ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich Networked Systems Group (NSG)

HS 2023 Prof. L. Vanbever / R. Schmid
based on Prof. R. Wattenhofer’s material

Discrete Event Systems

Solution to Exercise Sheet 5

1 Revisiting Context-Free Grammars
a) Recall the solution from last week with start symbol X:

X > XAX | A,
A—0]|1

We begin by transforming the grammer’s productions to CNF:

(i) Ensure that start is not on the right by introducing a new start symbol S:

S — X,
X - XAX | A,
A—0]1

(ii) Remove & productions (except from the start symbol): already none v’

(iii) Remove (A — B)-type productions:

S—XAX |01,
X —- XAX |01,
A—0]1

(iv) Replace longer variable productions by dyadic, i.e., (A — BC)-type productions by
introducing additional symbols:

S— XY |0]1,
X > XY |0]1,
Y = AX,
A—0]1

This grammar is in CNF. Note that the language is regular. Hence, there exist both a
right-linear and a left-linear grammar for it.

Right-linear: Left-linear:
X =0V |1Y |0]1, X—=>Y0|YLl|0]1,
Y - 0X |1X Y - X0| X1

L1 can also be described using a single non-terminal symbol:

S—0]1]0SS|1SS

b) Recall the solution from last week with start symbol X:

S — AlA,
A— A1|1A| A01|0A1|01A| A10| 140|104 |

We begin by transforming the grammer’s productions to CNF:

(i) Ensure that start is not on the right: already ok v/

(ii) Remove ¢ productions (except from the start symbol):

S— ALA|AL|1A|1,
A— A1|1A]|A01|0AL|O0LA|A10|1A0|10A|1|01|10

(iii) Remove (A — B)-type productions: already none v’

(iv) Replace longer productions by dyadic variable productions, i.e., (A — BC)-type pro-
ductions by introducing additional symbols:

S— BA|AX | XA|l,

A— AX | XA|CX|ZB|ZD|BZ|XC|XE|1|ZX |XZ,
B — AX,

C— AZ,

D — XA,

E— ZA,

X = 1,

Z— 0

This grammar is in CNF. Note that the language is not regular. Hence, there is no
right- /left-linear grammar for it. We've seen a grammar using the minimum number of
non-terminal symbols generating it last week (or above).

Finally, we consider last week’s alternative (also minimal) solution:

S — AlA,
A— AA|1A0|0A1|1 e

It can also be transformed to CNF:

(i) Ensure that start is not on the right: already ok v/

(ii) Remove ¢ productions (except from the start symbol):

S — AlLA|AL|1A4]1,
A— AA|_A |1A0|10|0A1|01 1
~~

not producing anything

(iii) Remove (A — B)-type productions: only remove A — A v/

(iv) Replace longer variable productions by dyadic, i.e., (A — BC)-type productions by
introducing additional symbols:

S— AlA| Al |1A 1,

A— AA|XC|XZ|ZB|ZX |1,
B — AX,

C— AZ,

X =1,

Z — 0

2 Regular, Context-Free or Not?

a) We begin by proving that L is not regular using the pumping lemma recipe:

1. Assume for contradiction that L was regular.
2. There must exist some p, s.t. any word w € L with |w| > p is pumpable.

3. Choose the string w = 1* for some k > p and p prime, w € L with length |w| > p.
——

k much greater than p

4. Consider all ways to split w = zyz s.t. |zy| < p and |y| > 1.
— Hence, y € 17 and |z| > 1 (since k > p).
5. Observe that zy'z ¢ L for i = |zz|, since
wl = |zy'z| = |z2| + iyl = |z2] - (1+|y])
—~ ——
>1 >1
is not prime.
6. This constitutes a contradiction to p being a valid pumping length.

7. Consequently, L cannot be regular.
Similarly, one can proof that L is not context-free using the tandem-pumping lemma:

1. Assume for contradiction that L was context-free.
2. There must exist some p, s.t. any word w € L with |w| > p is tandem-pumpable.

3. Choose the string w = 1* for some k > p and p prime, w € L with length |w| > p.
——

k much greater than p

4. Consider all ways to split w = uvayz s.t. |[vay| < p and |vy| > 1.
— Hence, vy € 1T and |uz| > 1 (since k > p).

5. Observe that uvizy'z ¢ L for i = |urz|, since
w| = [uviay's| = [uzz| +i - vyl = Juzz]- (1 + |vy])
—— N——
>1 >1
is not prime.
6. This constitutes a contradiction to p being a valid tandem-pumping length.

