**ETTH** Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

DYNAMO

 $\mathrm{HS}\ 2024$ 

Prof. Dr. Lana Josipović and Jiahui Xu based on Prof. Dr. Lothar Thiele's material

## Discrete Event Systems

Exercise Sheet 14

## 1 Time Petri Net



Figure 1: Time Petri net at simulation step 0 ( $\tau = 0$ ).

Consider the Petri net in Figure 1. The transitions are associated with the following delays between their activation and firing:  $d(t_1) = 1$ ,  $d(t_2) = 2$ ,  $d(t_3) = 2$ . Simulate the behavior of the time Petri net by filling in the table below. For each simulated step, corresponding to a firing of the Petri net, indicate the simulation time  $\tau$ , the transition  $t_{\text{fired}}$  that fires in  $\tau$ , the resulting marking  $M^{\tau}$ , and the updated event list  $L^{\tau}$ . The first two simulation steps are already indicated in the table.

**Note:** If there are several transitions enabled at the same time, they fire in the order of their index, i.e., the transition with the smallest index fires first.

| step | au | $t_{ m fired}$ | $M^{\tau}$ | $L^{	au}$            |
|------|----|----------------|------------|----------------------|
| 0    | 0  | -              | [0, 1]     | $(t_3, 2)$           |
| 1    | 2  | $t_3$          | [2, 1]     | $(t_1, 3), (t_3, 4)$ |
| 2    |    |                |            |                      |
| 3    |    |                |            |                      |
| 4    |    |                |            |                      |
| 5    |    |                |            |                      |

## 2 Liveness Properties in Petri Net



Figure 2: A Petri net.

Consider the Petri net depicted in Figure 2. Determine the highest liveness level for transitions  $t_1$ ,  $t_2$ ,  $t_3$ , and  $t_4$ . Justify your answer for each liveness level that you determine; if the transition is  $L_i$  live but not  $L_{i+1}$ -live, explain why.

**Note:** A transition t in a Petri net is

- dead iff t cannot be fired in any firing sequence,
- $L_1$ -live iff t can be fired at least once in some firing sequence,
- $L_2$ -live iff,  $\forall k \in N^+$ , t can be fired at least k times in some firing sequence,
- $L_3$ -live iff t appears infinitely often in some infinite firing sequence,
- $L_4$ -live iff t is  $L_1$  live for every marking that is reachable from  $M_0$ .

 $L_{j+1}$  liveness implies  $L_j$  liveness.

## 3 (Bonus) Calculating with Petri nets

In this exercise you are supposed to model a function  $f_i(x, y)$  using a Petri net. That is, the Petri net must contain two places  $P_x$  and  $P_y$  that hold x and y tokens respectively in the beginning. Additionally, the net must contain one place  $P_z$  which holds  $f_i(x, y)$  tokens when the net is dead. The Petri nets are supposed to work for arbitrary numbers of tokens in  $P_x$  and  $P_y$ .

- **a)**  $f_1(x,y) = 5x + y \quad \forall x, y \ge 0$
- **b)**  $f_2(x,y) = x 2y \quad \forall y \ge 0, x \ge 2y$
- c)  $f_3(x,y) = x \cdot y \quad \forall x, y \ge 0$  Here you may want to use inhibitor arcs. An inhibitor arc between a place and a transition prevents the transition from firing as long as there is at least one token in the place.

**Hint** Start by creating a net that "duplicate" the number of tokens from  $P_x$  in place  $P_z$ . Then adapt this net to perform the multiplication.