
Distributed
 Computing

HS 2023 Prof. R. Wattenhofer
Lioba Heimbach

Computational Thinking

Solutions to Exercise 8 (Databases)

1 Database Queries

a) SELECT id, title FROM movie LIMIT 5;

b) SELECT * FROM movie ORDER BY title DESC LIMIT 2;

c) SELECT COUNT(*) FROM movie WHERE year > 2000;

d) SELECT title, tomatometer FROM movie WHERE title = ’The Matrix’;

e)

SELECT COUNT(*) FROM movie

WHERE tomatometer > (

SELECT tomatometer FROM movie

WHERE title = 'The Matrix');

f)

SELECT year, AVG(tomatometer) AS avg FROM movie

GROUP BY year

ORDER BY avg DESC LIMIT 5;

g)

SELECT title FROM movie

WHERE title LIKE 'X%'

ORDER BY title DESC;

h)

SELECT COUNT(*) FROM movie

WHERE title LIKE '%fight%';

2 Advanced Database Queries

a)

SELECT person.name, cast_info.role_id, person.gender

FROM cast_info

JOIN person ON person.id = cast_info.person_id

JOIN movie ON movie.id = cast_info.movie_id

JOIN role_type ON role_type.id = cast_info.role_id

WHERE role_type.role = 'actress' AND movie.title = 'The Matrix';

b)

SELECT COUNT(DISTINCT person.id)

FROM cast_info

JOIN role_type ON role_type.id = cast_info.role_id

JOIN person ON person.id = cast_info.person_id

WHERE role_type.role = 'director' AND person.gender = 'f';

c)

SELECT DISTINCT person.name FROM cast_info

JOIN person ON person.id = cast_info.person_id

JOIN movie ON movie.id = cast_info.movie_id

WHERE (cast_info.role_id = 2 or cast_info.role_id = 1)

AND EXISTS (

SELECT DISTINCT ci.person_id FROM cast_info AS ci

WHERE ci.role_id = 8

AND cast_info.person_id = ci.person_id

GROUP BY ci.person_id

HAVING COUNT(ci.person_id) > 20

);

Alternative solution:

SELECT DISTINCT person.name FROM person

JOIN cast_info ON person.id = cast_info.person_id

JOIN role_type ON cast_info.role_id=role_type.id

WHERE role_type.role IN ('actor','actress')

AND 20 < (

SELECT COUNT(*) FROM cast_info AS ci

JOIN role_type AS rt ON ci.role_id=rt.id

WHERE ci.person_id = person.id

AND rt.role='director'

);

d)

SELECT movie.title, COUNT(*) AS cnt

FROM movie_keyword

JOIN movie ON movie_keyword.movie_id = movie.id

GROUP BY movie.id

ORDER BY cnt DESC

LIMIT 1;

e)

SELECT AVG(cnt), MAX(cnt), MIN(cnt) FROM (

SELECT movie.title, COUNT(*) AS cnt

2

FROM movie_keyword

JOIN movie ON movie_keyword.movie_id = movie.id

GROUP BY movie.id

) AS countaverages;

f)

SELECT

person.name,

AVG(movie.tomatometer) AS average,

COUNT(ci.person_id) AS cnt,

MAX(movie.year) AS maxyear

FROM cast_info AS ci

JOIN movie ON movie.id = ci.movie_id

JOIN person ON person.id = ci.person_id

WHERE ci.role_id = 1

GROUP BY person.id

HAVING AVG(movie.tomatometer) > 85 AND COUNT(ci.person_id) > 30

AND MAX(movie.year) > 2000

ORDER BY maxyear DESC, average DESC;

g)

SELECT person.name

FROM person

JOIN cast_info ON person.id = cast_info.person_id

JOIN movie ON cast_info.movie_id = movie.id

WHERE cast_info.role_id = 8 AND movie.tomatometer > 90

GROUP BY person.id

HAVING COUNT(*) > 10;

3

	Database Queries
	Advanced Database Queries

