
Networked Systems Group (NSG)

HS 2023 Prof. L. Vanbever / R. Schmid
based on Prof. R. Wattenhofer’s material

Discrete Event Systems
Solution to Exercise Sheet 5

1 Revisiting Context-Free Grammars
a) Recall the solution from last week with start symbol X:

X → XAX | A,

A→ 0 | 1

We begin by transforming the grammer’s productions to CNF:

(i) Ensure that start is not on the right by introducing a new start symbol S:

S → X,

X → XAX | A,

A→ 0 | 1

(ii) Remove ε productions (except from the start symbol): already none X
(iii) Remove (A→ B)-type productions:

S → XAX | 0 | 1,
X → XAX | 0 | 1,
A→ 0 | 1

(iv) Replace longer variable productions by dyadic, i.e., (A → BC)-type productions by
introducing additional symbols:

S → XY | 0 | 1,
X → XY | 0 | 1,
Y → AX,

A→ 0 | 1

This grammar is in CNF. Note that the language is regular. Hence, there exist both a
right-linear and a left-linear grammar for it.

Right-linear: Left-linear:
X → 0Y | 1Y | 0 | 1, X → Y 0 | Y 1 | 0 | 1,
Y → 0X | 1X Y → X0 | X1

L1 can also be described using a single non-terminal symbol:

S → 0 | 1 | 0SS | 1SS

b) Recall the solution from last week with start symbol X:

S → A1A,

A→ A1 | 1A | A01 | 0A1 | 01A | A10 | 1A0 | 10A | ε

We begin by transforming the grammer’s productions to CNF:

(i) Ensure that start is not on the right: already ok X
(ii) Remove ε productions (except from the start symbol):

S → A1A | A1 | 1A | 1,
A→ A1 | 1A | A01 | 0A1 | 01A | A10 | 1A0 | 10A | 1 | 01 | 10

(iii) Remove (A→ B)-type productions: already none X
(iv) Replace longer productions by dyadic variable productions, i.e., (A→ BC)-type pro-

ductions by introducing additional symbols:

S → BA | AX | XA | 1,
A→ AX | XA | CX | ZB | ZD | BZ | XC | XE | 1 | ZX | XZ,

B → AX,

C → AZ,

D → XA,

E → ZA,

X → 1,
Z → 0

This grammar is in CNF. Note that the language is not regular. Hence, there is no
right-/left-linear grammar for it. We’ve seen a grammar using the minimum number of
non-terminal symbols generating it last week (or above).
Finally, we consider last week’s alternative (also minimal) solution:

S → A1A,

A→ AA | 1A0 | 0A1 | 1 | ε

It can also be transformed to CNF:

(i) Ensure that start is not on the right: already ok X
(ii) Remove ε productions (except from the start symbol):

S → A1A | A1 | 1A | 1,
A→ AA | A︸︷︷︸

not producing anything

| 1A0 | 10 | 0A1 | 01 | 1

(iii) Remove (A→ B)-type productions: only remove A→ A X

(iv) Replace longer variable productions by dyadic, i.e., (A → BC)-type productions by
introducing additional symbols:

S → A1A | A1 | 1A | 1,
A→ AA | XC | XZ | ZB | ZX | 1,
B → AX,

C → AZ,

X → 1,
Z → 0

2

2 Regular, Context-Free or Not?
a) We begin by proving that L is not regular using the pumping lemma recipe:

1. Assume for contradiction that L was regular.
2. There must exist some p, s.t. any word w ∈ L with |w| ≥ p is pumpable.
3. Choose the string w = 1k for some k � p︸ ︷︷ ︸

k much greater than p

and p prime, w ∈ L with length |w| > p.

4. Consider all ways to split w = xyz s.t. |xy| ≤ p and |y| ≥ 1.
→ Hence, y ∈ 1+ and |z| > 1 (since k � p).

5. Observe that xyiz /∈ L for i = |xz|, since

|w| = |xyiz| = |xz|+ i · |y| = |xz|︸︷︷︸
>1

· (1 + |y|)︸ ︷︷ ︸
>1

is not prime.
6. This constitutes a contradiction to p being a valid pumping length.
7. Consequently, L cannot be regular.

Similarly, one can proof that L is not context-free using the tandem-pumping lemma:

1. Assume for contradiction that L was context-free.
2. There must exist some p, s.t. any word w ∈ L with |w| ≥ p is tandem-pumpable.
3. Choose the string w = 1k for some k � p︸ ︷︷ ︸

k much greater than p

and p prime, w ∈ L with length |w| > p.

