Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Computational Thinking Exercise 4

1 Bicolored Edges

Let us consider the Bicolored Edges problem: given an input graph $G=(V, E)$, our job is to color the nodes of G with two colors such that the number of edges with different-colored endpoints is as large as possible.

Given a current coloring, let us call a node v with current color c_{v} a wasteful node if it has more neighbors of color c_{v} than of the opposite color. In this case, changing the color of v to the opposite color would improve our current solution. This suggests the following greedy algorithm:

```
def Bicolored_Greedy(G):
    begin with an arbitrary coloring of }
    while there is a wasteful node v:
        change the color of v to the opposite color
    return the current coloring
```

a) Find an example graph where this algorithm might return a suboptimal coloring!
b) Prove that the main loop of the algorithm is repeated at most $O\left(n^{2}\right)$ times before the algorithm terminates, where $n=|V|$.
c) Show that this greedy algorithm is a 2-approximation for Bicolored Edges.

2 Finding 4-segments

Given a graph $G=(V, E)$, a 4-segment is a path consisting of 4 edges, i.e. distinct nodes v_{1}, v_{2}, v_{3}, v_{4}, v_{5} such that $\left(v_{1}, v_{2}\right),\left(v_{2}, v_{3}\right),\left(v_{3}, v_{4}\right),\left(v_{4}, v_{5}\right) \in E$. We say that two 4 -segments are disjoint if they do not have an edge in common. Note that disjoint 4 -segments can still share a common node. Our goal is to find the highest number of 4 -segments in G that all are pairwise disjoint.

Assuming we already have a set S of selected 4 -segments, we say that a 4 -segment s in G is free if s is disjoint from every 4 -segment in S. Now consider the following greedy algorithm:

```
def Find4segments_Greedy(G):
    S=\emptyset
    while there exists a free 4-segment s:
        S=S\cup{s}
    return S
```

Prove that this algorithm is a 4-approximation for the problem.

