e
ETH

. . g “
Eidgendssische Technische Hochschule Ziirich D'St”buteo-i a“:"‘“‘l‘ .
Swiss Federal Institute of Technology Zurich Computmg t?‘\ B
HS 2023 Prof. R. Wattenhofer

Robin Fritsch

Computational Thinking
Sample Solutions to Exercise 1

1 Towers of Hanoi

Let us first look at an easy problem: we want to move a tower of size 1 (a.k.a. only the smallest
disk) to a final rod given a helping rod. The smallest disk we can always move onto any rod (it
can never be placed on a smaller one).

Now let us look at the case where we have a tower of more than one disk, let’s say n disks. The
largest disk has to go to the very bottom of the final tower, otherwise we would place it later on a
smaller disk. To do this, we need to move the entire tower to the helping rod (using the final rod
as auxiliary structure). Then, the largest disk can be moved to the free final rod. Now we need
to move the remaining tower from the helping rod to the final rod. This tower has n — 1 disks, so
we can use recursion and do the same trick again (the largest disk that has already been placed
on the bottom of the final rod will not influence the rest of the game in any way!). For moving
this tower of n — 1 disks, the former helping rod will act as our new starting rod, and the former
starting rod will act as our new helping rod.

2 Nim Game

a) In principle Nim is a game with recursive nature. Let us assume we have a function is_won (n)
that tells us if the next player to move can win the game with n sticks. For example, in our
game nim(1) would return True since the starting player takes the last stick, and the other
player cannot move and loses. Similarly, for nim(3) the starting player wins by taking all
three sticks.

However, nim(2) is always lost: the only options are taking one stick or halving the stack,
both of which leave the other player to play with one stick left. We already know that the
starting player wins with one stick. Hence, the starting player always loses with two sticks
(against optimal play).

This gives us the recursive idea to play Nim: we check all available options given to us:
removing 1, removing 3, halving an even stack. If any option makes the then starting player
lose, we can win by creating this situation, thus returning True. If all options make the new
starting player win, we will lose and return False.

Moreover, we can use dynamic programming to solve this problem faster. We store all
intermediate results nim(n) that we already computed. Now we only need to look at those
results instead of invoking recursive calls. The solution implementation shows both the
dynamic programming version and the recursive variant. If you want, play with increasing
values of n to see the difference in speed!

b) The idea for this game is very similar to the first variant. We check every possible move in
any of the three piles and if we find at least one move that makes the new starting player
lose, we return True, otherwise we return False.

— notebook

— notebook


https://colab.research.google.com/drive/1l0LoYjd6ZK3F2NRW4Wa9pNKlZQjKbhCz#scrollTo=yPO_-VYF9mmw
https://colab.research.google.com/drive/1l0LoYjd6ZK3F2NRW4Wa9pNKlZQjKbhCz#scrollTo=-xF_RLlVXLm_

	Towers of Hanoi
	Nim Game