4. Consider all ways to split w = uvxyz s.t. |vxy| ≤ p and |vy| ≥ 1.
→ Hence, vy ∈ 1+ and |uz| > 1 (since k � p).

5. Observe that uvixyiz /∈ L for i = |uxz|, since

|w| = |uvixyiz| = |uxz|+ i · |vy| = |uxz|︸ ︷︷ ︸
>1

· (1 + |vy|)︸ ︷︷ ︸
>1

is not prime.
6. This constitutes a contradiction to p being a valid tandem-pumping length.
7. Consequently, L cannot be context-free.

It would have been enough to show that L is not context-free to prove that L is not regular.

b) First, it can be shown using the pumping lemma that L is not regular:

1. Assume for contradiction that L was regular.
2. There must exist some p, s.t. any word w ∈ L with |w| ≥ p is pumpable.
3. Choose the string w = ap#ap#ap#ap; hence, w ∈ L with length |w| > p.
4. Consider all ways to split w = xyz s.t. |xy| ≤ p and |y| ≥ 1.
→ Hence, y ∈ a+.

5. Observe that xy0z /∈ L – a contradiction to p being a valid pumping length.
6. Consequently, L cannot be regular.

Next, we show that L is context-free by providing a CFG that produces the language L.
First, we create an equal number of symbols for w and z using rule (2), and then an equal
number of symbols for x and y using rule (3).

S → A (1)
A→ YAY | #B# (2)
B → YBY | # (3)
Y → a | b (4)

3

c) If |w| = |y| and |x| = |z|, the resulting language is not context free, thus a CFG does not
exist. This can be seen using the tandem pumping lemma as follows.
Let the word considered be s = ap#ap#ap#ap ∈ L with |s| = 4p+ 3 ≥ p. For any division
s = defgh with |eg | ≥ 1 and |efg | ≤ p, the pumpable regions e and g can never consist of
boths as from w and y or both x and z because of the condition |efg | ≤ p. Hence, any
pumping would inevitably only modify the number of as in one part thereby creating a
word s′ /∈ L. Therefore, L cannot be context free.

d) L is regular. Consider the following DFA on the alphabet Σ = {0, 1} recognizing it:

even

odd ‘0’

odd ‘1’

odd ‘0’/‘1’
0

1

0

1

0

1 0

1

3 Tandem-Pumping Lemma [Exam HS21]
a) w = 1p#0#1p0 is tandem-pumpable for the split w = uvxyz where u = 1p−1, v = 1,

x = #0#, y = 1, and z = 1p−10:

• w ∈ L, because ”1p0” = 2 · ”1p” and #0(b) = 1 = #0(c).
• uv0xy0z = 1p−1#0#1p−10, which is in L.

(i.e. removing v and y from w does not break any of the language’s rules)
• v and y are part of a’s and c’s leading 1s, respectively. As v = y = 1, both numbers

are modified identically, while c’s trailing 0 ensures that c = 2a remains true.
• v and y do not contain any 0s, so #0(b) = #0(c) is preserved.

b) We prove that L is not context-free using the tandem-pumping lemma.

1. Assume for contradiction that L was context-free.
2. There must exist some p, s.t. any word w ∈ L with |w| ≥ p is tandem-pumpable.
3. Choose the string w = 10p−1#0p#10p ∈ L with length |w| > p.
4. Consider all ways to split w = uvxyz s.t. |vxy| ≤ p and |vy| ≥ 1.

• First, we observe that if the vxy part was completely part of a, b, or c (for
w = a#b#c), then uv0xy0z /∈ L.

• Next, as |#b#| > p, the vxy part cannot span parts from both a and c.
• Hence, while pumping w, we cannot change the (arithmetic) value of a or c as we

could only change one of these values.
• As both a and c do not contain leading 0s, we cannot change either of them.
• Moreover, note that we can neither add nor remove a 0 to/from b as c is fixed.
• Finally, observe that the number of # signs in w is fixed.

5. In conclusion, there is no split w = uvxyz that satisfies all criteria of the tandem-
pumping lemma – a contradiction to p being a valid tandem-pumping length.

6. Consequently, L cannot be context-free. �

c) If we chose any string w = a#b#c with 1 ∈ b, i.e. b = b11 b2, it would be tandem-pumpable.
To see this, let b = b11 b2. Then, observe that w = a#b#c is tandem-pumpable for the
split w = uvxyz where u = a#b1, v = 1, x = ε, y = ε, and z = b2#c.

4

4 Java is not regular! [Bonus question]
This question is just for fun. Please excuse if part of this sample solution is not fully formal.

Note that if java is regular, then

L = java ∩ L
((
{ ∪ }

)∗︸ ︷︷ ︸
REX for arbitrary curly-brace expressions

)

would have to be regular as well. However, L can also be written as:

L =
{
w | w ∈

{
{, }
}∗

,#{(w) = #}(w)
}
,

which can be shown to be irregular using the pumping lemma.

5

