byzantine
quorum of more than n+f

2 − f = n−f
2 correct nodes broadcasting xu or xv respectively.

Since the two sets must be disjoint that implies that there are more than n − f correct
nodes in total, which is a contradiction.

b) A = f+1. Proof: A node executing line 22 with value x, must have received at least 1
proposal for x ̸= ⊥ from a correct node. By the previous statement, no correct nodes will
propose a value different from x, hence no value other than x will be accepted.

c) Let u be the first node deciding on x. By the first statement of the exercise, no correct
node can decide on a different value in the same round. Next, due to scheduling, another
correct node can have received proposals from a subset differing by f values. Additionally
at most f proposals might come from byzantine nodes and be different from x. Thus at
least 3f + 1− f − f = f + 1 proposals are received by all correct nodes. Using the second
statement from above, we also know that no correct process adopts another value, hence in
the next round every correct node will broadcast x as their input value. As n− 2f > n+f

2
every node will set xu = x and every node will also see n − 2f > 3f + 1 proposals for x.
Thus every correct node will decide x as well and agreement is satisfied.

d) The value of line 17 can be lowered by f, to 2f + 1, as now Byzantine nodes can no longer
disseminate two different messages (as in the exercise session). The value of line 21 on the
other hand can’t be changed.



4 Bitcoin (18 points)

Bitcoin provides a mechanism called hashlocks to unlock bitcoins by revealing a secret preimage
to a hash string. The recipient creates X and Y = SHA256(X), and gives Y to the sender. The
sender locks their bitcoins with UTXO(Y, PR). The recipient gets these bitcoins with a transaction
containing string X such that SHA256(X) = Y , and also a digital signature with the secret key
SR that corresponds to the recipient public key PR.

a) [5] Why is the digital signature with the secret key SR necessary when unlocking the
coins? In other words, why can we not drop PR from UTXO(Y, PR), and just unlock with
the secret X?

Litecoin, another blockchain based cryptocurrency, also offers hashlocks. Alice and Bob want
to exchange litecoins with bitcoins without using a trusted third party. Alice locks her bitcoins
with UTXO(Y, PB), where Y = SHA256(X) (only Alice knows the secret X) and PB is Bob’s
public key. Bob locks his litecoins with UTXO(Y, PA), using the same hash string Y (Bob does not
know X at this time) and Alice’s public key PA. Alice redeems these litecoins with a transaction
containing X (which she knows from the beginning) and her own signature corresponding to the
public key PA.

b) [4] Bob can redeem his bitcoins only after Alice has redeemed her litecoins, and not
before. Why?



c) [3] Security is defined as: if a party pays P coins for Q, they either get Q or get back P .
Due to no fault of their own, a party should not lose P and not get Q. Why is the above
scheme not secure if one party aborts?

d) [6] Can we make this scheme secure under aborts by using timelocks (discussed in the
script) and a logical OR condition?
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a) Bitcoin transactions spend an indeterminate amount of time in the so called “mempool”,
when they are moving around from peer to peer in the Bitcoin network before being inclu-
ded in the next block by a miner. The recipient’s transaction that claims the UTXO(Y, PR)
by revealing X in plain text is visible to all nodes in the network. If the recipient’s transac-
tion is not encumbered by a signature as well, anyone else can craft their own transaction
that also reveals this now public string X and try to claim the bitcoins for themselves.
This creates a race condition between the two (or more) such transactions and there is
no guarantee that the original recipient gets the bitcoins in the end. Digital signatures
make sure that only the intended recipient can sign the receiving transaction with their
knowledge of the secret key SR. Note that SR is never broadcast on the network, unlike
X, which is a part of the transaction.

b) Bob doesn’t know the secret preimage X till Alice’s redeeming transaction is confirmed
on the blockchain. After it is confirmed on the blockchain, which is public data, Bob
can inspect the blockchain and learn X, which he can use to construct his redeeming
transaction.

c) If Alice aborts before redeeming Bob’s litecoins, Alice loses her own bitcoins, but due to
no fault of his own, Bob cannot get either Alice’s bitcoins or his own litecoins back. His
litecoins are locked by Y , and Bob doesn’t know X.

d) Alice and Bob both construct their UTXO′s with an OR condition. The OR condition has a
timelock “arm” on one side and a hashlock “arm” on the other side. The timelock “arm”
of the transaction sends their own money back to them after time T , and the hashlock
“arm” of the transaction sends the money to their counterparty. If Alice doesn’t redeem
Bob’s litecoins using her knowledge of the secret preimage X within time T , Bob can use
the timelock arm and refund his coins back to himself.