7. Consequently, L cannot be context-free.
It would have been enough to show that L is not context-free to prove that L is not reqular.
b) First, it can be shown using the pumping lemma that L is not regular:
Assume for contradiction that L was regular.
There must exist some p, s.t. any word w € L with |w| > p is pumpable.
Choose the string w = aP#aP#aP#aP; hence, w € L with length |w| > p.

Consider all ways to split w = zyz s.t. |[zy| < p and |y| > 1.
— Hence, y € a™.

- W N

5. Observe that 24°z ¢ L — a contradiction to p being a valid pumping length.
6. Consequently, L cannot be regular.
Next, we show that L is context-free by providing a CFG that produces the language L.

First, we create an equal number of symbols for w and z using rule (2), and then an equal
number of symbols for z and y using rule (3).

S — A (1)
A— YAY | #B# (2)
B — YBY | # (3)
Y >alb (4)

c) If lw| = |y| and |z| = |z], the resulting language is not context free, thus a CFG does not
exist. This can be seen using the tandem pumping lemma as follows.

Let the word considered be s = aP#aP#aP#aP € L with |s| = 4p+3 > p. For any division
s = defgh with |eg| > 1 and |efg| < p, the pumpable regions e and g can never consist of
boths as from w and y or both z and z because of the condition |efg| < p. Hence, any
pumping would inevitably only modify the number of as in one part thereby creating a
word s’ ¢ L. Therefore, L cannot be context free.

d) L is regular. Consider the following DFA on the alphabet ¥ = {0, 1} recognizing it:

odd ‘07/1’

3 Tandem-Pumping Lemma [Exam HS21]

a) w = 1P40#1P0 is tandem-pumpable for the split w = wvayz where u = 1771 v = 1,
x = #0#,y=1,and z = 17710:
e w € L, because "1P0” = 2-71P” and #o(b) = 1 = #(c).
o uv®xy®z = 1P~ 140417710, which is in L.
(i.e. removing v and y from w does not break any of the language’s Tules)

e v and y are part of a’s and ¢’s leading 1s, respectively. As v = y = 1, both numbers
are modified identically, while ¢’s trailing 0 ensures that ¢ = 2a remains true.

e v and y do not contain any 0s, so #q(b) = #o(c) is preserved.

b) We prove that L is not context-free using the tandem-pumping lemma.

1. Assume for contradiction that L was context-free.

2. There must exist some p, s.t. any word w € L with |w| > p is tandem-pumpable.
3. Choose the string w = 10P~1#0P#10P € L with length |w| > p.
4. Consider all ways to split w = uvzyz s.t. |[vay| < p and |vy| > 1.

First, we observe that if the vzy part was completely part of a, b, or ¢ (for
w = a#tb#tc), then uv’zy®z ¢ L.

Next, as |#b#| > p, the vay part cannot span parts from both a and c.

Hence, while pumping w, we cannot change the (arithmetic) value of a or ¢ as we
could only change one of these values.

As both a and ¢ do not contain leading 0s, we cannot change either of them.
Moreover, note that we can neither add nor remove a 0 to/from b as c is fixed.
Finally, observe that the number of # signs in w is fixed.

5. In conclusion, there is no split w = wvxyz that satisfies all criteria of the tandem-
pumping lemma — a contradiction to p being a valid tandem-pumping length.

6. Consequently, L cannot be context-free. O

c) If we chose any string w = a#b#c with 1 € b, i.e. b = by 1 bs, it would be tandem-pumpable.
To see this, let b = b11by. Then, observe that w = a#b#c is tandem-pumpable for the
split w = wvzryz where u = a#by, v =1, x =€, y = ¢, and z = baFc.

4 Java is not regular! [Bonus question]
This question is just for fun. Please excuse if part of this sample solution is not fully formal.
Note that if java is regular, then

L = java N L(({U})*>

REX for arbitrary curly-brace expressions

would have to be regular as well. However, L can also be written as:

L={wlwe {1} #(w) =#)},

which can be shown to be irregular using the pumping lemma.

