
Distributed
 Computing

HS 2023 Prof. R. Wattenhofer
Béni Egressy

Computational Thinking

Exercise 4

1 Bicolored Edges

Let us consider the Bicolored Edges problem: given an input graph G = (V,E), our job is to color
the nodes of G with two colors such that the number of edges with different-colored endpoints is
as large as possible.

Given a current coloring, let us call a node v with current color cv a wasteful node if it has
more neighbors of color cv than of the opposite color. In this case, changing the color of v to the
opposite color would improve our current solution. This suggests the following greedy algorithm:

1 def Bicolored_Greedy(G):

2 begin with an arbitrary coloring of V

3 while there is a wasteful node v:

4 change the color of v to the opposite color

5 return the current coloring

a) Find an example graph where this algorithm might return a suboptimal coloring!

b) Prove that the main loop of the algorithm is repeated at most O(n2) times before the
algorithm terminates, where n = |V |.

c) Show that this greedy algorithm is a 2-approximation for Bicolored Edges.

2 Finding 4-segments

Given a graph G = (V,E), a 4-segment is a path consisting of 4 edges, i.e. distinct nodes v1, v2,
v3, v4, v5 such that (v1, v2), (v2, v3), (v3, v4), (v4, v5) ∈ E. We say that two 4-segments are disjoint
if they do not have an edge in common. Note that disjoint 4-segments can still share a common
node. Our goal is to find the highest number of 4-segments in G that all are pairwise disjoint.

Assuming we already have a set S of selected 4-segments, we say that a 4-segment s in G is
free if s is disjoint from every 4-segment in S. Now consider the following greedy algorithm:

1 def Find4segments_Greedy(G):

2 S = ∅
3 while there exists a free 4-segment s:

4 S = S ∪ {s}
5 return S

Prove that this algorithm is a 4-approximation for the problem.