5 Game Theory (16 points)

Alice and Carol went on a trip and bought two identical antique vases for 500 Francs each.
Unfortunately, their luggage was not handled properly when flying back home, and both vases
broke. The airport manager wants to compensate Alice and Carol for the broken vases. As he
does not know the true price of such a vase, he proposes a scheme.
Alice and Carol are placed in separate rooms so that they cannot communicate. Each of them is
asked to write down the price of one vase as a natural number between 20 and 1000. Then, let
pAlice and pCarol denote the prices they wrote and let ∆ denote an integer (0 ≤ ∆ ≤ 20). They
will be compensated as follows:

• If pAlice = pCarol = p, then p must be the true price of the vase and Alice and Carol receive
p Francs each.

• If pAlice > pCarol, the airport manager assumes that Alice lied and Carol’s price is correct.
Then, Alice receives pCarol −∆ Francs, and Carol receives pCarol +∆ Francs.

• Symmetrically, if pAlice < pCarol, the airport manager assumes that Carol lied and Alice’s
price is correct. Then, Alice receives pAlice+∆ Francs, and Carol receives pAlice−∆ Francs.

Alice and Carol are both smart and rational. Each of them wants to maximize their own com-
pensation, even if it means to lie to the airport manager.

a) [3] Is writing down the true price of the vase a dominant strategy for Alice when ∆ = 5?
Why?

b) [3] Find a pure Nash Equilibrium for ∆ = 5.



c) [5] What is the Optimistic Price of Anarchy (OPoA) for ∆ = 1?

d) [5] For which values of ∆ is there a unique pure Nash equilibrium? Justify your answer.
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a) No. A strategy is dominant for Alice if she is never worse off by playing this strategy. If
pCarol = 499 and Alice writes down the true price of the vase (pAlice = 500), then Alice only
receives 494 Francs. However, if Alice writes down 498 instead, she receives 503 Francs.

b) For ∆ = 5, there is only one pure Nash Equilibrium: pAlice = pCarol = 20.

c) Recall that the Optimistic Price of Anarchy is defined as the ratio between the highest
payoff among the Nash Equilibria and the payoff of the social optimum.

We first compute the payoff for the social optimum: The total payoff of any strategy profile
is 2 ·min(pAlice, pCarol) ≤ 2 ·1000. Then, a social optimum is achieved when both Alice and
Carol write down 1000, and the total payoff is 2000.

The highest payoff among the Nash Equilibria is at most 2000, and in fact equal to 2000.
This is because pAlice = pCarol = 1000 is a Nash Equilibrium: one player writing down a
different price leads to the same or a lower compensation.

Therefore, the Optimistic Price of Anarchy is 2000
2000 = 1.

d) The game only has a unique pure Nash Equilibrium when 2 ≤ ∆ ≤ 20: pAlice = pCarol = 20.

When 2 ≤ ∆ ≤ 20 and pAlice = pCarol = 20, none of the players has the incentive to
unilaterally change their choice. Writing down a different number results in a compensation
of 20− r Francs instead of 20. Hence, this strategy profile is a pure Nash Equilibrium.

We now show that any other strategy profile is not a pure Nash Equilibrium when 2 ≤
∆ ≤ 20. If pAlice > pCarol ≥ 20, Alice’s compensation is pCarol − r Francs. Alice has the
incentive to change her choice to max(pCarol−1, 20) and then receive at least pCarol Francs.
The same argument applies for Carol when pCarol > pAlice ≥ 20. If pAlice = pCarol = p > 20,
Alice and Carol have the incentive to unilaterally change their choice to p− 1 and receive
p− 1 + r Francs instead of p.

If ∆ = 1, the game has multiple Nash Equilibria. For example: pAlice = pCarol = 1000 and
pAlice = pCarol = 500. One player writing down a different price leads to the same or a
lower compensation.

Similarly, if ∆ = 0, the game has multiple Nash Equilibria, such as pAlice = pCarol = 1000,
or pAlice = pCarol = 500. One player writing down a different price leads to the same or a
lower compensation.
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